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ABSTRACT
The problem of computing a representation for a real poly-
nomial as a sum of minimum number of squares of polyno-
mials can be casted as finding a symmetric positive semidef-
inite real matrix of minimum rank subject to linear equality
constraints. In this paper, we propose algorithms for solving
the minimum-rank Gram matrix completion problem, and
show the convergence of these algorithms. Our methods are
based on the fixed point continuation method. We also use
the Barzilai-Borwein technique and a specific linear combi-
nation of two previous iterates to accelerate the convergence
of modified fixed point continuation algorithms. We demon-
strate the effectiveness of our algorithms for computing ap-
proximate and exact rational sum of squares decompositions
of polynomials with rational coefficients.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; G.1.6 [Numerical
Analysis]: Global optimization

General Terms: algorithms, experimentation

Keywords: Gram matrix completion, nuclear norm mini-
mization, Schur decomposition, sum of squares, fixed point
iterative method

1. INTRODUCTION
Let x = [x1, . . . , xs] and f(x) ∈ R[x], then f is a sum of

squares (SOS) in R[x] if and only if it can be written in the
form

f(x) = md(x)T · W · md(x), (1)

in which md(x) is a column vector of monomials of degree
less than or equal to d and W is a real positive semidefinite
matrix [42, Theorem 1] (see also [10]). W is also called a
Gram matrix for f . If W has rational entries, then f is a
sum of squares in Q[x].
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Problem 1 Let f ∈ Q[x1, . . . , xs] be a polynomial of degree
2d, compute a representation for it as a sum of minimum
number of squares of polynomials in Q[x1, . . . , xs].

The set of all matrices W for which (1) holds is an affine
subspace of the set of symmetric matrices. If the intersection
of this affine subspace with the cone of positive semidefinite
(PSD) matrices is nonempty, then f can be written as a sum
of squares. Since the components of md(x) are not alge-
braically independent, W is in general not unique. Problem
1 can be restated as finding a Gram matrix with minimum
rank satisfying a given set of constraints:

min rank(W )

s.t. f(x) = md(x)T · W · md(x)
W � 0, W T = W




 (2)

For s = 1, Pourchet’s main theorem [41] implies that ev-
ery positive definite univariate polynomial in Q[x] is a sum
of five squares in Q[x]. Therefore, the minimum rank of
the Gram matrix satisfying (2) is bounded by 5 for s = 1.
For s > 1, Pfister’s general theorem [40] shows that ev-
ery positive definite polynomial in R[x1, . . . , xs] is a sum
of 2s squares of rational functions in R(x1, . . . , xs). It is
well known that there exist positive semidefinite polynomi-
als which cannot be written as sums of polynomial squares.
However, as shown in [22], various exceptional SOS prob-
lems in the literature can be written as sums of less than 10
squares of polynomials after multiplying by suitable polyno-
mials.

In general, the rank minimization is an intractable prob-
lem and is in fact provably NP-hard due to the combina-
tional nature of the non-convex rank function [9]. In [12,
13, 43], they showed that rank(W ) can be replaced by the
nuclear norm of W , which is the best convex approximation
of the rank function over the unit ball of matrices.

Expanding the right-hand side of the equality condition
of (2), matching coefficients of the monomials, we obtain a
set of linear equations which can be written as

A(W ) = b, (3)

where b = (b1, . . . , bp) ∈ Rp and bi is the coefficient of the
monomial xαi = x

αi,1

1 · · ·xαi,s
s in f(x). The action of the

linear operator A : Sn → Rp on W is described by the inner
product 〈Ai, W 〉 := Tr(AT

i W ) for A1, . . . , Ap ∈ Sn. We use
exponent tuples for indexing the matrices, then the entry in
Ai with row index βi and column index γi is equal to one
if βi + γi = αi and zero otherwise. Therefore, there are at
most n nonzero entries (being 1) in Ai, i = 1, . . . , p. We use
A∗ : Rp → Sn to denote the adjoint operator of A.



The rank minimization problem (2) can be relaxed to a
nuclear norm minimization problem

min ‖W‖∗
s.t. A(W ) = b

W � 0, W T = W



 (4)

where the nuclear norm ‖W‖∗ is defined as the sum of its
singular values. The constraint A(W ) = b can also be re-
laxed, resulting in either the problem

min ‖W‖∗
s.t. ‖A(W ) − b‖2 ≤ ǫ

W � 0, W T = W




 (5)

or its Lagrangian version

min
W∈S

n
+

µ‖W‖∗ +
1

2
‖A(W ) − b‖2

2, (6)

where Sn
+ is the set of symmetric positive semidefinite ma-

trices and µ > 0 is a parameter.

