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Abstract. In this paper, we generalize the algorithm described by Rump and Graillat, as well
as our previous work on verifying breadth-one singular solutions of polynomial systems, to compute
verified and narrow error bounds such that a slightly perturbed system is guaranteed to possess
an isolated singular solution within computed error bounds. Our verification method is based on
deflation techniques using smoothing parameters. We demonstrate the performance of the algorithm
for polynomial systems with singular solutions of multiplicity up to hundreds.
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1. Introduction. It is a challenge to solve polynomial systems with singular
solutions. In [29], Rall studied convergence properties of Newton’s method for singu-
lar solutions, and many modifications of Newton’s method to restore the quadratic
convergence for singular solutions have been proposed in [1, 5, 6, 7, 11, 12, 13, 26, 28,
30, 31, 36, 40]. Recently, some symbolic-numeric methods have also been proposed
for refining approximate isolated singular solutions to high accuracy [2, 3, 4, 9, 10,
18, 19, 20, 24, 38, 39]. In [21, 22], we described an algorithm based on the regularized
Newton iterations and the computation of differential conditions satisfied at given
approximate singular solutions to compute isolated singular solutions accurately to
the full machine precision, when its Jacobian matrix has corank one (the breadth-one
case).

Since arbitrary small perturbations of coefficients may transform an isolated sin-
gular solution into a cluster of simple roots or even make it disappear, it is more
difficult to verify that a polynomial system or a nonlinear system has a multiple root
if the entire computation is not performed without any rounding error [34].

In [35], by introducing a smoothing parameter, Rump and Graillat developed a
verification method for computing verified and narrow error bounds, such that a s-
lightly perturbed system is proved to possess a double root within computed error
bounds. In [23], by adding a univariate polynomial in one selected variable with some
smoothing parameters to one selected equation of the original system, we general-
ized the algorithm in [35] to compute guaranteed error bounds such that a slightly
perturbed system is proved to have a breadth-one isolated singular solution within
computed error bounds.

In [24], Mantzaflaris and Mourrain proposed a one-step deflation method, and
by applying a well-chosen symbolic perturbation, they verified a multiple root of a
nearby system with a given multiplicity structure, which depends on the accuracy of
the given approximate multiple root. The size of the final augmented system is equal
to the multiplicity times the size of the original system, which might be large (e.g.
DZ1 and KSS in Table 5.1).
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In [14], based on deflated square systems proposed by Yamamoto in [40], Kanza-
wa and Oishi presented a numerical method for proving the existence of “imperfect
singular solutions” of nonlinear equations with guaranteed accuracy. In [40], if the
second-order deflation is applied, then smoothing parameters are added not only to
the original system but also independently to differential systems; see (3.14). There-
fore, one can only prove the existence of an isolated solution of a slightly perturbed
system which satisfies the first-order differential condition approximately.

In [8, 15, 16], Kearfott et al. presented completely different and interesting meth-
ods based on verifying a nonzero topological degree to verify the existence of singular
zeros of nonlinear systems.

Main contribution. Suppose we are given a system of polynomial equations
and an approximate isolated singular solution. Stimulated by previous work on ver-
ifying the existence of breadth-one singular solutions [23], first we show the number
of deflations used by Yamamoto to obtain a regular and square augmented system
is bounded by the depth of the singular solution. Then we show how to move the
independent perturbations in the first-order differential system (3.14) appearing in
[40] back to the original system. We prove that this modified deflation technique
terminates after a finite number of steps bounded by the depth as well, and it returns
a regular and square augmented system, which can be used to prove the existence of
an isolated singular solution of a slightly perturbed polynomial system; see Theorems
3.7 and 3.8. Finally, we present an algorithm for computing verified error bounds,
and a successful output of the algorithm can guarantee that there exists a unique
system, which has a unique isolated singular solution within computed error bounds.
The algorithm has been implemented in Maple and Matlab, and narrow error bounds
of the order of the relative rounding error are computed efficiently for examples given
in literature.

Structure of the paper. Section 2 is devoted to recalling some notations and
well-known facts. In Section 3, we develop a novel deflation technique by adding
several smoothing parameters properly to the original system, which returns a regular
and square augmented system after a finite number of steps bounded by the depth.
In Section 4, we propose an algorithm for computing verified error bounds such that
a slightly perturbed system is guaranteed to possess an isolated singular solution
within computed error bounds. Some numerical results are given to demonstrate the
performance of our algorithm in Section 5.

