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QR Factoring to Compute the GCD of Univariate
Approximate Polynomials

Robert M. Corless, Stephen M. Watt, and Lihong Zhi

Abstract—We present a stable and practical algorithm that
uses factors of the Sylvester matrix to compute the greatest
common divisor (GCD) of univariate approximate polynomials
over [ ] or [ ]. An approximate polynomial is a polynomial
with coefficients that are not known with certainty. The algorithm
of this paper improves over previously published algorithms by
handling the case when common roots are near to or outside the
unit circle, by splitting and reversal if necessary. The algorithm
has been tested on thousands of examples, including pairs of
polynomials of up to degree 1000, and is now distributed as the
program QRGCD in the SNAP package of Maple 9.

Index Terms—Greatest common divisor, -factoring,
Sylvester matrix.

I. INTRODUCTION

FOR an introduction to and motivation for the problem
studied in this paper, and a brief survey of recent results

and methods, see [1]. In short, the problem of finding a poly-
nomial greatest common divisor (GCD), when the coefficients
of the polynomials are not known exactly, is of great practical
importance (for example in avoiding spurious near pole-zero
combinations in certain adaptive control applications) and is of
some mathematical difficulty, owing to the potential disconti-
nuity (of the degree of the GCD) as the coefficients are varied.
Discontinuity is difficult to deal with, both symbolically (with
parameters) and numerically, where problems that are near to
points of discontinuity are ill-conditioned [2]. Some form of
regularization must therefore be used, and most of the work
in this area can be considered to be examining the effects of
different regularizations. The most successful regularization
seems to be to phrase the problem as an optimization problem,
as in [3]–[5]. For an introduction to the mathematical problems
in this area, see [6].

A. Notation: Approximate Polynomials and Approximate GCD

Several papers use distinct wording and notation for the ob-
jects under study here. We follow [3] and say that an approxi-
mate polynomial is a polynomial with coefficients that are not
known exactly. We say that is an approximate GCD of ap-
proximate polynomials and if there exist perturba-
tions and , which are small in a sense to be specified later,
such that is a (true) GCD of and . This can
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be contrasted with the notion of “quasi-GCD” of [7], in which
the input polynomials and are known at any time only to
a finite accuracy, but by some “oracle” more digits of accuracy
for any coefficient can be obtained on demand. The notion of
“quasi-GCD” thus fits in with mathematical and computational
studies of computable real numbers but does not fit in with en-
gineering or empirical models, where the input polynomials are
known only to a limited accuracy once and for all. The paper
[8] uses (differently) the terms “quasi-GCD” and “ -GCD” to
distinguish two technical notions of approximate GCD.

The works by Pan (see, e.g., [9]) show that it is also possible
to compute approximate GCD by first numerically finding the
roots of each polynomial, and then matching nearest approxi-
mate roots using a graph-theoretic technique. The algorithm of
this paper, in contrast, works directly on the coefficients.

B. Factoring of the Sylvester Matrix to Find an
Approximate GCD

In [1], an efficient method to use factoring to compute
an approximate GCD is described, and the paper contains sev-
eral important ideas and advances. Like the contemporary paper
[10], it uses the factoring for stability, and also like [10], it
uses Gauss elimination adapted to the structure of the Sylvester
matrix in order to speed up computation, lowering the cost from

to .
The paper [10] is perhaps not as easily available to the au-

dience of this paper as the paper [1], and so, we summarize it
briefly here.

It is well known that Householder transformations and Givens
rotations give stable methods to compute the factoring of a
matrix. Householder transformations are powerful tools for in-
troducing zeros into vectors, whereas Givens rotations introduce
zeros into a vector one at a time. Therefore, Givens rotations
are useful for operating on structured matrices. The Sylvester
matrix (2) is a block Toeplitz matrix
formed by the coefficient vectors from and in (1) below.1 If
we apply Givens rotations to the first row and st row to
eliminate , then the rows and for from 2 to can be
changed in the same way. The near Toeplitz structure will not
be changed until we obtain the following block matrix:

where is an upper triangular matrix, 0 is a matrix with
all elements zero, and is an matrix. Since is now an

1All the results of this paper go through immediately in the case of complex
coefficients, i.e., polynomials in [x], if we replace orthogonal matrices by uni-
tary matrices.
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upper triangular matrix, Householder transformations can then
be applied to the submatrix . The complexity advantage of
combining Givens rotations with Householder transformations
can be seen clearly. The cost of a general decomposition is

flops. Using the above special strategy, taking ad-
vantage of the structure, the flop count drops to .

