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Abstract

We briefly survey several existing methods for solving polynomial system with in-
exact coefficients, then introduce our new symbolic-numeric method which is based
on the geometric (Jet) theory of partial differential equations. The method is stable
and robust. Numerical experiments illustrate the performance of the new method.
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1 Introduction

Exact elimination methods for exactly given polynomial systems (e.g. Gröbner Bases),
usually employ Gaussian Elimination (e.g. linear elimination of monomials). Such exact
methods usually depend on the ordering of input (e.g. term ordering in the case of
Gröbner Bases), and so are coordinate dependent. Since the order of elimination can
force division by small leading entries, such methods are generally unstable, when used
on approximate systems. In contrast, exact elimination methods from the geometric
theory of PDE are coordinate independent (Kuranishi, 1957; Pommaret, 1978) and this
motivated our study of numerical versions of such methods (Bonasia et al., 2004; Reid
et al., 2002; Wittkopf and Reid, 2001; Reid et al., 2003) which is continued in this
paper. See (Tuomela and Arponen, 2000) for applications of geometric methods to the
numerical solution of ODE.
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We exploit the well-known correspondence between polynomial systems and systems
of constant coefficient linear homogeneous PDE. This equivalence has been extensively
studied and exploited in the exact case by Gerdt (Gerdt and Blinkov, 1998) and his co-
workers in their development of involutive bases (also see (Saito et al., 2000)). We use
this correspondence to write the polynomial system as a PDE system. The PDE system
is brought to a geometric involutive form which is a variation of that of (Kuranishi,
1957; Pommaret, 1978) and much more distantly related to that of (Gerdt and Blinkov,
1998). Our new numerical methods are applied to this output involutive form.

The method depends on viewing the polynomial systems as matrix functions of their
monomials and applying linear algebra to the null spaces of these maps (see (Macaulay,
1916) for an early example of this technique and especially see (Emsalem, 1978; Mour-
rain, 1996)). In our approach we apply the Singular Value Decomposition (a funda-
mental technique of Numerical Linear Algebra) to the null spaces of these maps. We
present a new method for computing the multiplication matrices from the null spaces
of the involutive system and its geometric projections. This construction is based on a
modification due to (Bonasia et al., 2004; Wittkopf and Reid, 2001; Reid et al., 2003)
of the classical criterion of involution (see (Kuranishi, 1957; Pommaret, 1978; Seiler,
1994) for the classical criterion). The criterion is related to the one for zero dimensional
systems given in (Mourrain, 1999) based on commutators which is closer to a Gröbner
Basis formulation, with the commutators playing the rôle of S-polynomials. However,
our criterion is not based on commutators, and for zero dimensional systems is coordi-
nate independent. Our numerical criterion for output involutive form can be checked
by computing dimensions (specifically of prolonged and projected systems). After the
system is obtained in involutive form the solutions are found by applying eigenvalue-
eigenvector techniques to a related eigen-problem constructed from the involutive form.
In particular we give an eigen-problem formulation suitable for zero-dimensional invo-
lutive systems which is a modification of that of (Auzinger and Stetter, 1988; Möller
and Stetter, 1995; Corless et al., 1997; Mourrain, 1996).

The rest of the paper is organized as follows. In Section 2, we present the method based
on symbolic prolongation and numeric projection. The algorithm and an illustrative
example are given and discussed in Section 3. Performance on a set of well known
examples is also given in Section 3. In Section 4 we outline strategies for larger systems
based on exploiting their subsystem structure. In particular we discuss the case where
the subsystems are square and define complete intersections. In that case, the order for
prolongation to involution, can be determined without any prolongations being first
made. We also briefly describe relations to other approaches such as (Mourrain and
Trébuchet, 2000; Bardet et al., 2005; Faugère, 2002).
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2 Symbolic-Numeric completion of polynomial systems

Consider a polynomial system S in C[x1, . . . , xn] of degree q and its corresponding
vector of monomials of degree less than or equal to q. The system can be written as

Mq · [x
q
1, x

q−1
1 x2, . . . , x

2
n, x1, . . . , xn, 1]T = [0, 0, . . . , 0, 0, . . . , 0, 0]T (1)

in terms of its coefficient matrix Mq. Here and hereafter, [...]T means the transposition.
Further, [ξ1, ξ2, . . . , ξn] is one of the solutions of the polynomial system, if and only if

[ξq
1, ξ

q−1
1 ξ2, . . . , ξ

2
n, ξ1, . . . , ξn, 1]T (2)

is a null vector of the coefficient matrix Mq.

