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Abstract. The task of determining the approximate greatest common divisor
(GCD) of more than two univariate polynomials with inexact coefficients can
be formulated as computing for a given Bezout matrix a new Bezout matrix
of lower rank whose entries are near the corresponding entries of that input
matrix. We present an algorithm based on a version of structured nonlinear
total least squares (SNTLS) method for computing approximate GCD and
demonstrate the practical performance of our algorithm on a diverse set of
univariate polynomials.
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1. Introduction

The computation of approximate GCDs of univariate polynomials has been ex-
tensively studied recently. The Euclidean algorithm has been considered early
in [4,11,23,24,30–33] to compute approximate GCDs of polynomials with floating
point coefficients. QR-decomposition or SVD-based total least squares methods
were introduced in [7, 8, 18, 19, 29, 34, 35]. In [25] nearby roots are matched.

In [15], the approximate GCD computation was formulated as an optimiza-
tion problem:

Problem 1.1. Given univariate polynomials f1, . . . , fl ∈ R[x] \ {0} with deg(f1) =
d1, . . . , deg(fl) = dl, we assume d1 = max(d1, . . . , dl). For a positive integer k,
k ≤ min(d1, . . . , dl), we wish to compute �f1, . . . , �fl ∈ R[x] such that deg(�f1) ≤
d1, . . . , deg(�fl) ≤ dl, deg(GCD(f1 + �f1, . . . , fl + �fl)) ≥ k and ‖�f1‖2

2 + · · · +
‖�fl‖2

2 is minimized.

The work is partially supported by a National Key Basic Research Project of China
2004CB318000 and Chinese National Science Foundation under Grant 10401035.



428 D. Sun and L. Zhi Math.comput.sci.

In [15–17, 29], the authors transformed the above problem into computing
for a generalized Sylvester matrix the nearest singular matrix with the generalized
Sylvester structure. They presented iterative algorithms based on structured total
least norm algorithms in [20, 21, 26, 27] to solve the optimization problem.

It is well known that Bezout matrix can also be used to compute GCDs of
univariate polynomials [1–3,5,6,12]. In [9,10], the authors generalized the Bezout
matrix for several univariate polynomials and apply SVD-based total least squares
method to compute approximate GCDs. Compared with the generalized Sylvester
matrix, the generalized Bezout matrix has smaller size. However, entries of the
Bezout matrix are bilinear in coefficients of the polynomials. Hence, we propose to
apply the structured nonlinear total least squares (SNTLS) algorithm [21, 28] to
compute the nearest singular matrix with Bezout structure. We show how to solve
Problem 1.1, at least for a local minimum, by applying SNTLS with L2 norm to
a submatrix of the generalized Bezout matrix.

We organize the paper as follows. In Section 2, we introduce some notations
and discuss the equivalence between the GCD problem and the low rank approx-
imation of a matrix with Bezout structure. In Section 3, we consider solving an
overdetermined system with Bezout structure based on SNTLS. In Section 4, we
describe our algorithm for two examples and compare our results with previous
work in [15–17]. We conclude in Section 5 with remarks on the complexity and the
rate of convergence of our algorithm.

2. Preliminaries

Suppose we are given two univariate polynomials f1, f2∈R[x]\{0} with deg(f1)=m
and deg(f2) = n, assume m ≥ n,

f1 = umxm + um−1x
m−1 + · · · + u1x + u0 , um �= 0 ,

f2 = vnxn + vn−1x
n−1 + · · · + v1x + v0 , vn �= 0 . (2.1)

The Bezout matrix B̂(f1, f2) = (b̂ij) is defined by

b̂ij = |u0vi+j−1| + |u1vi+j−2| + · · · + |ukvi+j−k−1| ,
where |urvs| = usvr − urvs, k = min(i − 1, j − 1) and vr = 0 if r > n [3, 13]. It
satisfies that

f1(x)f2(y) − f1(y)f2(x)
x − y

= [1, x, x2, . . . , xm−1]B̂(f1, f2)[1, y, y2, . . . , ym−1]T .