Prior work. In [1, 16, 25, 26, 27], they studied how to
determine whether partially specified positive semidefinite
matrices can be completed to fully specified matrices sat-
isfying certain prescribed properties. A number of recent
work has also shown that the low-rank solution can be re-
covered exactly via minimizing the nuclear norm under cer-
tain conditions [7, 8, 43, 44]. Notice that the nuclear norm
of a symmetric positive semidefinite matrix is actually the
trace, the nuclear norm minimization problem (4) is just a
standard linear SDP problem which can be directly solved
by interior-point methods in [4, 5, 13, 29, 45, 47] or pro-
jection methods in [18, 19, 23, 33, 37, 53] for large-scale
SDP problems. Since most of these methods use second-
order information, the memory requirement for computing
descent directions quickly becomes too large as the problem
size increases. Recently, several fast algorithms using only
first-order information have been developed in [6, 14, 31,
32]. Moreover, some accelerated gradient algorithms were
also proposed in [3, 20, 34, 35, 36, 49, 50] which have an
attractive convergence rate of O(1/k2), where k is the iter-
ation counter. These first-order methods, based on function
values and gradient evaluation, cannot yield as high accu-
racy as interior point methods, but much larger problems
can be solved since no second-order information needs to be
computed and stored.

Main results. In this paper, we present two algorithms for
solving the minimum-rank Gram matrix completion problem
(4). Our algorithms are based on the fixed point continu-
ation method (FPC). By modifying the shrinkage operator
in FPC and using the Barzilai-Borwein (BB) technique to
compute explicit dynamically updated step sizes, we get an
algorithm, called modified fixed point continuation method
with the Barzilai-Borwein technique (MFPC-BB). We prove
the convergence of our algorithm under certain conditions.

We incorporate an accelerating technique in the MFPC-
BB algorithm by computing the next iterate based not only
on the previous one, but also on two previously computed
iterates to get the AFPC-BB algorithm, which keeps its sim-
plicity but shares the improved rate O(1/k2) of the optimal
gradient method.

Numerical experiments demonstrate that modified FPC
algorithms outperform SDP solvers SeDuMi [48] (in YALMIP

[30]) and SDPNAL [53] for computing approximate and ex-
act rational SOS of polynomials with rational coefficients,
especially for large-scale sparse examples.

Structure of the paper. In Section 2, we derive the mod-
ified fixed point iterative algorithm for the minimum-rank
Gram matrix completion problem. In Section 3, we establish
the convergence result for our algorithm and prove that it
converges to the optimal solution of problem (6). In Section
4, we introduce two techniques to accelerate the convergence
of our algorithm and present MFPC-BB and AFPC-BB al-
gorithms for solving problem (6). We demonstrate the per-
formance and effectiveness of our algorithms through numer-
ical examples for computing approximate and exact rational
sum of squares decompositions of polynomials with rational
coefficients in Section 5.

2. MODIFIED FIXED POINT ITERATIVE
ALGORITHM

Let f : Rn1×n2 → R be a convex function, the subdifferen-
tial of f at X∗ ∈ Rn1×n2 denoted by ∂f(X∗) is the compact
convex set defined by

∂f(X∗) := {Z ∈ R
n1×n2 : f(Y ) ≥ f(X∗) + 〈Z, Y − X∗〉,

∀ Y ∈ R
n1×n2}.

Following discussions in [28, Theorem 3.1] and [51], we
derive the expression of the subdifferential of the nuclear
norm at a symmetric matrix.

Theorem 1 Let W ∈ Sn, then

∂‖W‖∗ = {Q(1)Q(1)T − Q(2)Q(2)T + Z : Q(i)T Z = 0,

i = 1, 2, and ‖Z‖2 ≤ 1},

where Q(1) and Q(2) are orthogonal eigenvectors associated
with the positive and negative eigenvalues of W respectively.

Proof. Suppose that the eigenvalues of a symmetric ma-
trix W can be ordered as λ1 ≥ · · · ≥ λt > 0 > λt+1 ≥ · · · ≥
λs, λs+1 = · · · = λn = 0. Let W = QΛQT be a Schur de-
composition of W , where Q ∈ Rn×n is an orthogonal matrix
and Λ = diag(λ1, . . . , λn). These matrices can be parti-
tioned as

Q =
(
Q(1), Q(2), Q(3)

)
, Λ =




Λ(1) 0 0

0 Λ(2) 0

0 0 Λ(3)



 ,

with Q(1), Q(2), Q(3) having t, s− t, n− s columns and being
associated with Λ(1) = diag(λ1, . . . , λt), Λ(2) = diag(λt+1, . . .

, λs), and Λ(3) = diag(λs+1, . . . , λn), respectively.
Let λ = (λ1, . . . , λn)T and recall that

∂‖λ‖1 = {y ∈ R
n : yi = 1, i = 1, . . . , t; yj = −1,

j = t + 1, . . . , s; |yk| < 1, k = s + 1, . . . , n}.