Since the number of monomials is usually much greater than the number of polynomi-
als, the dimension of the null space can be large. Completion methods for polynomial
ideals based on critical pairs (Lazard, 1983; Faugère, 2002; Gerdt and Blinkov, 1998;
Möller and Sauer, 2000; Auzinger and Stetter, 1988; Möller and Stetter, 1995; Stetter,
2004; Mourrain, 1999; Mourrain and Trébuchet, 2000, 2002; Trébuchet, 2002) aim to
include additional polynomials belonging to the ideal generated by S, until a (min-
imal) normal form is determined capable of deciding membership in the ideal. As a
consequence certain dimensions (including the dimension of the system’s null space,
and its projections) attain minimum values. Our method focuses on direct methods to
calculate and minimize these dimensions without using critical pair techniques.

The bijection

φ : xi ↔
∂

∂xi

, 1 ≤ i ≤ n, (3)

maps the system S to an equivalent system of linear homogeneous PDE denoted by R.
Jet space approaches are concerned with the study of the jet variety

V (R) =
{(

u
q
, u
q−1
, . . . , u

1
, u

)

∈ Jq : R
(

u
q
, u
q−1
, . . . , u

1
, u

)

= 0
}

, (4)

where u
j

denotes the formal jet coordinates corresponding to derivatives of order exactly

j. Here Jq ≈ CNq where Nq =
(

q + n

q

)

, is the number of jet variables of derivative order

less than or equal to q (or equivalently the number of monomials of total degree less
than or equal to q).

A single prolongation of a system R of order q consists of augmenting the system with
all possible derivatives of its equations, so that the resulting augmented system, denoted
by DR, has order q+1. Under the bijection φ, the equivalent operation for polynomial
systems is to multiply by monomials, so that the resulting augmented system has degree
q+ 1. Successive prolongations of the system yield R,DR,D2R, . . . , and a sequence of
corresponding linear homogenous constant matrix systems:

Mqvq = 0,Mq+1vq+1 = 0,Mq+2vq+2 = 0, . . . (5)
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where vi =
(

u
i
, u
i−1
, . . . , u

1
, u

)T

. A single geometric projection is defined as

π(R) :=
{(

u
q−1
, . . . , u

1
, u

)

∈ Jq−1 : ∃ u
q
, R

(

u
q
, u
q−1
, . . . , u

1
, u

)

= 0
}

. (6)

The projection operator π maps a point in Jq to one in Jq−1 by removing the jet vari-
ables of order q (i.e. eliminating u

q
). For polynomial systems of degree q, by the bijection

φ, the projection is equivalent to eliminating the monomials of the highest degree q.
We have adopted an abbreviated notation for projection here. To avoid cumbersome
notation we have omitted the traditional indices in the projection operator (e.g. π

q
q−1

to indicate that the projection acts from Jq to Jq−1). Our convention is that the pro-
jection is determined by the space on which it acts. Thus π

3(R) ≡ π
q−2
q−3π

q−1
q−2π

q
q−1(R).

A similar convention has been followed for the prolongation operator D.

To implement an approximate involutive form method, we proposed in (Bonasia et al.,
2004; Wittkopf and Reid, 2001; Reid et al., 2003) a numeric projection operator π̂

based on singular value decomposition (SVD). We first find the SVD of Mq+k:

Mq+k = U · Σ · V.

Here U and V are unitary matrices. Σ is a diagonal matrix whose diagonal entries are
real decreasing non-negative numbers. The approximate rank r is the number of singu-
lar values bigger than a fixed tolerance. The tolerance is chosen close to the number of
correct digits for the coefficients of the input polynomials. Deleting the first r rows of
V yields an approximate basis for the null space of Mq+k. This yields an estimate for
dim(DkR). To estimate dim(π̂(DkR)), the components of the approximate basis for
DkR corresponding to the highest order ((q+ k)th order) derivatives are deleted. This
projected basis yields an approximate spanning set for π̂(DkR). Proceeding in the same
way, deleting components corresponding to the highest order jet variables from the ap-
proximate spanning set just obtained, yields an approximate spanning set for π̂

2(DkR),
and then for π̂

3(DkR), etc. Application of the SVD to each of these approximate
spanning sets yields the approximate dimensions of π̂(DkR), π̂

2(DkR), π̂
3(DkR), ...,

required for the application of our approximate involutive form test.