(2.2)
Notice that the Bezout matrix B(f1, f2) defined in Maple is as follows:

B(f1, f2) = −JB̂(f1, f2)J , (2.3)

where J is an anti-diagonal matrix with 1 as its nonzero entries.
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The Bezout matrix can be generalized for nonzero univariate polynomials
f1, . . . , fl ∈ R[x] \ {0} with deg(f1) = d1, . . . , deg(fl) = dl. Suppose d1 = max(d1,
. . . , dl), B(f1, . . . , fl) ∈ R

(l−1)d1×d1 is defined by

B(f1, . . . , fl) =

⎡
⎢⎢⎢⎣

B(f1, f2)
B(f1, f3)

...
B(f1, fl)

⎤
⎥⎥⎥⎦ . (2.4)

The following three theorems summarize the relationship between the great-
est common divisor(GCD) of f1, . . . , fl and the Bezout matrix B(f1, . . . , fl).

Theorem 2.1 (Theorem 3.2 in [9]). Given univariate polynomials f1, . . . , fl∈R[x]\
{0} with deg(f1) = d1, . . . , deg(fl) = dl, d1 = max(d1, . . . , dl), then we have
dim(KerB(f1, . . . , fl)) being equal to the degree of the GCD of f1, . . . , fl.

Theorem 2.2 (Theorem 3.3 in [9]). Given univariate polynomials f1, . . . , fl∈R[x]\
{0} with deg(f1) = d1, . . . , deg(fl) = dl, d1 = max(d1, . . . , dl), then the degree of
the GCD of f1, . . . , fl is at least k for k ≤ min(d1, . . . , dl) if and only if the first
d1 − k + 1 columns of B(f1, . . . , fl) are linearly dependent.

Theorem 2.3. Given univariate polynomials f1, . . . , fl ∈ R[x] \ {0} with deg(f1) =
d1, . . . , deg(fl) = dl, d1 = max(d1, . . . , dl), let c(x) = GCD(f1(x), . . . , fl(x)) be a
polynomial of degree k, then we have:

• rank(B(f1, . . . , fl)) = d1 − k ;
• Suppose y = (y0, y1, . . . , yd1−k−1)T satisfies Cy = b, where C consists of

the first d1 − k columns of B(f1, . . . , fl), and b is a vector formed from the
d1 − k + 1-th column of B(f1, . . . , fl). Let

w = [w0, . . . , wd1−k]T =
(
JB(f1, 1)

)
d1−k+1

[y0, . . . , yd1−k]T ,

where yd1−k = −1, and (JB(f1, 1))d1−k+1 is the leading principal d1−k+1-th
submatrix, then

f1(x) = c(x)w(x) , with w(x) =
d1−k∑
i=0

wix
i .

Proof. See Proposition 9.4, Remark 9.3 and Algorithm 9.1 in [6] for the case l = 2.
The proof of Theorem 3.4 in [9] also gives us an alternative method to compute a
GCD for the polynomials f1, . . . , fl from the generalized Bezout matrix. �

3. SNTLS for overdetermined system with Bezout structure

The Bezout matrix B(f1, . . . , fl) can be parameterized by a vector ζ which con-
tains the coefficients of f1, . . . , fl. By applying Theorem 2.1, we can transfer the
Problem 1.1 into solving the following minimization problem:

min
Δs∈Rd+l

‖Δs‖2 with dim
(
KerB(s + Δs)

) ≥ k , (3.1)
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in which
s = [f10, . . . , f1d1 , . . . , fl0, . . . , fldl

] , (3.2)

where fij stands for the coefficient of xj in polynomial fi, and d =
∑l

i=1 di.
Let Bk(ζ) = [D1(ζ),b(ζ), D2(ζ)] be the first d1 − k + 1 columns of B(ζ) and

let A(ζ) = [D1(ζ), D2(ζ)] ∈ R
d1(l−1)×(d1−k). According to Theorem 2.2, the mini-

mization problem (3.1) can be transferred into the following structured nonlinear
total least squares problem:

min
Δs∈Rd+l

‖Δs‖2 with A(s + Δs)x = b(s + Δs) , for some vector x . (3.3)

The choice of which column of Bk moved to the right side depends on whether the
nearest singular matrix contains that column in a linear column relation. Similar
to [15–17], we choose that column as b(ζ) ∈ R

d1(l−1)×1 for which the corresponding
component in the first right singular vector of Bk is maximum in absolute value.
In the following, we illustrate how to find the minimum solution of (3.3) using the
structured nonlinear total least squares (SNTLS) method.

