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ABSTRACT
In this paper, we propose a new algorithm for computing real
roots of polynomial equations or a subset of real roots in a
given semi-algebraic set described by additional polynomial
inequalities. The algorithm is based on using modified fixed
point continuation method for solving Lasserre’s hierarchy
of moment relaxations. We establish convergence properties
for our algorithm. For a large-scale polynomial system with
only few real solutions in a given area, we can extract them
quickly. Moreover, for a polynomial system with an infinite
number of real solutions, our algorithm can also be used
to find some isolated real solutions or real solutions on the
manifolds.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; G.1.6 [Numerical
Analysis]: Global optimization

General Terms: algorithms, experimentation

Keywords: low-rank moment matrix completion, nuclear
norm minimization, alternating direction method, fixed point
continuation method, semi-algebraic set.

1. INTRODUCTION
There is a large literature on the problem of finding all

solutions of a system of polynomial equations,

{g1(x) = 0, . . . , gs1
(x) = 0}, (1)

where gi ∈ R[x] = R[x1, . . . , xn] for i = 1, . . . , s1, see, e.g., [5,
16, 35, 52, 53, 55] and excellent softwares, e.g., PHCpack de-
veloped by Verschelde [59]. In many practical applications,
one is only interested in real solutions or solutions satisfying
some additional inequality constraints,

{gs1+1(x) ≥ 0, . . . , gs2
(x) ≥ 0}, (2)
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where gi ∈ R[x] for all i = s1 +1, . . . , s2. There are symbolic
and numeric algorithms including interval methods, sub-
division methods, homotopy continuations for finding only
real solutions of multivariate polynomials, see, e.g., [6, 42,
46]. Some efficient and practical algorithms based on critical
point method are proposed in [1, 2, 4, 5, 51] to compute one
point on each semi-algebraically connected component of a
real algebraic variety.

Recently, there is also an arising interest in using numer-
ical semidefinite programming (SDP) based method, e.g.,
Lasserre et al. [24, 31, 32, 33, 34] and Chesi et al. [12, 13,
14] for characterizing and computing the real solutions of
polynomial systems. As pointed out in [32], the great benefit
of using SDP techniques is that it exploits the real algebraic
nature of the problem right from the beginning and avoids
the computation of complex components. For example, the
moment-matrix algorithms in [32, 33, 34] solve a sequence
of SDP problems




min 1
s. t. y0 = 1,

Mt(y) � 0,
Mt−dj

(gj y) = 0, j = 1, . . . , s1,
Mt−dj

(gj y) � 0, j = s1 + 1, . . . , s2,

(3)

where dj := ddeg(gj)/2e, j = 1, . . . , s2.

Theorem 1 [32, Proposition 4.5, 4.6] If there is only a fi-
nite number of real solutions of (1), for t large enough, one
can find an optimal solution y∗ of (3) satisfying the rank
condition

rank Mk(y∗) = rank Mk−d(y∗), (4)

where d = max1≤j≤s2
dj and d ≤ k ≤ t. If Mt(y

∗) has
maximum rank, then the number of real solutions satisfying
(1) and (2) is equal to rank(Mk(y∗)) and they all can be
extracted by computing formal multiplication matrices from
Mk(y∗) and a basis of the column space of Mk−1(y

∗).

The moment relaxations (3) can be solved efficiently by
interior-point type algorithms. If the dimension of moment
matrix is not too large, then interior-point SDP solvers, such
as SeDuMi [54] or SDPT3 [56], will quickly find a moment
matrix solving (3) and having maximum rank. However, it
can prove to be quite challenging when the dimensions of the
matrix m > 1000 and the number of constraints p > 6000 be-
cause the computational cost grows like O(pm3+p2m2+p3).
Although the maximal rank property of most interior-point
algorithms can guarantee us to find all real solutions of pol-
ynomial systems (1) and (2), the rank condition (4) may



be only satisfied for sufficient large order t, which results a
large-scale SDP problem since the dimension of the moment
matrix at order t is m =

(
n+t

t

)
and the number of linear

equality constraints is p =
∑s1

j=1
1
2

(
n+t−dj

n

) ((
n+t−dj

n

)
+ 1
)
,

both of them increase very fast with t. Furthermore, if there
are an infinite number of real solutions, then the rank con-
dition (4) will never be satisfied for moment matrices with
maximal rank. Hence, in [24, 30], they replace the constant
object function in (3) by the trace of the moment matrix
and show that their software GloptiPoly is very efficient for
finding a partial set of real solutions for a large set of poly-
nomial systems [30, Table 6.3, 6.4]. We notice that the trace
of a semidefinite moment matrix is equal to its nuclear norm
defined as the sum of its singular values. Therefore, (3) can
be transformed to the following nuclear norm minimization
problem:




min ||Mt(y)||∗
s. t. y0 = 1,

Mt(y) � 0,
Mt−dj

(gj y) = 0, j = 1, . . . , s1,
Mt−dj

(gj y) � 0, j = s1 + 1, . . . , s2.