Throughout this article we confine ourselves to polynomial systems, and consequently
by the bijection, to linear homogeneous systems of PDE with constant coefficients. As a
result many of the more complicated phenomena that occur for non-constant coefficient
systems and nonlinear PDE systems do not occur. Such phenomena include splitting
into components of different dimensions, singular points, etc.

The symbol of a system of PDE (and by the bijection of a system of polynomials) is
central to our approach.

Definition 2.1 (Symbol) The symbol matrix of a system of PDE is the Jacobian

4



matrix of the system with respect to its highest order jet coordinates:

Symbol R :=
∂R

∂ u
q

. (7)

Roughly speaking, this is the geometric generalization, of the leading term, of a single
polynomial. In case of polynomials of degree q (and their equivalent linear PDE) the
symbol matrix is simply the submatrix of the coefficient matrix Mq of the system corre-
sponding to highest degree (q) monomials. Another central object of our paper is that
of an involutive system. One of the most important requirements of involutive systems,
is that their symbols are involutive. Involution of the symbol is instrinsically defined
in terms of the vanishing of certain Homology groups (Pommaret, 1978). Involutivity
of the symbol is equivalent to its Mumford regularity (Malgrange, 2003).

A determination of involutivity of the symbol can be made using explicit coordinates
(Seiler, 2002, 1994) as follows. First define the class of an order q jet variable (or
equivalently a degree q monomial xJ := xj1

1 ...x
jn
n where q = j1 + ... + jn) as follows.

The class of xJ is first nonzero k such that jk is nonzero in the list J = [j1, j2, ..., jn].
Next order the columns of Symbol R from higher to lower class, and row reduce the
Symbol R. Then define β

(q)
k to be the number of pivots in the row reduced form of

Symbol R corresponding to class k jet variables. Finally we have:

Definition 2.2 (Involutivity Test for Symbol) The symbol of a qth order system
R = 0 is involutive in a generic system of coordinates if

rank Symbol(DR) = Σn
j=1jβ

(q)
j (8)

To numerically implement (8) the β
(q)
j are determined by dimensions of projections of

subspaces corresponding to different classes of monomials.

Definition 2.3 [Involutive System] A system of linear homogeneous PDE R = 0
with constant coefficients is involutive if dim π(DR) = dim R and the symbol of R is
involutive.

As a special case of the Cartan-Kuranishi prolongation theorem (Kuranishi, 1957;
Bryant et al., 1991; Seiler, 2002) we have:

Theorem 2.4 (Cartan-Kuranishi Prolongation Theorem) A linear homogeneous
system of PDE order q with constant coefficients becomes involutive after a finite num-
ber of projections and prolongations. In particular given an input system R = 0 there
exist Cr, ...C2, C1 with Cj = π or Cj = D for each j such that Cr...C2C1(R) is an
involutive system of order ≥ q.

Also algorithms and computer algebra implementations exist for carrying out the above
completion process for exact input (Seiler, 1994, 2002).
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Our symbolic-numeric completion method, requires that we compute prolongations
DkR and then compute π

ℓDkR. This led us to introduce the concept of projected
involutive systems in (Bonasia et al., 2004; Wittkopf and Reid, 2001; Reid et al., 2003):

Definition 2.5 [Projected Involutive System] The system of linear homogenous
PDE R = 0 with constant coefficients is said to be projectively involutive at prolongation
order k ≥ 0 and projected order ℓ such that 0 ≤ ℓ ≤ k, if π

ℓ(DkR) satisfies the projected
elimination test

dim π
ℓ
(

DkR
)

= dim π
ℓ+1

(

Dk+1R
)

(9)

and the symbol of π
ℓ(DkR) is involutive.

Theorem 3.4 of (Bonasia et al., 2004) states that:

Theorem 2.6 A system is projectively involutive if and only if it is involutive.

Theorem 3.3 of (Bonasia et al., 2004) ensures that such systems exist. It states that
given a linear homogeneous PDE system R = 0 there exist finite integers k ≥ 0 and ℓ
with 0 ≤ ℓ ≤ k such that the system R = 0 is projectively involutive at prolongation
order k ≥ 0 and projected order ℓ.

In this article we are concerned with systems of polynomials with finitely many solutions
(zero dimensional systems) which correspond to linear homogeneous PDE with finitely
many parameters in their solutions (finite type PDE). Under this hypothesis we have
the following simple and computationally convenient characterization of projectively
involutive (equivalently involutive) systems. This result is essentially well-known and
appears in many different guises (e.g. see (Seiler, 2002) for the differential case), but
we include its proof for completeness.