This approach is similar in complexity to the nonorthogonal
methods used in [1] to condense the Sylvester matrix into a
smaller matrix, but [10] uses (as this present paper does) or-
thogonal reductions at all stages for stability reasons.

The paper [10] then goes on to use this method as a base
method for multivariate GCD computations.

II. FACTORING FOR A SYLVESTER MATRIX

Let given polynomials have degree , respectively,
where

(1)

The Sylvester matrix of and is

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(2)

Row Equilibration: We will henceforth assume that the input
polynomials and have been scaled to have unit 2-norm, and
thus, the rows of will also have unit 2-norm. This is
known as row-equilibration, and to have beneficial effects on
the conditioning of the matrix in certain circumstances. Here,
it will simplify our error analysis somewhat, and increases the
stability of the numerical computations, in essence replacing the
condition numbers that come up in the analysis with an equiv-
alent componentwise condition number [11]. This also makes
the unit circle special, i.e., that , where
is the unit circle.

Remark: Unless otherwise specified, denotes the vector
2-norm. The specific notation will sometimes be used
for emphasis. Other notations include for the Frobenius
norm.

Theorem 1: [12] Suppose the factoring of (2) is
, where is orthogonal,2and

is upper triangular. Then, the last nonzero row of gives the
coefficients of a GCD of and .

Proof: This theorem is proved in many places. See, for
example, [12]. We include the following proof here because it
helps motivate the proof for the approximate polynomial case.

From the construction of the Sylvester matrix, we have

...

...

...

...

...

...

(3)

The polynomial of degree is formed from the th
nonzero row of for .

Suppose that is a common root of multiplicity of
and . Then, one can easily verify that is the

zero matrix, where is the matrix
parameterized by as in (4), shown at the bottom of the page.
We denote by , following [13].

From this, it is obvious that and all its derivatives up
to order are zero at . Conversely, if and all its
derivatives up to order are zero at , then by using the
upper triangular structure of we may see that is zero.

The GCD computation of and is equivalent to finding the
null space of , i.e.,

(5)

Corollary 1: is a common zero of and if and only if
is a zero of , which is the polynomial formed by multiplying
the last nonzero row of by .

It is well known (see e.g., [11]) that factoring using
Givens rotations or Householder transformations is numerically

2Q is the Hermitian transpose or transpose if Q is real.

...
...

... (4)
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stable, in the following sense. Let be a computed upper trian-
gular factor of obtained via Givens rotations or Householder
transformations. Then there exists an orthogonal such that

(6)

with is the unit roundoff, and
is the Frobenius norm. Nevertheless, the small residual

for the factoring does not guarantee a small
forward error . Consider the following example:

(7)

(8)

Computing the factoring of numeri-
cally for Digits in Maple 7, and comparing with the exact
solution (being careful about the possible nonunique orderings
of factors), we obtain that

This shows that the forward error may be many orders
of magnitude larger than the backward error . Due to the
sensitivity of , Theorem 1 and Corollary 1 seem useless for
numerically computing the GCD. For Example 1, the symbolic
(exact) factoring gives us and the GCD

can be discovered from the polynomial .
On the other hand, the numerical factoring gives us

...

We see that the size of is too large to be neglected. From
the equation for , the common factor can easily be
found, but the other common factor is lost. The reason is
shown by the following analysis.

Theorem 2: Let and be given univariate approximate
polynomials, with common roots , all lying in-
side the unit circle . There may be other common
roots not inside the unit circle. Then, the factoring of the
Sylvester matrix reveals (in the last nonzero row of ) a factor
of the approximate GCD of and that contains the zeros

.
Proof: If and , and is the

Sylvester matrix of and such that the null space
of is parameterized by the zeros of the GCD of

and , then we have that

and so

Interpreting this matrix equation as polynomial evaluation at the
common zeros of and , then we see that in
particular, the polynomial arising from the last nonzero
row of , when evaluated at the common zeros, will be bounded
in value by

If the roots are less than 1 in magnitude, then the corre-
sponding columns of form a subspace that also satisfies
the above equation. Therefore , a constant that de-
pends on the dimension of the problem and on the multiplicity
of the zeros, and we thus see that each is a pseudozero of

. By the results of [14], this polynomial is therefore close
(in a dual norm) to the common divisor .