(5)

The nuclear norm minimization problem has been well
studied by many people, see e.g., [18, 48]. It can be di-
rectly solved by interior-point methods in [8, 9, 19, 36, 50]
or projection methods in [25, 27, 40, 47, 61] for large-scale
SDP problems. Since most of these methods also use second-
order information, the memory requirement for computing
descent directions quickly becomes too large as the problem
size increases. See [30, Table 6.3, 6.4] for examples which
run out of memory for a relatively small relaxation order t.

If we remove the positive semidefiniteness conditions in
(5), then the problem becomes to find a symmetric matrix
with minimum nuclear norm satisfying a set of linear equal-
ity constraints. Several fast algorithms using only first-order
information have been developed in [10, 22, 37, 38]. More-
over, some accelerated gradient algorithms are also proposed
in [7, 26, 43, 44, 45, 57, 58] which have an attractive con-
vergence rate of O(1/k2), where k is the iteration counter.
These first-order methods, based on function values and gra-
dient evaluation, cannot yield as high accuracy as interior
point methods, but much larger problems can be solved
since no second-order information needs to be computed and
stored.

In [39], adding back the positive semidefiniteness condition
by introducing a thresholding operator based on Schur de-
compositions, we provide an accelerated fixed point contin-
uation algorithm with Barzilai-Borwein technique (AFPC-
BB) for solving the minimum-rank Gram matrix completion
problems and giving sum-of-squares (SOS) representations
of polynomials. The algorithm has been used successfully to
compute exact rational SOS representations of nonnegative
polynomials with millions of monomials, which correspond
to solving SDP problems with millions of constrains. This
motivates us to investigate how to extend AFPC-BB algo-
rithm to find a low-rank moment matrix satisfying not only
the equality constraints but also the positive semidefinite-
ness constraints.

Main results. We define a basic closed semi-algebraic set

K := {x ∈ R
n | g1(x) = 0, . . . , gs1

(x) = 0;

gs1+1(x) ≥ 0, . . . , gs2
(x) ≥ 0}. (6)

In this paper, we propose a novel algorithm for computing at
least one point in K. Our algorithm starts with transforming
the problem into solving a sequence of nuclear norm mini-
mization problems (5), which can be recast as moment ma-
trix completion problems (12). Then, we extend the AFPC-
BB algorithm in [39] to solve (12). Finally, suppose at the
relaxation order t, we find a low-rank moment matrix whose
principal submatrix Mk(y∗) satisfies the rank condition (4),
then real solutions can be extracted by computing formal
multiplication matrices from the columns of Mk(y∗) and a
basis of the column space of Mk−1(y

∗).
There is no guarantee for our algorithm to find all real

roots. However, if there is only one or few real roots of a
large-scale polynomial system, we can extract them quickly.
Moreover, when the number of real solutions in K is infinite,
it is still possible for our algorithm to find some isolated
real solutions or real solutions on the manifolds. Numerical
experiments demonstrate that new algorithm can find real
solutions quickly for some hard examples in [30, Table 6.3,
6.4].

Structure of the paper. In Section 2, we introduce some
notations and recast the moment relaxations into finding
symmetric positive semidefinite matrices of minimum nu-
clear norm subject to linear equality constraints. We propose
an alternating direction method and modified fixed point it-
erations for solving a sequence of moment matrix completion
problems. In Section 3, we establish the convergence result
for the iterations given in Section 2. In Section 4, we present
an algorithm and demonstrate the effectiveness of the algo-
rithm for computing real roots of a set of benchmark sys-
tems.

2. COMPUTING REAL ROOTS OF POLY-
NOMIAL SYSTEMS

Let N denote the set of nonnegative integers and we set
N

n
t := {α ∈ N

n | |α| := Σn
i=1αi ≤ t} for t ∈ N. For α ∈ N

n,
xα denotes the monomial xα1

1 · · ·xαn
n . Let yα :=

∫
xαdµ

for a given Borel measure µ on R
n, then the sequence y =

(yα)α∈Nn is called the sequence of moments of the measure
µ.