Theorem 2.7 (Criterion of Involution for zero-dimensional polynomial sys-
tems) A q-th order system of linear homogeneous PDE R corresponding to a zero
dimensional polynomial system S is projectively involutive at order k and projected
order ℓ if and only if π

ℓ(DkR) satisfies the projected elimination test (9) and

dim π
ℓ
(

DkR
)

= dim π
ℓ+1

(

DkR
)

. (10)

Proof of Theorem 2.7: The definition of the symbol space implies that

dim
(

Symbol π
ℓ
(

DkR
))

= dim π
ℓ
(

DkR
)

− dim π
ℓ+1

(

DkR
)

. (11)

We need to show under the hypotheses of the Theorem that:

dim π
ℓ
(

DkR
)

= dim π
ℓ+1

(

DkR
)

⇐⇒ Symbol π
ℓ(DkR) is involutive. (12)

Suppose that (10) holds then by (11) dim(Symbol π
ℓ(DkR)) = 0. In this case it is

easily shown that the symbol of π
ℓ(DkR) is involutive (Seiler, 2002).

Suppose that Symbolπℓ(DkR) is involutive under the hypotheses of the Theorem. Since
S is a zero dimensional system, it has finitely many zeros and the Hilbert function of
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the ideal generated by the polynomials S as a function of its degree d, is zero for d ≥ d∗

for sufficiently large d∗ (Cox et al., 1992).

(Seiler, 2002, Def. 4.2.4) gives the definition of the Hilbert function in the differential
case. By our isomorphism, this leads to the same Hilbert function (i.e. zero) as that for
S. This is the key link justifying the equivalence between the PDE and polynomial case.
Also see Robin Scott’s thesis (Scott, 2006), for a more algebraically oriented approach.
In particular d∗ can be taken at least to be the order of π

ℓ(DkR), that is d∗ = q+k−ℓ.

But then by (4.10) of (Seiler, 2002), we have dim π
ℓ
(

DkR
)

= dim π
ℓ+1

(

DkR
)

and so

(10) holds completing the proof. �

We briefly discuss the case where the dimension of the symbol space is not zero. When
there are 2 variables, then it is easily shown that:

Symbol π
ℓ(DkR) is involutive ⇐⇒ dim Symbol π

ℓ
(

Dk+1R
)

= dim Symbol πℓ
(

DkR
)

and this gives a computationally easy characterization by using (11). However when
the number of variables is ≥ 3 a finer analysis of the structure of the symbol space and
its Cartan characters is required (Seiler, 2002).

Suppose that finite type PDE R is involutive at prolonged order k and projected order ℓ,
and by the bijection φ has corresponding system of polynomials S. Then the dimension
of π̂

ℓ(DkR) allows us to determine the number of approximate solutions of S up to
multiplicity. In particular these solutions approximately generate the null space of
π̂

ℓ(DkR). Moreover, from

d = dim π̂
ℓ
(

DkR
)

= dim π̂
ℓ+1

(

DkR
)

, (13)

we can form the multiplication matrices from the null space of π̂
ℓ
(

DkR
)

and π̂
ℓ+1

(

DkR
)

.
Instead of choosing monomials to form a normal set of size d, we compute the SVD
of the approximate basis of the null space of π̂

ℓ+1(DkR). Since the first d left singular
vectors permit a stable representation of the other rows in the approximate basis of the
null space of π̂

ℓ
(

DkR
)

, a polynomial basis formed from these singular vectors leads to

a stable representation of multiplicative structure of the quotient ring C[x1, . . . , xn]/I.
Here I is the zero-dimensional ideal generated by the polynomials in S. This is the key
step which significantly improves the stability of our method. The small errors shown
on Fig. 2 also reveal the stability of our method on a set of benchmarks.

The details for computing the multiplication matrix are described in the following three
steps:

(1) We compute an approximate basis of the null space of π̂
ℓ
(

DkR
)

, denoted by a
Nq+k−ℓ×d matrix B. The Nq+k−ℓ−1×d submatrix B1 of B by deleting entries cor-

responding to the q+k−ℓ degree monomials is a basis of null space of π̂
ℓ+1

(

DkR
)

due to the condition (13).