Let Y ∈ ∂‖W‖∗, by [28, Theorem 3.1], we have

Y = Qdiag(d)QT ,

where d ∈ ∂‖λ‖1. Therefore

Y = Q(1)Q(1)T − Q(2)Q(2)T + Q(3)DQ(3)T ,



where D is an (n−s)×(n−s) diagonal matrix with diagonal
elements less than 1 in modulus.

Let Z = Q(3)DQ(3)T , we have Q(i)T Z = 0, i = 1, 2. Let
σ1(·) denote the largest singular value of a given matrix,
then we have

‖Z‖2 = Q(3)DQ(3)T ≤ σ1(D) < 1,

which completes the proof.

The optimality condition in [31, Theorem 2] can be gener-
alized to the optimality condition for the constrained convex
optimization problem (6).

Theorem 2 Let f : Sn → R be a proper convex function,
i.e. f < +∞ for at least one point and f > −∞ for every
point in its domain. Then W ∗ is an optimal solution to the
problem

min
W∈S

n
+

f(W ) (7)

if and only if W ∗ ∈ Sn
+, and there exists a matrix U ∈

∂f(W ∗) such that

〈U, V − W ∗〉 ≥ 0, for all V ∈ S
n
+. (8)

Proof. Suppose U ∈ ∂f(W ∗) and satisfies the inequality
condition (8), then

f(V ) ≥ f(W ∗) + 〈U, V − W ∗〉, ∀ V ∈ S
n
+,

we have f(V ) ≥ f(W ∗), for all V ∈ Sn
+. This shows that

W ∗ is an optimal solution of the problem (7).
Conversely, suppose W ∗ is the optimal solution of the

problem (7), and (8) does not hold, i.e., for each U ∈ ∂f(W ∗),

∃ V ∈ S
n
+, s.t. 〈U, V − W ∗〉 < 0. (9)

Consider Z(t) = tW ∗ + (1 − t)V , where t ∈ [0, 1] is a pa-
rameter. Since Z(t) is on the line segment between W ∗ and
V , and Sn

+ is a convex set, Z(t) ∈ Sn
+,∀ t ∈ [0, 1]. By [46,

Theorem 23.4], the one-sided directional derivative of f at
Z(1) with respect to the vector W ∗ − V satisfies

f ′(Z(t); W ∗ − V )|t=1 = f ′(W ∗; W ∗ − V )

= sup{〈W, W ∗ − V 〉 : ∀ W ∈ ∂f(W ∗)}
≥ 〈U, W ∗ − V 〉 > 0, by (9).

Therefore, for a small value ǫ > 0, we have f(Z(1 − ǫ)) <
f(W ∗), which is contradict to the fact that W ∗ is optimal
to the problem (7).

Based on above theorems, we can introduce a threshold-
ing operator and extend the fixed point iterative scheme for
solving (6).

Definition 1 Suppose W = QΛQT is a Schur decomposi-
tion of a matrix W ∈ Sn, where Λ = diag(λ1, . . . , λn) and
Q is a real orthogonal matrix. For any ν ≥ 0, the matrix
thresholding operator Tν(·) is defined as

Tν(W ) := QTν(Λ)QT , Tν(Λ) = diag({λi − ν}+),

where t+ = max(0, t).

We should point out that the idea of using the eigenvalue
decomposition of Y k has also appeared in [49, Remark 3].
However, to our best knowledge, there exists no convergence

analysis about the eigenvalue thresholding operator in the
literature.

Let µ and τ be positive real numbers and X0 be an initial
starting matrix. For k = 0, 1, 2, · · · , we compute

{
Y k = Xk − τA∗(A(Xk) − b),

Xk+1 = Tτµ(Y k),
(10)

until a stopping criterion is reached.

Theorem 3 For the operator A defined by (3), suppose a
matrix W ∗ ∈ Sn

+ satisfies

1. ‖A(W ∗) − b‖2 < µ/n for a small positive number µ.

2. W ∗ = Tτµ(h(W ∗)), where h(·) = I(·) − τA∗(A(·) − b)
and I(·) is an identity operator.

Then W ∗ is the unique optimal solution of the problem (6).

Proof. Let ν = τµ and Y ∗ = h(W ∗) = W ∗ + E ∈ Sn,
where E = −τA∗(A(W ∗)− b). We claim that Tν(Y ∗) is the
unique optimal solution to the following problem

min
W∈Sn

+

ν‖W‖∗ +
1

2
‖W − Y ∗‖2

F , (11)

In fact, since the objective function ν‖W‖∗+ 1
2
‖W −Y ∗‖2

F

is strictly convex, there exists a unique minimizer, and we
only need to prove that it is equal to Tν(Y ∗). Without loss
of generality, we assume that the eigenvalues of Y ∗ can be
ordered as

λ1(Y
∗) ≥ · · · ≥ λt(Y

∗) ≥ ν > λt+1(Y
∗) ≥ · · · > 0 >

· · · ≥ λs(Y
∗), λs+1(Y

∗) = · · · = λn(Y ∗) = 0.