Given a sequence y = (yα)α∈Nn ∈ R
N

n

, its real moment
matrix is defined as

M(y) := (yα+β)α,β∈Nn.

Similarly, given a truncated sequence y = (yα)α∈Nn
2t

∈ R
N

n
2t

for an integer t ≥ 1, its truncated moment matrix of order t
is the matrix Mt(y) with (α, β)th entry yα+β, for α, β ∈ N

n
t .

For a given monomial basis (xα)α∈Nn , we define the matrix
Bα as follows (see [29])

Bα(ζ, η) :=

{
1, if ζ + η = α;
0, otherwise.

Then the truncated moment matrix can be written as

Mt(y) = Σα∈Nn
t
Bαyα.

Let m =
(

n+t
t

)
be the dimension of the moment matrix

Mt(y). Suppose gj(x) = Σα∈Nngj,αxα ∈ R[x] with finitely
many nonzero coefficients gj,α ∈ R. If the (k, l)th entry of
Mt(y) is yβ, then the (k, l)th entry of the (t − dj)th localizing

matrix Mt−dj
(gjy) with dimension mj =

(
n+t−dj

t−dj

)
is defined



by

Mt−dj
(gjy)(k, l) := Σα gj,αyα+β.

For j = 1, . . . , s1, 1 ≤ k ≤ mj , k ≤ l ≤ mj , we define the
matrix

A
(j)
(k,l) := Σα gj,αBα+β, b

(j)
(k,l) := gj,0,

and reorder A
(j)

(k,l), b
(j)

(k,l) as A1, . . . , Ap and b1, . . . , bp respec-

tively, where p =
∑s1

j=1(m
2
j + mj)/2. We define the linear

operator A : S
m → R

p as

A(Mt(y)) := (〈A1, Mt(y)〉, . . . , 〈Ap, Mt(y)〉)T , (7)

where S
m denotes the set of semidefinite matrices and the

inner product 〈Ai, Mt(y)〉 := Tr(AT
i Mt(y)).

All of equality constraints Mt−dj
(gjy) = 0, j = 1, . . . , s1

in (5) can be recast by one formula:

A(Mt(y)) = b, (8)

where b = (b1, . . . , bp)
T . For z ∈ R

p, the adjoint operator
A∗ : R

p −→ S
m is defined as

A∗(z) := A1z1 + · · · + Apzp. (9)

Remark 1 In view of the memory requirement and compu-
tational efficiency, in our implementation, the action of the
linear operator A on Mt(y) is formulated in a more suitable
way. Note that the moment matrix Mt(y) is symmetric, we
stack only columns of the upper triangular part of Mt(y) in

a single vector, denoted as svec(Mt(y)) ∈ R
(m2+m)/2. We

transform symmetric matrices Ai ∈ R
m×m in the same way

to vectors svec(Ai) ∈ R
(m2+m)/2 for i = 1, . . . , p. Then (8)

is equivalent to

A svec(Mt(y)) = b,

where

A =




svec(A1)
T

...
svec(Ap)

T


 .

The matrix A is super sparse, in our implementation, we
only store nonzero entries of A and their locations (i, j).

For the positive semidefiniteness constraints Mt−dj
(gjy) �

0, j = s1 +1, . . . , s2, we convert them to equality constraints
by introducing slack matrix variables Zj ∈ S

mj satisfying

Mt−dj
(gjy) = Zj , Zj � 0. (10)

Following the definition of the operator A, each equality con-
straint in (10) can be written as

Cj(Mt(y)) = svec(Zj), j = s1 + 1, . . . , s2, (11)

where Cj : S
m → R

(m2
j+mj)/2, j = s1 + 1, . . . , s2.

The above transformations give rise to a reformulation of
the semidefinite relaxation (5) to a moment matrix comple-
tion problem




min ||X||∗
s. t. A(X) = b,

X = XT , X � 0,
Cj(X) = svec(Zj), j = s1 + 1, . . . , s2,
Zj = ZT

j , Zj � 0, j = s1 + 1, . . . , s2.

(12)

The linear equality constraints can be relaxed, resulting in
a Lagrangian version regularized minimization problem:

min
X∈Sm

+
,Zj∈S

mj
+

,j=s1+1,...,s2

µ‖X‖∗ +
1

2
‖A(X) − b‖2

2

+
1

2

s2∑

j=s1+1

‖Cj(X) − svec(Zj)‖2
2, (13)

where S
m
+ , S

mj

+ denote the sets of symmetric positive semidef-
inite matrices and µ > 0 is a parameter.