(2) Let Nq+k−ℓ−1 =
[

xq+k−ℓ−1
1 , xq+k−ℓ−2

1 x2, . . . , xn, 1
]

be the set of all monomials of
degree less than or equal to q+ k− ℓ− 1. We compute the SVD of B1 = U ·S · V .
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The first d columns of U form the submatrix Us, and guarantee a stable polynomial
set Np = UT

s · N T .
(3) The multiplication matrices of xj with respect to Np can be formed as Mxj

= UT
s ·

Bxj
·V T ·Si where Bxj

are the rows of B corresponding to monomials xj ·Nq+k−ℓ−1

respectively, and Si is a diagonal matrix with elements which are reciprocals of
the first d elements of S. The matrix Si is well-conditioned since all elements of
Si are bounded by the reciprocal of the fixed tolerance.

Finally, the solutions can be obtained by computing eigenvalues and eigenvectors of
the multiplication matrices.

3 Algorithm and Examples

The following algorithm solves zero dimensional polynomial systems based on the
symbolic-numeric elimination method we discussed above.

Algorithm SNEPSolver

Input:

• a degree q polynomial system S in C[x1, . . . , xn] with a finite number of zeros
• a small tolerance ǫ

Output: All numerical solutions of S

(1) Form the PDE system R by the bijection φ. Let ℓ = 0; k = 0.
(2) Applying the symbolic-numeric completion method to R with tolerance ǫ, we ob-

tain the table of dimensions of dim π̂
ℓ(DkR).

(3) We seek the smallest k such that there exists an ℓ with π̂
ℓ(DkR) approximately

involutive, i.e., satisfying the conditions (9, 10). We choose the largest such ℓ if
there are several such values for the given k. (From Def. 2.5 recall that 0 ≤ ℓ ≤ k).

(4) Form the multiplication matrices of x1, . . . , xn from the null vectors of π̂
ℓ
(

DkR
)

and π̂
ℓ+1

(

DkR
)

, we can compute eigenvalues and eigenvectors to find solutions

of S (Auzinger and Stetter, 1988; Möller and Stetter, 1995; Corless et al., 1997).

The details are discussed in the following example given by (Stetter, 2004).

p1 :=−3.8889 + 0.078524 x+ 0.66203 y + 2.9722 x2 − 0.46786 xy + 1.0277 y2,

p2 :=−3.8889 + 0.66203 x− 0.078524 y + 1.0416 x2 + 0.70179 xy + 3.9584 y2. (14)

Using the methods of (Stetter, 2004), this is a difficult problem which required about
30 Digits of precision to obtain 10 correct digits for the y-component if we are using a
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k = 0 k = 1 k = 2 k = 3

ℓ = 0 4 4 4 4

ℓ = 1 3 4 4 4

ℓ = 2 1 3 4 4

ℓ = 3 1 3 4

ℓ = 4 1 3

ℓ = 5 1

Fig. 1. Table of dim π̂
ℓ(DkR) for (14)

generic normal set {1, x, x2, x3}.

The method we now describe does not use a normal set, and only needs Digits = 10 for
success in Maple 9. Under the bijection φ, the system is equivalent to the PDE system
R. Applying the symbolic-numeric completion method to R with tolerance 10−9, we
obtain the table of dimensions of π̂

ℓ(DkR).

Applying the approximate version of the involutive test to the example shows that the
system involutive after one prolongation and no projection, i.e. k = 1, ℓ = 0, yielding
DR as the sought approximately involutive system.

The involutive system has dim(DR) = 4 and so by the bijection the polynomial system
has 4 solutions up to multiplicity, and the monomial bases for these spaces should
include the second degree monomials in order to recover all solutions. In the following,
we show how to find the solutions without computing normal set w.r.t. a specified order
of variables. It is a key improvement on (Reid et al., 2003) since there a type of normal
set was used.

• Compute an approximate basis of the null space of DR, denoted by a 10× 4 matrix
B. The 6×4 submatrix B1 of B by deleting entries corresponding to the third degree
monomials is a basis of null space of π̂(DR) since dim(π̂(DR)) = dim(DR) = 4.

• Let N = [x2, xy, y2, x, y, 1] be the set of all monomials of degree less than or equal
to 2. For numerical stability, instead of selecting four monomials as the normal set
from N , we compute the SVD of B1 = U ·S ·V . The first four columns of U form the
6× 4 submatrix Us, and guarantee a stable polynomial set Np = UT

s · N T (including
four quadratic polynomials) for computing multiplication matrices accurately.