Remark: A short calculation using the known structure of the
null space shows that may be taken as , where is
the maximum order of multiplicity of any zero inside the unit
circle. If is very close to 1, then this bound may be nearly at-
tained in practice; and if the root is of maximum possible mul-
tiplicity, namely , then we see that this constant may grow
exponentially with , in these special circumstances. Thus, the
only problem here is with a highly multiple root close to
the unit circle (close to zero is not a problem). If there is only
one such root , expanding the polynomial in the basis

may improve stability.
Theorem 3: If and are given as in Theorem 2, then it

occurs in practice that if any is outside the unit circle, it might
not be detected by the factoring algorithm.

Proof: The numerical factoring gives us

...

...

...

...

...

...
(9)

With high probability, , because usually
(with probability 1), is not itself a Sylvester matrix, and
hence, is not nearly in its null space. The common roots of
and will still correspond to the null space of if and only
if the perturbation term can be neglected. Supposing

, then . If
may increase quickly with .

Let us check Example 1 again. For the common root

In contrast, for the common factor

The perturbation is large enough to disrupt the null space. There-
fore, it is not a surprise that the root can be recovered
from , whereas the other common root is missing.
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If we compute the factoring for Digits in Maple,
, and

...

Both common roots can be recovered from since
for and less than for be-

cause we worked to higher precision here (and the input was in
fact exact).

In the special case where all common roots of and lie
inside the unit disc, the last “nonzero” row of as in Theorem 1
will give us a good candidate for the GCD.

A. Reversals

Similarly, if all common roots of lie outside the unit disc,
the factoring of , where

, are the reversals (reciprocals) of and , will pro-
vide us the reversal (reciprocal) of the GCD of and . Conse-
quently, we can detect relatively prime numerical polynomials
from the factors of and .

B. Relative Primality

It has been proved in [8] that a lower bound for perturbations
and such that and have a common root

is , where

(10)

can be found from , which are polynomials solving the
Diophantine equations:

(11)

(12)

which arise from imposing relative primality on with and
with . We can find this bound from the factoring used

here, as follows. Suppose and
are obtained from the last rows of .

Since are orthogonal, is determined by the last rows of
and .
We note that the complexity of [8] is typically ,

which is therefore “fast.” Here, since the Sylvester matrix con-
sists of two Toeplitz blocks, we can apply selected Givens ro-
tations to take advantage of the special structure of and ob-
tain a more efficient factoring, as in [10]. The complexity is

. We use orthogonal transformations in an effort to delay
the accumulation of rounding errors.

Now that we have a stable and practical method, we may look
for ways to make it as fast as the weakly stable methods.

C. Common Roots Outside the Unit Circle

Since the common roots of and inside the unit circle are
easily identified by using factoring, we can find an approx-

imate common factor of and by factoring of
and another common factor by applying the factoring to

, where , are the reversals
of and , after having divided out the common factor already
found. For Example 1, after dividing out the factor , the

factoring of for Digits in Maple 7 returns:

...

The common root can be easily identified from .
From our experiments with thousands of examples, of de-

grees up to approximately 1000, we find that about 90% of all
problems can be solved in the above way. The algorithm even
works for polynomials of high degree. See the last several ex-
amples in Table I. This can be explained by the rapid increase
of for when the degrees of and are large.
Therefore, there will be a clear separation of common roots in-
side the unit circle from common roots outside the unit circle.

Example 2—Random Polynomials of Large Degree:

Suppose . We observe that the norms of the
right-bottommost submatrices of have a big jump in norm
between the last 15th and 16th rows

The last 15th row of gives a common factor of with
backward error of the order . The roots of are all inside
the unit circle.

The factoring of gives us another
common factor of degree 6 as the norm of also has a big
jump between the last sixth and seventh rows:

has all its roots outside the unit circle. The details of the
backward errors are given in the second last row in Table I.