We minimize the objective function in (13) with respect
to X and Zj , j = s1 + 1, . . . , s2 alternatively. The alter-
nating direction method is an effective approach for solving
the linearly constrained convex programming problem with
a separate structure whose objective function is in the form
of the sum of individual functions without crossed variables.
It was first considered by Gabay [20] and Gabay and Mercier
[21], see also [11, 17, 40, 60] for some recent results. For a

fixed X = X̂ ∈ S
m
+ , the first two terms in (13) are constant

and all of variables Zj are separated, the optimal solution of
(13) can be obtained by solving

min
Zj∈S

mj
+

‖Cj(X̂) − svec(Zj)‖2
2, (14)

for j = s1 + 1, . . . , s2.
Let Y = Σiλiqiq

T
i be the spectral decomposition of a sym-

metric matrix Y ∈ S
m with eigenvalues λi and orthogonal

eigenvectors qi. Then the projection of Y ∈ S
m onto the pos-

itive semidefinite cone S
m
+ and its polar cone S

m
− are denoted,

respectively, by

Y+ =
∑

λi>0

λiqiq
T
i , Y− =

∑

λi<0

λiqiq
T
i . (15)

Obviously, we have

Y = Y+ + Y−. (16)

Therefore, the unique minimizer of (14) is given by the fol-
lowing projection

Ẑj = smat(Cj(X̂))+, (17)

where smat maps a vector back to a symmetric matrix. It
is an inverse function of svec.

On the other hand, for Zj = Ẑj , j = s1 + 1, . . . , s2, the
problem (13) can be written as

min
X∈Sm

+

µ‖X‖∗+
1

2
‖A(X)−b‖2

2+
1

2

s2∑

j=s1+1

‖Cj(X)−svec(Ẑj)‖2
2.

(18)
We can use AFPC-BB algorithm introduced in [39] to solve
this problem.

Definition 1 [39] Suppose W = QΛQT is a Schur decom-
position of a matrix W ∈ S

m, where Λ = diag(λ1, . . . , λm)
and Q is a real orthogonal matrix. For any ν ≥ 0, the matrix
thresholding operator Tν(·) is defined as

Tν(W ) := QTν(Λ)QT ,

where

Tν(Λ) = diag({λ1 − ν}+, . . . , {λm − ν}+),

and {t}+ := max(0, t).



For a given τ > 0, we define the operator

h(X, Zs1+1, . . . , Zs2
) := X − τA∗(A(X) − b)

−Σs2

j=s1+1τC∗
j (Cj(X) − svec(Zj)). (19)

Let µ be a positive real number and X0 be an initial start-
ing matrix. Our iterative shrinkage procedure for solving
problem (18) is given as follows, for k = 0, 1, 2, . . .

Xk+1 = Tτµ(h(Xk, Ẑs1+1, . . . , Ẑs2
)). (20)

It has been proved in [39] that under some mild assump-
tions on the operators A and Cj , j = s1 + 1, . . . , s2, the
sequence {Xk} obtained by (20) converges to the unique op-
timal solution of problem (18).

Let us fix the number of iterations (20) to be one and
define an iteration as follows
{

Zk+1
j = smat(Cj(X

k))+, j = s1 + 1, . . . , s2,

Xk+1 = Tτµ(h(Xk, Zk+1
s1+1, . . . , Z

k+1
s2

)).
(21)

Theorem 2 Given a small positive number µ, suppose X∗ ∈
S

m
+ and Z∗

j ∈ S
mj

+ , j = s1 + 1, . . . , s2 satisfy
{

Z∗
j = smat(Cj(X

∗))+, j = s1 + 1, . . . , s2,
X∗ = Tτµ(h(X∗, Z∗

s1+1, . . . , Z
∗
s2

)),
(22)

and

‖A(X∗) − b‖2
2 +

s2∑

j=s1+1

‖Cj(X
∗) − svec(Z∗

j )‖2
2

<
µ2

mmax1≤j≤s2
‖gj‖2

2

. (23)

Then (X∗, Z∗
s1+1, . . . , Z

∗
s2

) is the unique optimal solution of
the problem (13).

Before we prove Theorem 2, let us recall the definition of
the subgradient of the nuclear norm at a symmetric matrix
X ∈ S

m (see [39, Theorem 1]):

∂‖X‖∗ = {Q1Q
T
1 − Q2Q

T
2 + Z : QT

i Z = 0, i = 1, 2,

and ‖Z‖2 ≤ 1}, (24)

where Q1 and Q2 are orthogonal eigenvectors associated with
the positive and negative eigenvalues of X, respectively.