We compute a Schur decomposition of Y ∗ as

Y ∗ = Q(1)Λ(1)Q(1)T + Q(2)Λ(2)Q(2)T ,

where Λ(1) = diag(λ1, . . . , λt), Λ(2) = diag(λt+1, . . . , λs),

Q(1) and Q(2) are block matrices corresponding to Λ(1) and

Λ(2) respectively. Let X̂ = Tν(Y ∗), we have

X̂ = Q(1)(Λ(1) − νI)Q(1)T ,

therefore,

Y ∗ − X̂ = ν(Q(1)Q(1)T + Z), Z = ν−1Q(2)Λ(2)Q(2)T .

By definition, Q(1)T Z = 0.

• If λt+1(Y
∗) ≥ |λs(Y

∗)|, then ‖Z‖2 = λt+1(Y
∗)/ν < 1.

• Otherwise, let y = (y1, . . . , yp)
T = A(W ∗) − b ∈ Rp.

Since A∗y = A1y1 + · · · + Apyp and there are at most
n nonzero entries (being 1) in Ai, we have

‖E‖2
F = τ 2‖A∗y‖2

F ≤ τ 2n2(y2
1 + · · · + y2

p) < τ 2µ2.

Notice that E ∈ Sn and W ∗ ∈ Sn
+, by [15, Theorem 8.1.5],

we have

‖Z‖2 =
|λs(Y

∗)|
ν

=
max{|λ1(E)|, |λn(E)|}

ν
≤ ‖E‖F

ν
< 1.

Hence, according to Theorem 1, we have Y ∗−X̂ ∈ ν∂‖X̂‖∗,
which means that 0 ∈ ν∂‖X̂‖∗ +X̂−Y ∗. By Theorem 2, we
immediately conclude that Tν(Y ∗) is an optimal solution of
the problem (11).



Since the objective function of the problem (6) is strictly
convex, its optimal solution is also unique. If W ∗ = Tτµ(Y ∗),
by Theorem 2, there exists a matrix U ∈ ν∂‖W ∗‖∗+W ∗−Y ∗

such that

〈U, V − W ∗〉 ≥ 0, ∀ V ∈ S
n
+.

Let Ũ = U/τ , by substituting ν = τµ and Y ∗ = W ∗ −
τA∗(A(W ∗)− b) into the above subdifferential function, we

have Ũ ∈ µ∂‖W ∗‖∗ + A∗(A(W ∗) − b) satisfying

〈Ũ , V − W ∗〉 ≥ 0, ∀ V ∈ S
n
+.

By applying Theorem 2 once again, it is true that W ∗ is the
optimal solution of the problem (6).

3. CONVERGENCE ANALYSIS
In this section, we analyze the convergence properties of

the modified fixed point iterative scheme (10). We begin by
recording two lemmas which establish the non-expansivity
of the thresholding operator Tν(h(·)).

Lemma 1 The thresholding operator Tν is non-expansive,
i.e., for any X1, X2 ∈ Sn,

‖Tν(X1) − Tν(X2)‖F ≤ ‖X1 − X2‖F . (12)

Moreover,

‖X1 − X2‖F = ‖Tν(X1) − Tν(X2)‖F

⇐⇒ X1 − X2 = Tν(X1) − Tν(X2).

Lemma 2 Suppose that the step size τ satisfies τ ∈ (0, 2/‖A‖2
2).

Then the operator h(·) = I(·)−τA∗(A(·)−b) is non-expansive,
i.e., for any X1, X2 ∈ Sn,

‖h(X1) − h(X2)‖F ≤ ‖X1 − X2‖F .

Moreover, we have

‖h(X1) − h(X2)‖F = ‖X1 − X2‖F

⇐⇒ h(X1) − h(X2) = X1 − X2,

where I(·) is an identity operator.

The proof of these two lemmas follows the similar strategy
presented in [31]. Instead of the inequality (3.3) in [31], we
use the fact that for X, Y ∈ Sn,

Tr(X Y ) ≤ λ(X)T λ(Y ),

where λ(X), λ(Y ) are the vectors of eigenvalues of X and Y
respectively [28, Theorem 2.2].

We now claim that the modified fixed point iterations (10)
converge to the optimal solution of the problem (6).

Theorem 4 Let τ ∈ (0, 2/‖A‖2
2) and W ∗ ∈ Sn

+ satisfy

1. ‖A(W ∗) − b‖2 < µ/n for a small positive number µ.