D. Graeffe’s Root-Squaring to Improve Separation from the
Unit Circle

Graeffe’s root-squaring technique is a classical technique to
transform one polynomial problem to another, hopefully sim-
pler, problem. We give a brief overview of this process here, but
for details see any older numerical analysis text, e.g., [15]. The
basic idea is this: Suppose

is the polynomial whose zeros we wish to approximate.
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TABLE I
BACKWARD ERRORS FOR ALGORITHM GCD. d IS THE COMMON FACTOR OF f AND g FOUND BY SUBROUTINE GCDAux1, WHICH COMPUTES THE

QR FACTORS OF THE SYLVESTER MATRIX OF f AND g. d IS THE COMMON FACTOR FOUND BY SUBROUTINE GCDAux2, WHICH COMPUTES THE

QR FACTORS OF THE SYLVESTER MATRIX OF THE REVERSALS OF f=d , AND g=d . d = d � d IS THE APPROXIMATE GCD OF f AND g.
AN (*) DENOTES A DIFFICULT CASE, WHERE THE SPLITTING ALGORITHM IS NEEDED

Consider

(13)

The first equation gives us a rational means to compute the co-
efficients of , while the second equation shows that the roots
of are the squares of the roots of . The coefficients of
can be computed using the fast Fourier transform (FFT) in time

.
Roots less than 1 in magnitude become smaller, therefore,

while roots larger than 1 become larger. Thus, each step of the
root-squaring process taken improves the separation of the roots
from the unit circle. One drawback is that initially close complex
zeros may become more separated (in angle and in magnitude)
by this process, so we do not wish to use too many root-squaring
operations.

In practice, we find that only a few root-squaring steps are
needed to give useful improvements to the factoring. How-
ever, it is not a panacea, and for difficult cases, a further refine-
ment is needed.

III. SPLITTING POLYNOMIALS OVER THE UNIT CIRCLE

In our experiments, we noticed some difficult cases where
is of moderate size because there were common roots

very close to the unit circle. Without a refinement of the above
technique, it is hard to compute the GCD correctly in such a
case. We now present one such refinement.

It is well known that, for high degree polynomials with
coefficients randomly chosen from a normal or uniform distri-
bution, the roots cluster about the unit circle [16]. However, for
many cases occurring in practice, the common roots of and
are distributed randomly inside or outside the unit circle. If the
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common roots are too close to the unit circle, the numerical
factoring may not give us correct information about the GCD.

One possible solution is to split (factor) or over the unit
circle. For example, where all
zeros of lie inside the circle of radius , all zeros of

lie outside the circle of radius , and has all
its zeros in the “ambiguous” annulus . Then,

can be obtained correctly by the
factoring. We will discuss this approach in more detail in a sub-
sequent paper. For the rest of this paper, we assume that
can always be taken to be 1, i.e., that there are no common roots
in the ambiguous annulus. This can be made more nearly true
always by using Graeffe’s root-squaring process. The splitting
helps the stability of the algorithm considerably.

Example 3—A Difficult Example: Let
be relatively prime, and

The norms of the right bottommost submatrices of increase
steadily as

It is therefore hard to obtain a good approximation to .
However, if we split the polynomial over the unit

circle and , the norms
of the right-bottom submatrices of have a big jump in
norm:

It follows that can be retrieved from the sixth last row of
and the 10th last row of . In this case, there are no roots too
close to the unit circle for this refinement, and is correctly
recovered by this refined technique.

The splitting can be performed in a classical way, using con-
tour integrals. This method has been discussed by many authors
[17]–[20] as a tool for finding all roots of polynomials. The main
steps are given in the following algorithm. It is time-consuming
to evaluate the contour integrals to high accuracy. Therefore,
the algorithm first splits the polynomial to a relatively low ac-
curacy and then refines the factoring by an iterative method. The
first step, root-squaring, is used to push the roots away from the
unit circle. The FFT is used to accelerate the computation in

steps 1 and 2.1. Unlike the algorithm in [19], which uses the
fast methods available for Padé approximation in Step 3, we
recursively make use of factoring for GCD computation.
The reason is that polynomials and only
have common zeros outside the unit circle since the all roots of

lie outside the unit circle. Step 2.2.1 can also use
factoring for the same reason because the roots of and
are well separated by the unit circle.