Proof. Given an X∗ ∈ S
m
+ , as in (17), the minimizer of

the problem (13) with respect to Zj is

smat(Cj(X
∗))+, j = s1 + 1, . . . , s2.

Given Z∗
j ∈ S

mj

+ , j = s1 + 1, . . . , s2, since the objective
function in (13) is strictly convex, there exists a unique min-
imizer. Let ν = τµ and

Y ∗ = h(X∗, Z∗
s1+1, . . . , Z

∗
s2

) = X∗ + E ∈ S
m,

where

E = −τA∗(A(X∗) − b) −
s2∑

j=s1+1

τC∗
j (Cj(X

∗) − svec(Z∗
j )).

Without loss of generality, we assume that the eigenvalues
of Y ∗ can be ordered as

λ1(Y
∗) ≥ · · · ≥ λk1

(Y ∗) ≥ ν > λk1+1(Y
∗) ≥ · · · > 0 >

· · · ≥ λk(Y ∗), λk+1(Y
∗) = · · · = λm(Y ∗) = 0.

We compute a Schur decomposition of Y ∗ as

Y ∗ = Q1Λ1Q
T
1 + Q2Λ2Q

T
2 ,

where Λ1 = diag(λ1, . . . , λk1
), Λ2 = diag(λk1+1, . . . , λk), Q1

and Q2 are block matrices corresponding to Λ1 and Λ2 re-
spectively. Then we have

Tν(Y ∗) = Q1(Λ1 − νI)QT
1 ,

and

Y ∗ − Tν(Y ∗) = ν(Q1Q
T
1 + Z), Z = ν−1Q2Λ2Q

T
2 .

By definition, QT
1 Z = 0.

• If λk1+1(Y
∗) ≥ |λk(Y ∗)|, then ‖Z‖2 = λk1+1(Y

∗)/ν <
1.

• Otherwise, we have

‖E‖2
F ≤ τ 2‖A∗(A(X∗) − b)‖F

+ τ 2
s2∑

j=s1+1

‖C∗
j (Cj(X

∗) − svec(Z∗
j )‖2

F

≤τ 2m max
1≤j≤s2

‖gj‖2
2

(
‖A(X∗) − b‖2

2

+

s2∑

j=s1+1

‖Cj(X
∗) − svec(Z∗

j )‖2
2

)

<τ 2µ2.

Notice that E ∈ S
m and W ∗ ∈ S

m
+ , by [23, Theorem 8.1.5],

we have

‖Z‖2 =
|λk(Y ∗)|

ν
=

max{|λ1(E)|, |λm(E)|}
ν

≤ ‖E‖F

ν
< 1.

Hence, according to (24), we have Y ∗−Tν(Y ∗) ∈ ν∂‖Tν(Y ∗)‖∗,
which means that 0 ∈ ν∂‖Tν(Y ∗)‖∗ + Tν(Y ∗) − Y ∗. There-
fore, we have

0 ∈ µ∂‖X∗‖∗ −A∗(A(X∗) − b) −
s2∑

j=s1+1

C∗
j (Cj(X

∗) − svec(Z∗
j )).

Hence, (X∗, smat(Cs1+1(X
∗))+, . . . , smat(Cs2

(X∗))+) is an
optimal solution of the problem (13).

3. CONVERGENCE ANALYSIS
In this section, we analyze the convergence properties of

iterations defined in (21). The nonexpansive property of
the thresholding operator Tν is given in [39], i.e. for any
X1, X2 ∈ S

m,

‖Tν(X1) − Tν(X2)‖F ≤ ‖X1 − X2‖F .

Moreover,

‖X1 − X2‖F = ‖Tν(X1) − Tν(X2)‖F

⇐⇒ X1 − X2 = Tν(X1) − Tν(X2).

Let us set Zj = smat(Cj(X))+, j = s1 + 1, . . . , s2, and
still use h to denote the function in X only:

h(X) := h (X, smat(Cs1+1(X))+, . . . , smat(Cs2
(X))+) .

(25)

The following lemma shows that the operator h(·) is nonex-
pansive.



Lemma 1 Suppose that the step size τ ∈ (a, b) where




a = 1

2
(
‖A‖2

2
+
∑s2

j=s1+1
‖Cj‖

2
2

) ,

b = min

(
3a, 1

2
∑s2

j=s1+1
‖Cj‖

2
2

)
.