2. Preliminaries. Let F = {f1, . . . , fn} be a polynomial system, fi ∈ C[x] =
C[x1, . . . , xn] and I ∈ C[x] be the ideal generated by polynomials in F .

Definition 2.1. An isolated solution of F (x) = 0 is a point x̂ ∈ Cn which
satisfies:

∃ ε > 0 : {y ∈ C
n : ‖y − x̂‖ < ε} ∩ F−1(0) = {x̂}.

Definition 2.2. We call x̂ a singular solution of F (x) = 0 if and only if

rank(Fx(x̂)) < n, (2.1)

where Fx(x) is the Jacobian matrix of F (x) with respect to x.
Definition 2.3. Let Qx̂ be the isolated primary component of the ideal I =

(f1, . . . , fn) whose associate prime is mx̂ = (x1−x̂1, . . . , xn−x̂n), then the multiplicity
µ of x̂ is defined as µ = dim(C[x]/Qx̂), and the index ρ of x̂ is defined as the minimal
nonnegative integer ρ such that mρ

x̂
⊆ Qx̂ [37].
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Let dα
x̂ : C[x] → C denote the differential functional defined by

dα
x̂ (g) =

1

α1! · · ·αn!
· ∂|α|g

∂xα1
1 · · · ∂xαn

n

(x̂), ∀g(x) ∈ C[x], (2.2)

for a point x̂ ∈ Cn and an array α ∈ Nn. The normalized differentials have a
useful property: when x̂ = 0, we have dα

0 (x
β) = 1 if α = β or 0 otherwise, where

xβ = xβ1

1 xβ2

2 · · ·xβn
n .

Definition 2.4. The local dual space of I at x̂ is defined as the subspace of
elements of Dx̂ = SpanC{dα

x̂ , α ∈ Nn} that vanish on all elements of I

Dx̂ := {Λ ∈ Dx̂ | Λ(f) = 0, ∀f ∈ I}. (2.3)

It is clear that dim(Dx̂) = µ and the maximal degree of an element Λ ∈ Dx̂ is equal
to ρ− 1, which is also known as the depth of Dx̂.

A singular solution x̂ of a square system F (x) = 0 satisfies equations

{
F (x) = 0,

det(Fx(x)) = 0.
(2.4)

The above augmented system forms the basic idea for the deflation method [26, 27, 28].
But the determinant is usually of high degree, so it is numerically unstable to evaluate
the determinant of the Jacobian matrix.

In [19], Leykin et al. modified (2.4) by adding new variables and new equa-

tions. Let r = rank(Fx(x̂)), with probability one, there exists a unique vector λ̂ =

(λ̂1, λ̂2 . . . , λ̂r+1)
T such that (x̂, λ̂) is an isolated solution of






F (x) = 0,
Fx(x)Bλ = 0,

hTλ = 1,
(2.5)

where B ∈ Cn×(r+1) is a random matrix, h ∈ Cr+1 is a random vector and λ ∈ Cr+1

is a vector consisting of r+1 new variables λ1, λ2 . . . , λr+1. If (x̂, λ̂) is still a singular
solution of (2.5), the deflation is repeated. Furthermore, they proved that the number
of deflations needed to derive a regular solution of an augmented system is strictly
less than the multiplicity of x̂. Dayton and Zeng showed that the depth of Dx̂ is a
tighter bound for the number of deflations [4].

Let IR be the set of real intervals, and let IRn and IR
n×n be the set of real interval

vectors and real interval matrices, respectively. Standard verification methods for
nonlinear systems are based on the following theorem.

Theorem 2.5 ([17, 25, 32]). Let H : Rn → Rn be a system of nonlinear equations.
Suppose x̃ ∈ Rn, X ∈ IR

n with 0 ∈ X and R ∈ Rn×n are given. Let M ∈ IR
n×n be

given such that

{∇hi(y) : y ∈ x̃+X} ⊆ Mi,:, i = 1, . . . , n. (2.6)

Denote by In the n× n identity matrix and assume

−RH(x̃) + (In −RM)X ⊆ int(X). (2.7)

Then there is a unique x̂ ∈ x̃ + X satisfying H(x̂) = 0. Moreover, every matrix
M̃ ∈ M is nonsingular. In particular, the Jacobian matrix Hx(x̂) is nonsingular.
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Naturally the non-singularity of the Jacobian matrix Hx(x̂) restricts the appli-
cation of Theorem 2.5 to regular solutions of square systems. Notice that Theorem
2.5 is valid over complex numbers with the necessary modifications. In the following,
we propose a new deflation method which returns a regular and square augmented
system, and thus Theorem 2.5 is applicable. Hence, we are able to verify the existence
of an isolated singular solution of a slightly perturbed system.