• The multiplication matrices of x, y with respect to Np can be formed asMx = UT
s ·Bx·

V T ·Si and My = UT
s ·By ·V

T ·Si, where Bx, By are the 1, 2, 3, 5, 6, 8 and 2, 3, 4, 6, 7, 9
rows of B corresponding to monomials x3, x2y, xy2, x2, xy, x and x2y, xy2, y3, xy, y2, y
respectively, and Si is a well-conditioned diagonal matrix with elements which are
reciprocals of the first four elements of S: 0.99972, 0.95761, 0.64539, 0.58916.

• Compute the eigenvectors vp of Mx − My (or any random linear combination of
Mx,My), and recover the eigenvector corresponding to the monomial set N by v =
Us · vp. Since x, y, 1 appear as the last three components in N , the solutions of p1, p2
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Ex. deg(fi) vars d k ℓ error

1 2, 2 2 3 1 1 0.52e-17

2 2, 2 2 4 1 0 0.3e-8

3 2, 2, 2, 2, 2, 2 4 4 2 1 0.44e-8

4 2, 2 2 4 1 0 0.7e-9

5 2, 2 2 2 1 1 0.3e-9

6 2, 3, 2 3 12 2 0 0.7e-8

7 8, 7 2 49 6 1 0.10e-6

8 3, 3, 3 3 27 4 0 0.18e-14

9 3, 3, 3 3 14 4 3 0.22e-9

10 3, 3, 3 3 21 4 2 0.82e-9

11 1, 1, 2, 2, 3, 2 6 10 2 2 0.34e-8

12 3, 3, 3 3 27 4 0 0.24e-8

Fig. 2. Algorithm performance on twelve examples

can be obtained as x = v[4, i]/v[6, i], y = v[5, i]/v[6, i]:

{x = 1.04972, y = −0.80689} ; {x = 1.04972, y = 0.64062} ;

{x = −1.20441, y = −0.78652} ; {x = −0.76039, y = 1.05888} .

Substituting these solutions back to p1, p2, we found that the errors are smaller than
10−8. It should be noticed that, for this example, although the first two solutions
have the same x values, they do not correspond to a multiple root. So the last step
is successful. Otherwise, we apply a reordered Schur factorization method in (Corless
et al., 1997) to the multiplication matrices Mx,My, ... to recover all roots including the
multiplicities.

We have implemented the SNEPSolver in Maple 9. In the following table, we show the
performance for some well known examples on Pentium 4 at 2.0 Ghz for Digits=10 and
tolerance being 10−9 in Maple 9 under Windows. Here, vars is the number of variables;
d is the number of solutions; k and ℓ denote the numbers of prolongation and projection
for system become involutive respectively; error indicates the maximal absolute value
after submitting the solutions to the original polynomial system. Examples are cited
from (Lazard, 1983; Mourrain, 1996; Reid et al., 2003; Stetter, 2004; Corless et al., 1997;
Sturmfels, 2002; Gatermann, 1990). The systems 3, 6, 7, 8, 9, 12 have multiple roots.
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4 Subsystem Strategies for larger Systems

We describe a strategy suitable for systems with subsystems that are square and define
complete intersections.

Let f(x) = (f1(x), ..., fm(x)) = 0 be a system of m = #f polynomials in C[x] where
x = (x1, ..., xn). The total (Bézout) degree of f(x) is deg(f) :=

∏

i deg fi, the product of
degrees of its polynomials. For generic square systems, deg(f) is the number of isolated
roots of f(x) = 0 and a fundamental parameter for measuring the complexity of poly-
nomial solving methods. A key disadvantage of our method is that as the prolongation
order grows, the total degrees of the prolonged systems can increase explosively.

It is natural to develop strategies based on the structure of f to lessen this growth.
Here we discuss the case where f has a subsystem structure f(x) = (g(y), h(y, z)) = 0
corresponding to a partition of the variables of the form x = (y, z). Already a number
of symbolic and numeric solution approaches exploit such subsystem structure (e.g.
Gröbner Bases and Triangular Decomposition methods can exploit such structure by
choosing appropriate orderings of the variables). The idea of such approaches is to first
solve subsystem g(y) = 0, then substitute the solutions y = ŷ into h(y, z) and finally
solve h(ŷ, z) = 0. In the case where the systems g(y), f(ŷ, z) and f(y, z) are generic and
square comparing their total degrees helps highlight the advantages of such approaches.