2. W ∗ = Tτµ(h(W ∗)), where h(·) = I(·)− τA∗(A(·)− b).

Then the sequence {Xk} obtained via modified fixed point
iterations (10) converges to W ∗.

Proof. Let ν = τµ. Since both Tν(·) and h(·) are non-
expansive, Tν(h(·)) is also non-expansive. Therefore, {Xk}
lies in a compact set and must have a limit point. Suppose

X̃ = limj−→∞ Xkj satisfying ‖A(X̃)−b‖2 < µ/n. By W ∗ =
Tν(h(W ∗)), we have

‖Xk+1 − W ∗‖F = ‖Tν(h(Xk)) − Tν(h(W ∗))‖F

≤ ‖h(Xk) − h(W ∗)‖F ≤ ‖Xk − W ∗‖F ,

which means that the sequence {‖Xk −W ∗‖F } is monoton-
ically non-increasing. Therefore

lim
k−→∞

‖Xk − W ∗‖F = ‖X̃ − W ∗‖F ,

where X̃ can be any limit point of {Xk}. By the continuity
of Tν(h(·)), we have

Tν(h(X̃)) = lim
j−→∞

Tν(h(Xkj )) = lim
j−→∞

Xkj+1,

i.e., Tν(h(X̃)) is also a limit point of {Xk}. Therefore, we
have

‖Tν(h(X̃)) − Tν(h(W ∗))‖F = ‖Tν(h(X̃)) − W ∗‖F

= ‖X̃ − W ∗‖F .

Using Lemma 1 and Lemma 2 we obtain

Tν(h(X̃)) − Tν(h(W ∗)) = h(X̃) − h(W ∗) = X̃ − W ∗,

which implies Tν(h(X̃)) = X̃ . By Theorem 3, X̃ is the

optimal solution to the problem (6), i.e., X̃ = W ∗. Hence,
we have

lim
k−→∞

‖Xk − W ∗‖F = 0,

i.e., {Xk} converges to its unique limit point W ∗.

4. IMPLEMENTATION
This section provides implementation details of the mod-

ified FPC algorithm for solving the minimum-rank Gram
matrix completion problem.

4.1 Evaluation of the eigenvalue thresholding
operator

The main computational cost of the modified FPC algo-
rithm is computing the Schur decompositions. Following
the strategies in [6, 49], we use PROPACK [24] in Matlab
to compute a partial Schur decomposition of a symmetric
matrix.

PROPACK can not automatically compute only eigen-
values greater than a given threshold ν. To use this pack-
age, we must predetermine the number sk of eigenvalues
of Y k to compute at the k-th iteration. Suppose Xk =
Qk−1Λk−1(Qk−1)T , we set sk equal to the number of diago-
nal entries of Λk−1 that are no less than εk‖Λk−1‖2, where εk

is a small positive number. Notice that sk is non-increasing.
If sk is too small, the non-expansive property (12) of the
thresholding operator Tν may be violated. We increase sk

by 1 if the non-expansive property is violated 10 times [31].

4.2 Barzilai-Borwein technique
In [31], the authors always set the parameter τ = 1 since

their operator A is generated by randomly sampling a sub-
set of p entries from matrices with i.i.d. standard Gaus-
sian entries. For this linear map, the Lipschitz constant for



the objective function of (6) is 1. According to Theorem
4, convergence for the Gram matrix completion problem is
guaranteed provided that τ ∈ (0, 2/‖A‖2

2). This choice is,
however, too conservative and the convergence is typically
slow.

There are many ways to select a step size. For simplic-
ity, we describe a strategy, which is based on the Barzilai-
Borwein method [2], for choosing the step size τk. Let
g(·) = A∗(A(·) − b) and gk = A∗(A(Xk) − b). We per-
form the shrinkage iteration (10) along the negative gradi-
ent direction gk of the smooth function 1

2
‖A(Xk)−b‖2

2, then
apply the thresholding operator Tν(·) to accommodate the
non-smooth term ‖X‖∗. Hence, it is natural to choose τk

based on the function 1
2
‖A(Xk) − b‖2 alone. Let

∆X = Xk − Xk−1, ∆g = gk − gk−1.

The BB step provides a two-point approximation to the se-
cant equation underlying quasi-Newton method, specifically,

τk =
〈∆X, ∆g〉
〈∆g,∆g〉 , or τk =

〈∆X, ∆X〉
〈∆X, ∆g〉 .

In order to avoiding the parameter τk being either too small
or too large, we take

τk = max{τmin, min{τk, τmax}},
where 0 < τmin < τmax < ∞ are fixed parameters.

The idea of using the BB step to accelerate the conver-
gence of gradient algorithms has also appeared in [52].