3. A Square and Regular Augmented System . Suppose we are given a
polynomial system F = {f1, . . . , fn}, fi ∈ C[x] and let x̂ ∈ Cn be an isolated solution
satisfying F (x̂) = 0 and det(Fx(x̂)) = 0.

The systems (2.4) and (2.5) have been used to restore the quadratic conver-
gence of Newton’s method. But notice that these augmented systems are always
over-determined, and thus Theorem 2.5 is not applicable. In [40], by introducing s-
moothing parameters, Yamamoto derived square augmented systems. These systems
were used successfully by Kanzawa and Oishi in [14] to prove the existence of “im-
perfect singular solutions” of nonlinear systems. However, for isolated solutions with
high singularities, the smoothing parameters are added not only to the original system
but also to the differential systems independently; see (3.14). Therefore, according to
(3.15), one can only prove the existence of an isolated solution of a slightly perturbed
system, which satisfies the first-order differential condition approximately.

In the following, we rewrite the deflation techniques in [40] in our setting, and
prove that the number of deflations needed to obtain a regular system is bounded
by the depth of Dx̂; see Theorem 3.2. Then we show how to lift the independent
perturbations in the first-order differential system appearing in (3.14) back to the
original system. We prove that the modified deflations will terminate after a finite
number of steps bounded by the depth of Dx̂ as well, and return a regular and square
augmented system, which can be used to prove the existence of an isolated singular
solution of a slightly perturbed system exactly; see Theorems 3.7 and 3.8.

3.1. The first-order deflation. Let x̂ ∈ Cn be an isolated singular solution of
F (x) = 0, and

rank(Fx(x̂)) = n− d, (1 ≤ d ≤ n). (3.1)

Let c = {c1, c2, . . . , cd} (1 ≤ c1 < c2 < . . . < cd ≤ n) and F c
x (x̂) is obtained from

Fx(x̂) by deleting its c1, c2, . . . , cd-th columns, which satisfies

rank(F c
x (x̂)) = n− d. (3.2)

There exists a set of positive integers k = {k1, k2, . . . , kd} such that

rank(F c
x (x̂), Ik) = n, (3.3)

where

Ik = (ek1 , ek2 , . . . , ekd
), (3.4)

and eki
is the ki-th unit vector of dimension n.

We introduce d smoothing parameters b0 = (b0,1, . . . , b0,d) and consider the fol-
lowing square system

G(x,λ1,b0) =

{
F (x)−

∑d
i=1 b0,ieki

= 0,
Fx(x)v1 = 0,

(3.5)
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where v1 ∈ Cn is a vector consisting of n − d variables λ1 = (λ1,1, . . . , λ1,n−d) con-
catenated to a vector (vc1 , . . . , vcd) = (1, . . . , 1),

v1 = (λ1,1, . . . , 1
c1
, . . . , 1

cd
, . . . , λ1,n−d)

T ∈ C
n.

It is similar to the augmented system (2.34) in [40], except that Yamamoto chose the
values of vci , i = 1, 2, . . . , d randomly. According to (3.2), the rank of F c

x (x̂) is n− d,
the solution of the linear system Fx(x̂)v1 = 0 with the fixed value 1 at positions
c1, . . . , cd is unique, we denote it by v̂1:

v̂1 = (λ̂1,1, . . . , 1
c1
, . . . , 1

cd
, . . . , λ̂1,n−d)

T ∈ C
n.

Therefore, (x̂, λ̂1,0) is an isolated solution of G(x,λ1,b0) = 0, where

λ̂1 = (λ̂1,1, . . . , λ̂1,n−d).

If (x̂, λ̂1,0) is still a singular solution, as proposed in [40], the deflation process
mentioned above is repeated for the first-order deflated system G and the solution
(x̂, λ̂1,0).

In [40], Yamamoto did not prove explicitly the termination of the above deflation
process. Motivated by the results in [4, 19], we show that the number of deflations
needed to derive a regular and square augmented system is bounded by the depth of
Dx̂.