(26)

Then h(·) defined in (25) is non-expansive, i.e., for any
X1, X2 ∈ S

m,

‖h(X1) − h(X2)‖F ≤ ‖X1 − X2‖F .

Moreover, we have

‖h(X1) − h(X2)‖F = ‖X1 − X2‖F

⇐⇒ h(X1) − h(X2) = X1 − X2.

Proof. According to (16), we have

‖X1 − X2‖2
F − ‖X1+ − X2+‖2

F

= 〈X1 − X2, X1 − X2〉 − 〈X1+ − X2+, X1+ − X2+〉
= ‖X1− − X2−‖2

F + 2Tr(XT
1+X2− + XT

1−X2+)

≥ 0.

Thus, for any j = s1 + 1, . . . , s2,

‖Z1,j − Z2,j‖F = ‖smat(Cj(X1))+ − smat(Cj(X2))+‖F

≤ ‖smat(Cj(X1)) − smat(Cj(X2))‖F

≤ ‖Cj‖2 ‖X1 − X2‖F . (27)

We obtain

‖h(X1) − h(X2)‖F

≤ ‖I − τA∗A−
s2∑

j=s1+1

τC∗
j Cj‖2 ‖X1 − X2‖F

+

s2∑

j=s1+1

τ‖Cj‖2 ‖Z1,j − Z2,j‖F

≤
(
‖I − τA∗A−

s2∑

j=s1+1

τC∗
j Cj‖2 +

s2∑

j=s1+1

τ‖Cj‖2
2

)

‖X1 − X2‖F .

For a τ ∈ (a, b) with a, b defined by (26), we have

‖I − τA∗A−
s2∑

j=s1+1

τC∗
j Cj‖2 +

s2∑

j=s1+1

τ‖Cj‖2
2 ≤ 1.

Therefore, ‖h(X1) − h(X2)‖F ≤ ‖X1 − X2‖F .

We now claim that the iterations defined in (21) converge
to the optimal solution of the problem (13).

Theorem 3 Suppose that the step size τ ∈ (a, b) with a, b
defined by (26). Then a sequence of solutions

(Xk, Zk
s1+1, . . . , Z

k
s2

)

generated by (21) converges to the unique optimal solution

(X∗, Z∗
s1+1, . . . , Z

∗
s2

)

of the problem (13) satisfying conditions (22) and (23).

Proof. The proof uses the same reasoning as in [39, The-
orem 4]. Let ν = τµ. Since both Tν(·) and h(·) are non-
expansive, Tν(h(·)) is also non-expansive. Therefore, {Xk}
lies in a compact set and have a limit.

Suppose X̃ = limj−→∞ Xkj satisfying the condition (23)
in Theorem 2. Since X∗ = Tν(h(X∗)), we have

‖Xk+1 − X∗‖F = ‖Tν(h(Xk)) − Tν(h(X∗))‖F

≤ ‖h(Xk) − h(X∗)‖F ≤ ‖Xk − X∗‖F .

Thus, the sequence {‖Xk − X∗‖F } is monotonically non-

increasing and converges to ‖X̃−X∗‖F . Moreover, the func-
tion Tν(h(·)) is continuous, we have

Tν(h(X̃)) = lim
j−→∞

Tν(h(Xkj )) = lim
j−→∞

Xkj+1,

which means that Tν(h(X̃)) is also a limit of {Xk}. There-
fore, we have

‖Tν(h(X̃)) − Tν(h(X∗))‖F = ‖Tν(h(X̃)) − X∗‖F

= ‖X̃ − X∗‖F .

Using Lemma 1 we obtain

Tν(h(X̃)) − Tν(h(X∗)) = h(X̃) − h(X∗) = X̃ − X∗,

which implies Tν(h(X̃)) = X̃. By Theorem 2, X̃ is the

optimal solution to the problem (13), i.e., X̃ = X∗. Hence,
we have

lim
k−→∞

‖Xk − X∗‖F = 0,

i.e., {Xk} converges to its unique limit point X∗. By (27),
we have

‖Zk
j − Z∗

j ‖F ≤ ‖Cj‖2‖Xk − X∗‖F .

Therefore,

lim
k−→∞

‖Zk
j − Z∗

j ‖F = 0,

for j = s1 + 1, . . . , s2, i.e., (Zk
s1+1, . . . , Z

k
s2

) converges to its
unique limit point (Z∗

s1+1, . . . , Z
∗
s2

).