We can initialize x as the unstructured least squares solution A(s)x = b(s)
for the input vector s. The perturbation can be initialized as Δs = 0. However, as
pointed by [20, Section 4.5.3] and [16,17], another way is to initialize Δs and x such
that they satisfy the nonlinear constraints approximately, A(s+Δs)x ≈ b(s+Δs).
We compute Δs as follows:

Δs = −Y T (s,v)
(
Y (s,v)Y T (s,v)

)−1
Bk(s)v , (3.4)

where v is the right singular vector corresponding to the smallest singular value
of Bk(s) and the matrix Y is the Jacobian of Bk(ζ)v with respect to ζ, we have

Bk(s + Δs)v = Bk(s)v + Y (s,v)Δs + O(‖Δs‖2
2) = O(‖Δs‖2

2) .

Suppose b(s) is the t-th column corresponding to the absolutely largest com-
ponent in v; We initialize the vector x by normalizing the vector v to make
v[t] = −1 and deleting the t-th term v[t], i.e.,

x =
[
−v[1]

v[t]
, . . . ,−v[t − 1]

v[t]
,−v[t + 1]

v[t]
, . . .

]T

. (3.5)

We have A(s+Δs)x−b(s+Δs) = O(‖Δs‖2
2). Since the initial values of Δs and x

only satisfy the first order of the nonlinear constraints, for the second initialization
method to be successful, we usually require that the initial perturbation (3.4)
‖Δs‖2 � 1.

By introducing the Lagrangian multipliers, and neglecting the second-order
terms in Δs, the constrained minimization problem can be transformed into an
unconstrained optimization problem [21,28]:

L(Δs,x, λ) =
1
2
ΔsT Δs− λT (b− Ax − XΔs) , (3.6)
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where X(ζ,x) is the Jacobian of r(ζ,x) = A
(
ζ
)
x − b

(
ζ
)

with respect to ζ:

X(ζ,x) = �ζ

(
A(ζ)x

) − �ζ

(
b(ζ)

)
=

d1−k∑
j=1

xj�ζaj(ζ) − �ζ

(
b(ζ)

)
, (3.7)

where aj(ζ) represents the j-th column of A(ζ). Applying the Newton method on
the Lagrangian L yields:

⎡
⎣

Id+l 0(d+l)×(d1−k) X(s + Δs,x)T

0(d1−k)×(d+l) 0(d1−k)×(d1−k) A(s + Δs)T

X(s + Δs,x) A(s + Δs) 0(l−1)d1×(l−1)d1

⎤
⎦

⎡
⎣

Δs̃
Δx̃
Δλ̃

⎤
⎦ =

−
⎡
⎣

Δs + X(s + Δs,x)T λ
A(s + Δs)T λ
A(s + Δs)x − b(s + Δs)

⎤
⎦ , (3.8)

where d =
∑l

i=1 di. The iterative update x = x+Δx̃, λ = λ+Δλ̃, s = s+Δs+Δs̃
is stopped when ‖Δx̃‖2 and/or ‖Δs̃‖2 and/or ‖Δλ̃‖2 becomes smaller than a given
tolerance.

4. Experiments

Suppose we are given polynomials f1, . . . , fl ∈ R[x] \ {0} with deg(f1) = d1, . . . ,
deg(fl) = dl, and d1 = max(d1, . . . , dl), and a tolerance. We estimate the integer k
from the singular values of the Bezoutian of f1, . . . , fl. We compute the initial
values of Δs,x, λ by one of the two methods in Section 3, then solve the linear
system (3.8) and update Δs = Δs+Δs̃, x = x+ x̃, λ = λ+ λ̃ until ‖Δx̃‖2 and/or
‖Δs̃‖2 and/or ‖Δλ̃‖2 are smaller than the given tolerance.