4.3 Algorithms
As suggested in [17, 31, 49], we adopt a continuation strat-

egy to solve the problem (6). For the problem (6) with a
target parameter µ̄ being a moderately small number, we
propose solving a sequence of problems (6) defined by an
decreasing sequence µk. When a new problem, associated
with µk+1, is to be solved, the approximate solution for the
current problem with µk is used as the starting point. We
use the parameter η to determine the rate of reduction of
the consecutive µk, i.e.,

µk+1 = max(ηµk, µ̄), k = 1, . . . , L − 1.

Our modified fixed point continuation iterative scheme
with the Barzilai-Borwein technique for solving (6) is out-
lined below.

Algorithm MFPC-BB

Input: ◮ Parameters 0 < τmin < τ0 < τmax < ∞, µ1 >
µ̄ > 0, η > 0 and a tolerance ǫ > 0

Output: ◮ A numeric Gram matrix.

- Set X0 = 0.

- For µ = µ1, . . . , µL, do

1. Choose a step size τk via the BB technique such
that τmin ≤ τk ≤ τmax.

2. Compute Y k = Xk − τkA∗(A(Xk) − b) and a
Schur decomposition of Y k = Qk Λk (Qk)T .

3. Compute Xk+1 = Qk Tτkµk
(Λk) (Qk)T .

- If the stop criterion is true, then return Xopt.

- end for.

However, as shown in [3, 20, 49], the above algorithm
may converge as O(1/k). Very recently, alternative algo-
rithms that could speed up the performance of the gradient
method FPC have been proposed in [20, 49]. These algo-
rithms rely on computing the next iterate based not only
on the previous one, but also on two or more previously
computed iterates. We incorporate this new accelerating
technique in our MFPC-BB algorithm to solve the affine
constrained low-rank Gram matrix completion problem (6).
The accelerated algorithm, called AFPC-BB, keeps the sim-
plicity of MFPC-BB but shares the improved rate O(1/k2)
of the optimal gradient method.

Algorithm AFPC-BB

Input: ◮ Parameters 0 < τmin < τ0 < τmax < ∞, µ1 >
µ̄ > 0, η > 0 and tolerance ǫ > 0

Output: ◮ A numeric Gram matrix.

- Set X0 = 0, t0 = 1.

- For µ = µ1, . . . , µL, do

1. Choose a step size τk via the BB technique such
that τmin ≤ τk ≤ τmax.

2. Compute Zk = Xk +
tk−1−1

tk
(Xk − Xk−1).

3. Compute Y k = Zk−τkA∗(A(Zk)−b) and a Schur
decomposition of Y k = Qk Λk (Qk)T .

4. Compute Xk+1 = Qk Tτkµk
(Λk) (Qk)T .

5. Compute tk+1 =
1+

√
1+4t2

k

2
.

- If the stop criterion is true, then return Xopt.

- end for.

The following theorem shows that by performing the gra-
dient step at the matrix Zk instead of at the approximate
solution Xk, the convergence rate of the MFPC-BB method
can be accelerated to O(1/k2).

Theorem 5 [20, 49] Let {Xk} be the sequence generated by
the AFPC-BB algorithm. Then for any k > 1, we have

F (Xk) − F (X∗) ≤ C‖X∗ − X0‖2
F

(k + 1)2
,

where C is a constant, F (X) is the objective function and
X∗ is the optimal solution of the problem (6).

5. NUMERICAL EXPERIMENTS
In this section, we report the performance of our modi-

fied FPC algorithms for writing a real positive semidefinite
polynomial as a sum of minimum number of squares of poly-
nomials. In our tests, we generate positive semidefinite ma-
trices W ∈ Qn×n with rank r by sampling an n × r factor
L with random integers ranging from −10 to 10, and set-
ting W = LLT. We construct the column vector md(x) by
choosing monomials in x1, . . . , xs of degree less than or equal
to d for 2 ≤ s ≤ 4 and 5 ≤ d ≤ 20. Therefore, a positive
semidefinite polynomial is obtained

f(x) = md(x)T · W · md(x) ∈ Q[x].

Replacing entries in W by parameters, expanding the right-
hand side of the equality and matching coefficients of the



Problems MFPC MFPC-BB AFPC-BB
n r p FR # iter error # iter error # iter error

100 10 579 1.6494 527 9.98e-4 434 9.97e-4 50 9.46e-4
200 10 1221 1.6011 797 9.99e-4 512 9.99e-4 59 9.84e-4
500 10 5124 0.9670 632 4.99e-3 499 4.99e-3 66 4.90e-3

Table 1: Comparison of MFPC, MFPC-BB and AFPC-BB, without using continuation technique.

monomials, we obtain a set of linear equations (3), which
defines the linear map A from Sn to Rp.

We know that an n × n symmetric matrix of rank r de-
pends on dr = r(2n − r + 1)/2 degrees of freedom. Let FR
(degrees of freedom ratio) be dr/p, where p is the number
of linear constrains. If FR is large (close to 1), recover-
ing W becomes harder as the number of measurements is
close to the degree of freedom. Conversely, if FR is close to
zero, recovering W becomes easier. Note that if FR > 1,
there might have an infinite number of matrices with rank
r satisfying given affine constraints.