We consider the case where g(y) = 0 is a square system of polynomials (i.e. #(g) =
#(y)) of the same degree (i.e. deg(gi) = d = constant). Let ghom be the system of
polynomial functions obtained from g by removing all of its monomials of degree strictly
less than d (i.e. ghom is simply obtained from Symbol (g)). The variety of the leading
homogeneous part of g is given by

Vhom(g) := {ỹ : ghom(ỹ) = 0} (15)

In (Möller and Sauer, 2000) it is shown that:

Theorem 4.1 Suppose that g(y) = 0 is a square polynomial system of n equations in
C[y] with each polynomial having the same degree d. If Vhom(g) only contains the zero
solution, that is

Vhom(g) = {0}, (16)

then:

(1) g(y) = 0 is a complete intersection;
(2) g(y) is an H Basis;
(3) g(y) is a zero-dimensional ideal with Hilbert Function HF(r) = dn

for r ≥ (n− 1)(d− 1);

Further in (Reid et al., 2005) under the hypotheses of Theorem 4.1 it is easy to show
that D(n−1)(d−1)R is involutive; and that the PDE system R corresponding to g(y) by
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the mapping φ is formally integrable. In addition it is easy to show that if g(y) is
generic and square then Vhom(g) = {0} (e.g. see (Reid et al., 2005)).

Thus Theorem 4.1 applies to the large class of square generic systems. Square generic
systems are a strict subset of systems with Vhom(g) = {0} (e.g. just consider g(y) = y2

which has Vhom(g) = {0} but which is not generic).

An interesting feature of Theorem 4.1, is that for a large class of systems, it does not
require the checking of S-polynomials, or other objects related to higher degree polyno-
mials, obtained by prolonging its polynomials (e.g. by multiplying them by monomials).
It only requires information coming from a part of the system (Vhom(g) = {0}). This
yields fundamental information on the ideal generated by the system such as its Hilbert
function.

We now comment on a method to numerically check the hypothesis (16) in Theorem
4.1; which by (Reid et al., 2005) yields the order of prolongation at which the system
becomes involutive.

At first sight the computational expense of checking (16) by solving ghom(ỹ) = 0 is
similar to solving g(y) = 0 since both systems consist of #(g) polynomials of degree
d. This motivates us to use more refined polyhedral methods which exploit the struc-
ture of the problem. Such structure includes the fact that ghom(ỹ) = 0, unlike g(y) is
homogeneous, and is obtained from g(y) by removing all its lower (< d) degree mono-
mial terms. However direct computation of the mixed volume, Mvol(ghom(ỹ)), does
not yield useful information since being homogeneous it does not have nonzero isolated
solutions.

Since any homogeneous system has its solution set left invariant by the map ψµ : ỹ 7→ µỹ
there is no loss in scaling one of the variables to zero or one to yield overdetermined
systems which are respectively homogeneous and non-homogeneous. The main idea
here is that these systems can be analyzed by numerical homotopy methods, which
enable the testing of the condition Vhom(g) = {0}. The subtleties are that one has
to use Numerical Algebraic Geometry, to rule out the possible existence of positive
dimensional components in Vhom(g). The cost, even in the generic case, is less than
that of numerically solving the whole system g(y), and a tree of cases, where yj are
equal to zero or one, has to be analyzed. Eigenvalue methods or homotopy methods
can be then used to solve the system g(y) = 0, and its solutions y = ŷ substituted into
h(y, z) = 0. We note that if ghomis sparse then input system g may not necessarily
sparse. Specialization of the values of the variables as described above to values of 0 or
1 will not destroy the sparsity of ghom.Thus the mixed volume of a specialized form of
ghom(y) could be much smaller than that of g(y). So for such input systems, the cost to
determine Vhom(g) = {0} can be even cheaper. The degree of h(ŷ, z) = 0 is potentially
much smaller than h(y, z) = 0 making it much more amenable to our SNEPSolver,
which can solve non-generic non-square zero dimensional systems.

We refer the reader to the interesting paper of (Mourrain and Trébuchet, 2000) where
they show, that they can efficiently solve square polynomial systems, provided that
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certain matrices in their method are well-conditioned, and this occurs if the systems
are generic enough. Then they can avoid dealing with significant numbers of multiples of
polynomials in the prolongation. However they do not give tests for their input systems
being generic, complete intersections, or zero-dimensional. The numerical procedures
we describe above test for these properties and thus are a valuable supplement to their
methods. Their methods allow the practical processing of large sufficiently generic
systems.