Suppose B̃k is the nearest singular matrix with Bezout structure computed
successfully by SNTLS algorithm. Let the perturbed polynomials be f̃1, . . . , f̃l.
Suppose k = deg(GCD(f̃1, . . . , f̃l)), the polynomial c(x) = GCD(f̃1, . . . , f̃l) can
be computed according to Theorem 2.3. However, we can also use the vector x
returned from the iterations (3.8) to compute the GCD directly. Let y = [x1, . . . ,

xt−1,−1, xt, . . . , xd1−k]T , compute the vector w = [w0, . . . , wd1−k]T = (JB(f̃1, 1))
d1−k+1yT , where (JB(f̃1, 1))d1−k+1 is the leading principal d1−k+1-th submatrix.
The polynomial c(x) is computed by a division of the polynomial f̃1(x) by the
polynomial w(x) =

∑d1−k
i=0 wix

i, and it is returned as the approximate GCD of
f1, . . . , fl.

Remark 4.1. When k is smaller than deg(GCD(f̃1, . . . , f̃l)), as suggested in [17],
we may increase k by k+1 and run our SNTLS algorithm on f̃1, . . . , f̃l again until
we find the correct k.

We have implemented the algorithm in Maple 10 for computing the approx-
imate GCDs of several univariate polynomials with real coefficients by structured
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low rank approximation of a Bezout matrix. The following two examples are com-
puted by our algorithm in Maple 10 with Digits = 14. The results are listed with
five digits.

Example 1 ([10]). Consider the polynomials

f1 = (x5 − 1)(x4 − x + 1) ,

f2 = (x5 − 0.9999)(x + 4.0001) ,

f3 = (x5 − 0.9999)(x4 − 3.0003x− 2.9999) ,

f4 = (x5 − 1.0001)(x4 − 3.0001x− 0.9999) .

The matrix B5(f1, f2, f3, f4) is of size 27 × 5, whereas the generalized Sylvester
matrix used in [16] is of size 39 × 17. By our algorithms, for k = 5, after two
iterations, we stop the algorithm at Δx = .28218×10−5. The deformed polynomials
are:

f̃1 = x9 + .16753× 10−5x8 + .26750× 10−5x7 − x6 + x5 − .99997x4

+ .19010× 10−5x3 + .23249× 10−5x2 + .99998x− .99998 ,

f̃2 = .99998x6 + 4x5 + .16014× 10−4x4 + .21290× 10−4x3 + .17999× 10−4x2

− .99992x− 3.9998 ,

f̃3 = .99996x9 − .10714× 10−5x8 − .80617× 10−5x7 − 3.0002x6 − 2.9998x5

− .99994x4 − .10723× 10−5x3 − .80515 × 10−5x2 + 3.0001x + 2.9997 ,

f̃4 = 1.0001x9 − .63203× 10−5x8 − .43391× 10−5x7 − 3.0003x6 − .99998x5

− x4 − .63321× 10−5x3 − .43314× 10−5x2 + 3.0002x + 0.99992 .

The backward error

N =
√
‖f̃1 − f1‖2 + ‖f̃2 − f2‖2

2 + ‖f̃3 − f3‖2
2 + ‖f̃4 − f4‖2

2 = .41295× 10−3 .

The backward error computed by STLS algorithm in [16] is .41292 × 10−3. How-
ever, our algorithm only takes 0.641 seconds while the STLS algorithm takes 7.031
seconds. The backward error given in [10] is larger than .47610 × 10−3. The ap-
proximate GCD computed by our algorithm is

c(x) = x5 + .29055× 10−5x4 + .43923× 10−5x3

+ .37214× 10−5x2 + .31134× 10−5x − .99995 .

Example 2 ([16]). Consider the polynomials

f1 = 1000x10 + x3 − 1 ,

f2 = x2 − 0.01 .
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Case 1. If we initialize Δs = 0 and x being the unstructured least squares solu-
tion of A(s)x = b(s). After 10 iterations, we obtain the deformed polynomials

f̃1 = 1000x10 − 0.00011x9 − .00014x8 − .00009x7 + .00008x6 − .00026x5

+ .00049x4 + .99901x3 + .00195x2 − .00386x− .99238 ,

f̃2 = .95204x2 + .09462x− .19666 ,

which have a common divisor x + 0.50690, and the backward error is

N = ‖f̃1 − f1‖2
2 + ‖f̃2 − f2‖2

2 = 0.04617 .