Step 2.2.2 needs a good algorithm for approximate division.
See [21] for a description of the algorithm that we have used.

Algorithm Split
Input: One monic univariate polynomial with degree ,

radius , tolerance .
Output: Univariate polynomials , such that

, split by the unit circle and center .

Step 1) [recursive lifting] Apply root-squaring Graeffe’s
steps (usually is 1, 2 or 3)

Step 2) [splitting ]
2.1 [rough approximation of and ]
2.1.1 Compute

where is the unit circle; are all the roots of
inside , i.e. ,the roots of is the integer closest to

, i.e., the number of zeros of inside .
2.1.2 From , compute the coefficients of the

polynomial .
2.1.3 Compute quo .
2.2 [Newton’s iteration, one step]
2.2.1 Compute and such that

2.2.2 Compute and in higher precision as

polyrem

polydiv

2.2.3 Set .
Step 3) [recursive descending] For from 1 to , do

polydiv

Here, is the remainder on approximate di-
vision of by , while polydiv is the best fit quotient on di-
vision of by , that is, it has the smallest remainder in the
2-norm sense. The algorithm is expected to improve in perfor-
mance if this is replaced by approximate division using total
least squares.
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IV. ALGORITHM FOR GCD COMPUTATION

Algorithm GCD
Input:Twounivariatepolynomials and , tolerance .
Output: Univariate polynomials such that

and
.

Note that can be rewritten as
, where and . This

represents an extra constraint on and and, thus, disallows
them from growing to be too large.

Step 1) [Initialization]
1.1 Make the input and to be unit 2-norm with positive

leading coefficients.
Step 2) [ -factoring]
2.1 Form the Sylvester matrix of and .
2.2 Compute the -factoring for .
2.3 Suppose are the last submatrices

of such that but .

Case 1) and are formed
by the last row of .
Case 2) ’s co-
efficients are given by the first row of .
Case 3)

’s co-
efficients are given by the first row of .
Case 4) [Difficult case]: Use the algorithm Split to
find the common roots of and inside the unit
circle and form the divisor .

Step 3) [Coprime check]
3.1 Compute cofactors and

polydiv

polydiv

3.2 Apply Step 2 to
to obtain .

3.3 Apply Step 2 to cofactors of w.r.t. to
obtain (case 0).

Step 4) Return .

V. MULTIPLE COMMON ROOTS

The method given in this paper has no difficulty finding
accurate common factors of problems that have multiple ap-
proximate common roots; however, it is the coefficients of the
factors with multiple roots that are recovered and not the mul-
tiple roots themselves. To accurately find the multiple roots
from these approximate common factors requires a separate
analysis.

VI. THEORETICAL COMPLEXITY ANALYSIS

Suppose that the degree of is , the degree of is , and
. The complexity of the main steps of Algorithm GCD

(page 16) are as follows.

1) Step 2.2. (see Section I-B)
2) Step 2.3. See below (Algorithm Split)
3) Step 3.1. because the matrix involved in the poly-
nomial division is a Toeplitz matrix. The complexity can be
achieved by using the algorithm in [22].

Supposing that the degree of the polynomial to be split is ,
the complexity of the main steps in Algorithm Split is as follows.

1) Step 1. is usually 1, 2, or 3.
2) Step 2.1. .
3) Step 2.2.1. . Since the roots of two factors are well
separated (with respect to the unit circle), the Sylvester matrix
is well conditioned. Moreover, since a Sylvester matrix is a
quasi-Toeplitz matrix, the method in [23] gives a fast stable
way to find and .
4) Step 2.2.2. .
5) Step 3. . We apply factoring to the reciprocal
of the two polynomials since the two polynomials only have
common roots outside the unit circle.

VII. TEST RESULTS

A. Comparison with [1, Ex. 2]

The following is [1, Ex. 2] i. Let and
, where

(14)

(15)

(16)

We note that has one root inside the unit circle, and four
outside. Using the technique of this paper, the root inside the
unit circle is easily found by a factoring of the Sylvester
matrix of and , and the four roots outside are found by a

factoring of the reversals of and .
The paper [1] reported a failure of the condition estimator of

the method of that paper. We believe that this failure was, in
essence, caused by the fact that some of the common roots were
inside and some were outside the unit circle. The improvement
of this present paper is sufficient to allow this example to be
solved in a straightforward way, even without the contour inte-
gral splitting refinement.