5 Conclusion

In this paper, we present a symbolic-numeric elimination method to find the numeric
solutions for zero-dimensional polynomial systems. The matrices appearing in our ap-
proach can be large in comparison to those occurring in other approaches such as
(Mourrain, 1999; Mourrain and Trébuchet, 2000, 2002; Trébuchet, 2002). Future work
involves reducing the size of the matrices by exploiting the structure of the problems
and making use of structured singular value decomposition. That is, we plan to make
our method more efficient, while maintaining its stability. An analytical backward error
analysis in terms of an appropriate error metric is also an important future task, made
feasible by the backward error analyses, that exist for the SVD.

Our differential-algebraic method is easily reformulated and implemented by the bijec-
tion φ in terms of pure linear algebra on monomials. Such an implementation would
be more efficient than our current differential method in Maple since it does not have
the additional overhead for differentiation. Our method is related to that of (Mourrain,
1999; Mourrain and Trébuchet, 2000, 2002; Trébuchet, 2002). They also gave a neces-
sary and sufficient condition for a projection onto a set of polynomials to be a normal
form modulo an ideal, and present a new algorithm for constructing the multiplica-
tive structure of a zero-dimensional algebra. However, during their algorithm, numeric
reductions with respect to some set of polynomials are performed. While in our algo-
rithm, we only need to check the dimensions of the prolonged and projected differential
system, no reduction is needed. So there is no new error introduced during the com-
pletion to involutivity. Although the matrices in our approach can be bigger, they only
consist of the coefficients of the original input polynomial system. The threshold value
we used for computing the numeric rank indicates how near the coefficient matrix is to
a matrix of lower rank. It would be interesting to investigate how close our polynomial
system is to the system with the given dimensional table. We can apply structured total
least norm method (Lemmerling, 1999; Lemmerling et al., 2000; Rosen et al., 1996) to
compute nearby projectively involutive polynomial systems (Scott, 2006; Reid et al.,
2005). This should make our SVD based on method more reliable.

The algebraic method which also is related to our method is the method of H-bases
(Möller and Sauer, 2000), which also focuses on the dimensions of the vector spaces
of generated by monomials. Example 2.4 of (Möller and Sauer, 2000) is an H-basis of
degree 4, but can be shown to become involutive only after prolongation to degree 7
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(when it also becomes a Gröbner Basis). However this H-basis is minimally formally
integrable, in the sense defined in (Reid et al., 2001, Appendix A). In future work we will
investigate the relation between H-bases and minimal formal integrability which unlike
H-bases applies to the more general case of differential systems. Indeed the current
paper is part of a more general symbolic-numeric investigation of approximate systems
of differential equations (Reid et al., 2002). The fact that the methods apply not only
to zero dimensional polynomial systems, but also to positive dimensional ones, and
even more generally to systems of partial differential equations, is a favourable aspect
of this approach.

Under-determined systems (i.e. positive dimension systems) can have their involutiv-
ity checked by the use of their Cartan characters (e.g. see (Pommaret, 1978; Seiler,
2002)); which is numerically accomplished in generic coordinates by making projec-
tions between different classes of jet variables in their symbol space. An alternative is
to attempt to interpolate their Hilbert polynomial from the values dim π

ℓ
(

DkR
)

. This
allows the determination of the top dimensional positive dimensional components of
polynomial systems. Subsequently an appropriate random linear subspace of comple-
mentary dimension, when intersected with these components, cuts out generic points
on those components (i.e. by using a variation of the methods of Numerical Algebraic
Geometry (Sommese and Wampler, 2005)). Such generic points can then be calculated
with the eigen-method of this paper. We plan to extend our implementation to such
positive dimensional systems.

The discussion in Section 4 also can be extended to square systems of polynomials of
differing degrees ((Möller and Sauer, 2000) consider this case). Most notably the order
of involution can be detected before prolongation. Undetermined systems defining com-
plete intersections admit a similar treatment in the positive dimensional case, and this
is worthy of detailed investigation. It is interesting to note that complete intersections,
as a way of avoiding redundant spolynomial calculations, has been a key ingredient
in the fastest known improvements on Gröbner type algorithms (Bardet et al., 2005;
Faugère, 2002). We will investigate these connections in future work.

The methods of (Wu, 1991; Sommese and Wampler, 2005) are concerned with radicals
of ideals, and more directly with the set of zeros of polynomial systems, than the
methods we present here. Our approach maintains the structure of the ideal, and hence
the multiplicity structure, in contrast to those of (Wu, 1991; Sommese and Wampler,
2005) which change and lose multiplicity information during their execution.

The method has been applied successfully to solve some over-determined problems such
as camera pose determination in singular positions (Reid et al., 2003). Our test suite
and Maple implementation are available by request.
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