4. IMPLEMENTATION AND NUMERICAL
EXPERIMENTS

In this section we give a more detailed exposition of the
proposed moment matrix completion algorithm for finding
at least one point in the semi-algebraic set K defined by (6).

4.1 Algorithm
The following algorithm computes real solutions of a sys-

tem of polynomial equations and inequations.

Algorithm MMCRSolver

Input: I Polynomials g1, . . . , gs1
, gs1+1, . . . , gs2

∈ R[x],
µ1 > µ̄ > 0, an integer L > 0.

Output: I Real solutions x in the semi-algebraic set K.

1. Set t = max1≤j≤s2
ddeg(gj)/2e, a0 = 1, X0 is a matrix

with only one nonzero entry X0(1, 1) = 1.

2. For the relaxation order t, compute operators A and
Cj , j = s1 + 1, . . . , s2.

3. For µ = µ1, . . . , µL, do

(a) choose a step size τk via the BB technique;

(b) compute Y k = Xk +
ak−1−1

ak
(Xk − Xk−1);



(c) compute Zk+1
j = smat(Cj(Y

k))+, j = s1+1, . . . , s2;

(d) compute Xk+1 = Tτkµk
(Y k − τkA∗(AY k − b) −∑s2

j=s1+1 τkC∗
j (Cj(Y

k) − svec(Zk+1
j )));

(e) compute ak+1 =
1+

√
1+4a2

k

2
;

(f) if the stop criterions (30) or (31) are true, then
return a solution Xopt.

4. If the condition (4) holds for Xopt then

(a) compute multiplication matrices by (28);

(b) return real solutions extracted by (29).

5. Otherwise, replace t by t + 1 and go back to step 2.

For the inner loop step 3, we incorporate an accelerating
technique used in the AFPC-BB algorithm [39] to our alter-
nating minimization scheme (21) for solving (13). They rely
on computing the next iterate Xk+1 based not only on the
previous one Xk, but on the combination of the two previ-
ously computed iterates Xk and Xk−1. The main computa-
tional cost of step 3 is computing the Schur decompositions.
Since the moment matrices returned from MMCRSolver usu-
ally have low rank. We are hence interested in numerical
methods for computing the dominant singular values and
singular vectors. Following the strategies in [10, 39], we use
PROPACK [28] in Matlab to compute a partial Schur de-
composition of a symmetric matrix. The number of singular
values computed by PROPACK will directly affect the num-
ber of real solutions obtained. If we aim to find only very
few number of real roots, then PROPACK is very efficient
for computing the first few dominant singular values. This
can be seen clearly from the example “puma” in Table 1. We
also adopt a continuation strategy to accelerate the conver-
gence. For the problem (13) with a target parameter µ̄ being
a moderately small number, we solve a sequence of problems
(13) defined by a decreasing sequence µk. The parameter η
determines the rate of reduction of the consecutive µk, i.e.,

µk+1 = max(ηµk, µ̄), k = 1, . . . , L − 1.

From Theorem 3 the convergence of the inner loop is guar-
anteed provided that τ ∈ (a, b). However, this choice is too
conservative and the convergence is typically slow. In our
experiments, we use the Barzilai-Borwein technique to chose
the step size τk (see [3, 39]).

In step 4, in order to check the rank condition (4), we com-
pute ranks of the principal submatrices Mk(y) of Mt(y) for
k ≤ t by the singular value decomposition (SVD). Following
[24, 32], the approximate rank of a matrix is defined as the
number of singular values bigger than a fixed tolerance 10−8

or with a decay of more than 10−3 lying between two singular
values. If the truncated moment matrix Mk(y) satisfies (4),
following [49], we compute the SVD of Mk−1(y) = UΣV T ,
where U and V are unitary matrices and Σ is a diagonal ma-
trix whose diagonal entries are real decreasing non-negative
numbers. The set {u1, . . . , ur} of columns of U correspond-
ing to the nonzero diagonal entries of Σ forms an orthogonal
basis of the column space of Mk−1(y). For j = 1, . . . , r, let

bj = uT
j (xα)α∈Nn

k−1
,

then we get a polynomial set B = {b1, . . . , br}. The multipli-
cation matrices of xj with respect to B can be formed stably

as

Mxj
= UT

r · Nxj
· V T · S, (28)

where Ur = (u1, . . . , ur), Nxj
are rows of Mk(y) correspond-

ing to xjB respectively, and S is a diagonal matrix with ele-
ments which are reciprocals of the first r elements of Σ. The
matrix S is well-conditioned since all elements are bounded
by the reciprocal of the fixed tolerance.