Assume are perturbed by noise uniformly dis-
tributed over the interval , for example
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What follows is the output of our prototype3 Maple implemen-
tation of this algorithm, with a “verbose” flag set to display
diagnostics.

;

GCDAux1: “the norm of last row” .284 656 437 560 687 029e-7

GCDAux1: “the norm of row i” .831 627 567 1e-5

GCDAux1: “the norm of row i” .148 122 525 4e-4

GCDAux1: “the norm of row i” .705 676 781 1e-4

GCDAux1: “the norm of row i” .270 490 103 4e-3

GCDAux1: “difficult case” 3.833 059 421

evalpower: “the number of evaluation points” 128

newtoncorr: “backward error before Newton correction”

.354 778 554 787 317 338 90e-8

newtoncorr: “backward error after Newton correction”

.494 576 642 755 856 003 18e-14

liftsplit: “the recursive lifting” 2

gcd: “the norm of last row” .229 531 605 543 399 416 00e-19

gcd: “the norm of row i” .466 052 253 477 438 643 45e-19

gcd: “the norm of row i” .337 929 733 532 576 706 83e-18

gcd: “the norm of row i” .975 512 977 864 364 667 87e-17

gcd: “the norm of row i” .379 995 406 168 670 813 04

liftsplit: “the recursive lifting” 1

gcd: “the norm of last row” .106 642 541 366 968 712 63e-18

gcd: “the norm of row i” .267 301 840 882 935 266 29e-18

gcd: “the norm of row i” .470 710 960 065 758 619 55e-18

gcd: “the norm of row i” .725 944 217 953 661 048 27e-18

gcd: “the norm of row i” .496 357 078 317 834 075 65

GCDAux1: “Degree of GCD and backward error for f,g” 1

.277 581 160 4e-5 .552 008 035 6e-5

GCDAux2: “the norm of last row” .687 906 778 348 371 770e-6

GCDAux2: “the norm of row i” .144 656 424 3e-5

GCDAux2: “the norm of row i” .328 231 424 1e-5

GCDAux2: “the norm of row i” .116 765 445 1e-4

GCDAux2: “the norm of row i” .125 189 140 6

GCDAux2: “quick decrease” 10 721.420 24

GCDAux2: “Degree of GCD and backward error for f,g” 4

.112 814 847 2e-4 .829 114 748 7e-5

If we start with the -factorization of reciprocal of and
, then no splitting is needed. Since the final results are quite

3At the time this paper was written, only a prototype was available. Now, by
the efforts of L. Zhi and H. Kai, this algorithm has been incorporated into Maple
9 for public distribution.

similar to the above, we omit them here but just show
the diagnostics.

GCDAux2: “the norm of last row” .827 778 337 414 056 300e-6

GCDAux2: “the norm of row i” .171 812 930 8e-5

GCDAux2: “the norm of row i” .288 318 074 2e-5

GCDAux2: “the norm of row i” .132 082 912 5e-4

GCDAux2: “the norm of row i” .119 536 924 8

GCDAux2: “quick decrease” 9050.143 015

GCDAux2: “Degree of GCD and backward error for f,g” 4

.734 782 691 0e-5 .798 072 620 3e-5

GCDAux1: “the norm of last row” .102 517 511 356 116 598e-6

GCDAux1: “the norm of row i” .177 417 393 2e-2

GCDAux1: “quick decrease” 17 306.057 35

GCDAux1: “Degree of GCD and backward error for f,g” 1

.798 796 977 1e-5 .156 137 594 6e-4

B. Summary of Tests with High Degree Random Polynomials

See Table I.

VIII. CONCLUDING REMARKS

This paper identifies a difficulty with previous attempts at
practical methods for the computation of approximate GCD and
presents an improved alternative together with an error anal-
ysis, theoretical complexity analysis, and experimental results
on several thousand examples. The method used in this paper
seems to be of potential use in practice, for polynomials of mod-
erately large degree (up to about 1000). One open problem of
theoretical interest is what to do about common roots in the
(narrow) ambiguous annulus , and we will pursue
this in a future paper. Another open problem is whether fast

factoring [23] can be stably used in this context.
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