The stopping criterion for the MFPC, MFPC-BB, AFPC-
BB algorithms in our numerical experiments is given as fol-
lows:

error :=
‖A(Xopt) − b‖2

‖b‖2
< ǫ, (13)

where ǫ is a moderately small number. Throughout the
experiments, we choose the initial matrix X0 = 0. For
each test, we make an initial estimate of the value L =
‖A‖2

2 which is the smallest Lipschitz constant of the gradi-
ent of 1

2
‖AX −b‖2

2. We set the Barzilai-Borwein parameters

τmax = 10/L and τmin = 10−3/L. The thresholds 10 and
10−3 are found after some experiments.

We have implemented the MFPC-BB and AFPC-BB al-
gorithms in MATLAB. All runs are conducted on a HP
xw8600 workstation with an Inter Xeon(R) 2.67GHz CPU
and 3.00 GB of RAM. The codes can be downloaded from
http://www.mmrc.iss.ac.cn/˜lzhi/Research/hybrid/FPCs/

5.1 Numerical experiments on random Gram
matrix completion problems

In the first series of test, we set ǫ = 10−3 and compare the
performance of the MFPC, MFPC-BB and AFPC-BB algo-
rithms without continuation technique to solve problem (6)
for randomly generated Gram matrix completion problems
with moderate dimensions. In order to see the convergence
behaviors of these algorithms clearly, we compute the full
Schur decompositions at each iteration.

Table 1 reports the degree of freedom ratio FR, the num-
ber of iterations, and the error (13) of the three algorithms.
Computational efficiency is measured by the number of it-
erations. As can be seen from this table, on the condition
that these three algorithms achieve similar errors, MFPC-
BB provides better performance with less number of itera-
tions than MFPC, which shows that the Barzilai-Borwein
technique is quite effective in accelerating the convergence
of the MFPC algorithm. Moreover, AFPC-BB outperforms
the other two algorithms greatly in terms of the number of
iterations.

In Table 2, we report the performance of the AFPC-BB al-
gorithm with continuation technique on randomly generated
Gram matrix completion problems. We use PROPACK to
compute partial eigenvalues and eigenvectors. For the con-

tinuation technique, we set the target parameter µ̄ to be
10−4‖A∗b‖ and µ1 = 1/4‖A∗b‖. The update strategy for
µk is max(1/4µk−1, µ̄) until the stopping criterion is satis-
fied with ǫ = 10−3. The running time here and hereafter is
shown in seconds. The rank of the Gram matrix is computed
for the given tolerance 10−5 for all the following numerical
experiments.

Problems Results
n r p FR # iter rank time

100 10 579 1.6494 76 10 1.48e+0
500 10 3309 1.4974 139 27 6.13e+1
1000 50 10621 4.5923 127 59 1.53e+2
1500 50 25573 2.8849 196 77 5.41e+2

Table 2: Numerical results for AFPC-BB, with contin-

uation technique.

As indicated in this table, it takes the AFPC-BB algo-
rithm fewer than 200 iterations and less than 10 minutes to
reach convergence. For all problems in this set, FR is larger
than 1. It is rather surprising that the low-rank Gram ma-
trix can be recovered given only such a small number of
affine constraints. To our best knowledge, nobody has con-
sidered solving matrix completion problems in this situation
yet.

5.2 Exact rational sum of squares certificates
The numerical Gram matrix W returned by the AFPC-

BB algorithm satisfies

f(x) ≈ md(x)T · W · md(x), W � 0.

In order to derive an exact SOS decomposition of f , we
might need to start with an approximate Gram matrix with
high accuracy [21, 22, 38, 39] and convert it into a rational
matrix.

Although first-order methods are often the only practi-
cal option for solving large-scale problems, it is rather diffi-
cult for them to achieve high accuracy. Therefore, we apply
the structure-preserving Gauss-Newton iterations (see [21,
22]) to refine the low-rank Gram matrix W returned by the
AFPC-BB algorithm: we choose a rank r which is less than
or equal to the rank of W and compute the truncated LTDL
decomposition of W to obtain an approximate SOS decom-
position

f(x) ≈
r∑

i=1

(
∑

α

ci,αxα)2,

then apply the standard Gauss-Newton iteration to compute
∆ci,αxα such that

f(x) =
r∑

i=1

(
∑

α

ci,αxα + ∆ci,αxα)2 + O(
r∑

i=1

(
∑

α

∆ci,αxα)2).