As discussed in [16], this is only one of the local minimum.
Case 2. We initialize Δs by formula (3.4) and choose v being the right singular

vector corresponding to the smallest singular value of Bk(s) and normalized
with respect to the largest entry. After 8 iterations, the algorithm returns

f̃1 = 1000x10 + .00012x9 − .00013x8 + .00006x6 + .00023x5 + .00049x4

+ 1.0010x3 + .00205x2 + .00415x− .99156 ,

f̃2 = .95614x2 − .08876x− .18962 ,

which have a common divisor x − 0.49415, the backward error is

N = ‖f̃1 − f1‖2
2 + ‖f̃2 − f2‖2

2 = .04216 .

It is the global minimum similar to the one derived in [16].
In Table 1, we show the performance of our algorithm for computing approx-

imate GCD of univariate polynomials on Pentium 4 at 2.0 Ghz for Digits = 14
in Maple 10 under Windows. For every example, we use 50 random cases for
each (d1, . . . , dl), and report the average over all results. For each example, the
prime parts and GCD of polynomials are constructed by choosing polynomials
with random integer coefficients in the range −10 ≤ c ≤ 10, and then adding
a perturbation. For noise we choose a relative tolerance 10−e, then randomly
choose a polynomial that has the same degree as the product, and coefficients
in [−10e, 10e]. Finally, we scale the perturbation so that the relative error is 10−e.
Here di denotes the degree of the polynomial fi; k is the degree of the approximate
GCD of f1, . . . , fl; it. (STLS) is the number of the iterations needed by method
in [17]; whereas it. (SNTLS) denotes the number of iterations by our algorithm;
error (STLS) denotes the perturbation ‖f̃1 − f1‖2

2 + · · ·+ ‖f̃l − fl‖2
2 computed by

algorithm in [17]; whereas error (SNTLS) is the minimal perturbation computed
by our algorithm; the last two columns denote the time in seconds costed by two
algorithms respectively.

5. Concluding remarks

In this paper we present a new way based on SNTLS to compute the approximate
GCD of several univariate polynomials. The overall computational complexity of
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Table 1. Algorithm performance on benchmarks (univariate case).

Ex. di k
it.

(STLS)
it.

(SNTLS)
error

(STLS)
error

(SNTLS)
time(s)
(STLS)

time(s)
(SNTLS)

1 2, 2 1 2.18 1.90 6.96e–6 6.96e–6 .25 .12
2 3, 3 2 2.17 1.93 1.05e–5 1.07e–5 .31 .14
3 5, 4 3 2.06 1.91 1.56e–5 1.56e–5 .44 .18
4 5, 5 3 2.27 2.00 2.04e–5 2.75e–5 .53 .20
5 6, 6 4 2.10 2.00 2.18e–5 2.18e–5 .58 .21
6 8, 7 4 2.10 1.90 1.70e–5 1.70e–5 .95 .31
7 10, 10 5 2.60 2.10 3.43e–4 3.44e–5 1.40 .43
8 14, 13 7 2.60 1.90 5.73e–5 6.47e–5 2.31 .80
9 28, 28 14 2.00 2.00 2.60e–5 2.60e–5 10.65 11.97

10 10, 9, 8 5 4.00 3.002 7.96e–5 9.86e–5 4.17 1.99
11 8, 7, 8, 6 4 4.40 3.20 3.24e–5 3.28e–5 5.83 1.41

the algorithm depends on the number of iterations needed for the first order up-
date. If the starting values are good, then the iteration will converge quickly. This
can be seen from the above table. Since the matrices involved in the minimization
problems are all structured matrix, they have low displacement rank [14]. It would
be possible to apply the fast algorithm to solve these minimization problems as
in [22]. This would reduce the complexity of our algorithm to be only quadratic
with respect to the degrees of the given polynomials.

Our methods can be generalized to several polynomials with arbitrary linear
or nonlinear equational constraints imposed on the coefficients of the input and
perturbed polynomials. However, at present, our algorithm can’t deal with the
polynomials with complex coefficients or the global minimal perturbations being
complex. Notice that our algorithm also can not deal with the case k = d1, because
in that case the Bezout matrix Bk is not defined.
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