Finally, the solutions can be obtained by computing com-
mon eigenvalues of the multiplication matrices Mxj

, j =
1, . . . , n. Following [15, 24], we build a random combination
of multiplication matrices

M ′ =
n∑

j=1

ωjMxj
,

where ωj ≥ 0 and Σn
j=1ωj = 1 and compute a Schur decom-

position

M ′ = QRQT ,

where Q = (q1, . . . , qr) is an orthogonal matrix and R is
an upper triangular matrix with eigenvalues in the diagonal.
Then, we extract r real solutions:

(qT
j Mx1

qj , . . . , q
T
j Mxnqj), j = 1, . . . , r. (29)

If the precision of an extracted real solutions is not enough,
then we use Newton’s method to refine it.

Remark 2 If the polynomial system (1) has a finite number
of real solutions, as shown in Theorem 1, the condition (4)
holds for a large enough relaxation order t. Therefore the al-
gorithm terminates in a finite number of steps. For positive-
dimensional system, without asking the computed moment
matrix having maximal rank, MMCRSolver may still find
some isolated real solutions or real solutions on the mani-
folds.

4.2 Numerical experiments
In this section we illustrate the effectiveness of MMCR-

Solver for finding at least one real solutions of polynomial
systems taken from literature. The stopping criterions for
the inner loop (step 3) of MMCRSolver in our numerical
experiments are given as follows:

‖A(Xopt) − b‖2

‖b‖2
< 0.005, (30)

or when

‖Xk+1 − Xk‖F

max(1, ‖Xk‖F )
< 10−4. (31)

The experiments are carried out by running MMCRSolver
in MATLAB (Version 7.7.0.471) on a desktop computer with
an Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz and 2.00 GB
of RAM. The codes can be downloaded from http://www.
mmrc.iss.ac.cn/∼lzhi/Research/hybrid/MMCRSolver.

Table 1 reports the performance of MMCRSolver on a se-
ries of benchmarks. We show the number of variables and
the maximal degree of the polynomial system in the second
and third columns. The moment relaxation order and the
number of constraints are listed in column 4 and 5. We
also show the CPU time in column 6 for computing the low-
rank moment matrix satisfying the rank condition (4) and



Table 1: CPU times for finding real solutions by MMCRSolver and GloptiPoly

problem var deg t p CPU sol CPU sol
boon 6 4 4 21841 31.75 8 1220 8
eco8 8 3 3 11953 1.37 1 1310 1
heart 8 4 3 12853 53.09 2 1532 2
puma 8 2 3 14653 3.96 4 1136 4
puma 8 2 3 14653 6.61 13 1136 4

butcher 7 4 4 51877 214.38 1 - -
d1 12 3 3 103559 76.55 4 - -

kin1 12 2 3 103559 94.71 11 - -
reimer5 5 6 6 107267 128.70 1 - -

extracting real solutions. The number of solutions success-
fully extracted by MMCRSolver is shown in column 7. The
last two columns are taken from Table 6.3 and 6.4 in [30]
which show the CPU time for using the software GloptiPoly
to compute real solutions and the number of extracted solu-
tions.

As can be seen from this table, for the first four examples,
we can extract the same number of real solutions in much
less time than GloptiPoly. The example “puma” has 16 real
solutions [41]. Although we have not yet been able to find all
of them by MMCRSolver, 13 real solutions can be computed
by our algorithm in a few more seconds after computing more
dominant singular values by PROPACK. The last four ex-
amples involve more than 50000 constraints, which could not
be handled by the current version of GloptiPoly.The example
“butcher” is a positive-dimensional system, the rank condi-
tion (4) will never hold for the moment matrix with maximal
rank. MMCRSolver can successfully extract one real root
on the manifold defined by x1 = x3 = 0, x5 = x6 = −1.
However, there are still some examples such as: cassou,
des18 3 and rabmo which can be solved by PHCpack ef-
ficiently (http://homepages.math.uic.edu/∼jan/) but MM-
CRSolver fails to find real solutions. We are working on im-
proving the efficiency of our algorithm by considering struc-
tures of polynomial systems.

Example 1 The example “puma” has only four real solu-
tions satisfying the additional two inequality constraints:

{x5 ≥ 0, x6 ≥ 0}.
After solving the moment relaxation (5) with order t = 3, we
find

rankM1(y
∗) = rankM3(y

∗) = 4.

All four real solutions can be extracted by MMCRSolver within
36.93 seconds.
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