Examples Results Gauss-Newton iteration
n r p FR solvers rank θ time rank θ time

100 5 579 0.8463 AFPC-BB 9 8.415e-1 1.75e+0 5 1.935e-9 2.98e+1
SDPNAL 16 2.600e-1 1.50e+0 5 8.852e-10 2.63e+1
SeDuMi 100 5.373e-2 4.03e+0 5 1.102e-10 3.22e+1

200 5 1221 0.8108 AFPC-BB 14 3.629e+0 1.07e+1 5 6.950e-10 4.02e+2
SDPNAL 21 2.828e+0 1.06e+1 5 6.912e-10 5.57e+2
SeDuMi 200 2.579e-1 5.56e+1 5 7.176e-10 1.10e+3

300 5 1932 0.7712 AFPC-BB 14 2.232e+1 2.32e+1 5 1.379e-9 5.61e+2
SDPNAL 25 2.505e+0 2.69e+1 5 1.075e-9 7.05e+2
SeDuMi 300 4.748e-1 2.62e+2 5 1.131e-9 6.89e+2

400 5 2610 0.7624 AFPC-BB 15 1.252e+1 6.23e+1 5 5.825e-7 1.22e+3
SDPNAL 27 2.086e+0 8.69e+1 5 2.341e-8 5.03e+3
SeDuMi 399 3.384e-1 4.88e+2 5 4.390e-8 5.03e+3

500 5 5124 0.4859 AFPC-BB 17 2.483e+1 5.33e+1 5 1.479e-5 7.92e+3
SDPNAL 38 6.333e+0 2.53e+2 5 4.913e-8 1.84e+4
SeDuMi – – – – – –

Table 3: Exact SOS certificates via AFPC-BB, SDPNAL, SeDuMi and Gauss-Newton iterations.

Problems AFPC-BB SDPNAL
n r p FR rank θ time rank θ time

400 10 10078 0.3924 10 1.712e+1 2.46e+1 66 1.093e+1 1.43e+2
500 20 24240 0.4047 20 1.497e+1 4.48e+1 113 4.232e+1 6.72e+2
1000 10 27101 0.3673 10 2.207e+1 3.70e+2 99 8.801e+1 2.70e+3
1000 50 95367 0.5114 50 1.009e+1 6.56e+2 218 9.200e+1 9.92e+3
1500 10 45599 0.3280 10 3.310e+1 1.00e+3 121 3.408e+1 3.72e+4
1500 50 122742 0.6011 50 1.508e+1 3.84e+3 226 3.790e+1 1.36e+4

Table 4: Exact SOS certificates via AFPC-BB and SDPNAL.

The matrix W is updated accordingly to W + ∆W and the
iteration is stopped when the backward error

θ = ‖f(x) − md(x)T · W · md(x)‖2

is less than the given tolerance. If it doesn’t reach con-
vergence after several Gauss-Newton iterations, we may in-
crease the precision or use different r and try Gauss-Newton
iterations again. Since these iterations may be run with
multi-precision, it will be very expensive if r is large. This
motivates us to find a Gram matrix with the minimum rank.

We notice that the AFPC-BB algorithm provides a low-
rank Gram matrix to seed Gauss-Newton iterations while
the SDP solver SeDuMi [48] (in YALMIP [30]) usually re-
turns a Gram matrix with the maximum rank (see [11, The-
orem 2.1]). It is interesting to notice that the newly devel-
oped SDP solver SDPNAL [53] can return a Gram matrix
with relatively low rank.

In Table 3, we construct random examples with dense
monomial vector md(x) and compare the performance of
the AFPC-BB algorithm with the SDP solvers SeDuMi and
SDPNAL for recovering the low-rank Gram matrices. We
also show the effectiveness of Gauss-Newton iterations run
in Maple 13 with Digits = 14 in refining the numerical
Gram matrix. The tolerance ǫ for the three solvers is set to
5 × 10−4 for all the numerical experiments, which is small
enough to guarantee very good recoverability.

As indicated in this table, for the first four examples, we
can use Gauss-Newton iterations (5.2) to refine the Gram
matrices returned by all three algorithms to relatively high

accuracy. After rounding every entry of the refined matrix
to the nearest integer, we can easily recover a rational Gram
matrix with rank 5 which gives the exact SOS representation
of the nonnegative polynomial. However, when n = 500, Se-
DuMi have troubles to recover the exact SOS decomposition
for the given precision.

In Table 4, we construct random examples with sparse
monomial vector md(x), therefore, the degree of freedom
ratio FR is reduced. It is surprising to notice that, without
running Gauss-Newton iterations to achieve high accuracy,
it is possible to recover the exact SOS representation of non-
negative polynomials directly from the numerical low-rank
Gram matrix returned by the AFPC-BB algorithm. How-
ever, we are not yet able to recover exact SOS decompo-
sitions of polynomials directly from the matrices returned
by SDPNAL, which have relatively large rank for the given
tolerance.
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