Let h = (0, . . . , 0︸ ︷︷ ︸
n−d

, 1)T , λ = (λ1,1, . . . , λ1,n−d, 1)
T and

B = (ê1, . . . , ên−d+1
c1

, . . . , ên−d+1
cd

, . . . , ên−d)
T ∈ C

n×(n−d+1),

where êi is the i-th unit vector of dimension n− d+ 1. Then, the augmented system
(2.5) used in [19] is equivalent to

G̃(x,λ1) =

{
F (x) = 0,

Fx(x)v1 = 0,
(3.6)

which has an isolated solution at (x̂, λ̂1), and the Jacobian matrix of G̃(x,λ1) at

(x̂, λ̂1) is

G̃x,λ1(x̂, λ̂1) =

(
Fx(x̂) On,n−d

Fxx(x̂)v̂1 F c
x (x̂)

)
, (3.7)

where Oi,j denotes the i × j zero matrix and Fxx(x) is the Hessian matrix of F (x).
On the other hand, the Jacobian matrix of G(x,λ1,b0) computes to

Gx,λ1,b0(x̂, λ̂1,0) =

(
Fx(x̂) On,n−d −Ik

Fxx(x̂)v̂1 F c
x (x̂) On,d

)
. (3.8)

Lemma 3.1. The null spaces of the Jacobian matrices (3.7) and (3.8) satisfy

null(Gx,λ1,b0(x̂, λ̂1,0)) =

{(
y

0

)
∈ C

2n | y ∈ null(G̃x,λ1(x̂, λ̂1))

}
.
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Proof. If y ∈ null(G̃x,λ1(x̂, λ̂1)) then

(
y

0

)
∈ null(Gx,λ1,b0(x̂, λ̂1,0)). Suppose

(
y

z

)
is a null vector of Gx,λ1,b0(x̂, λ̂1,0). Corresponding to the blocks Fx(x̂) and

On,n−d, we divide y into

(
y1

y2

)
. It follows that

Fx(x̂)y1 − Ikz = 0.

By (3.3), we have

rank(F c
x (x̂),−Ik) = n.

It is clear that z must be a zero vector.
If (x̂, λ̂1) is still an isolated singular solution of the deflated system (3.6), as

proposed in [19], the deflation process is repeated for G̃(x,λ1) and (x̂, λ̂1). As shown
in [4], if the s-th deflated system is singular, there exists at least one differential
functional of the order s + 1 in Dx̂. However, the order of differential functionals in
Dx̂ is bounded by its depth, which is equal to ρ − 1. Therefore, after at most ρ − 1
steps of deflations (3.5), one will obtain a regular augmented system, i.e., the corank
of the Jacobian matrix of the deflated system will be zero. As a consequence, based
on Lemma 3.1, we claim the finite termination of Yamamoto’s deflation method.

Theorem 3.2. The number of the first-order deflations (3.5) needed to derive a
regular and square augmented system is bounded by the depth of Dx̂.

Proof. By Lemma 3.1, we have

corank(G̃x,λ1(x̂, λ̂1)) = corank(Gx,λ1,b0(x̂, λ̂1,0)). (3.9)

Therefore, the smoothing parameters added in the deflated system (3.5) do not change
any rank-deficient information of the Jacobian matrix of (3.6). If

corank(G̃x,λ1(x̂, λ̂1)) = corank(Gx,λ1,b0(x̂, λ̂1,0)) > 0,

then we repeat the deflation steps for (3.5) and (3.6) accordingly. Inductively, we
know that the coranks of Jacobian matrices of two different kinds of deflated systems
remain equal at every step. Moreover, we have shown that, after at most ρ − 1
steps, the corank of the Jacobian matrix of the deflated system corresponding to (3.6)
becomes zero. Therefore, the deflated system corresponding to (3.5) will also become
regular after at most ρ− 1 steps.

3.2. The second-order deflation. Suppose the Jacobian matrixGx,λ1,b0(x̂, λ̂1,0)
is singular, i.e.,

rank(Gx,λ1,b0(x̂, λ̂1,0)) = 2n− d′, (d′ ≥ 1). (3.10)

Let c′ = {c′1, c′2, . . . , c′d′} and k′ = {k′1, k′2, . . . , k′d′} be two sets of positive integers
such that

rank(Gc′

x,λ1,b0
(x̂, λ̂1,0)) = 2n− d′, (3.11)

rank(Gc′

x,λ1,b0
(x̂, λ̂1,0), Ik′+n) = 2n, (3.12)
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where Gc′

x,λ1,b0
(x̂, λ̂1,0) is a matrix obtained from Gx,λ1,b0(x̂, λ̂1,0) by deleting its

c′1, c
′
2, . . . , c

′
d′-th columns, and

Ik′+n =

(
On,d′

Ik′

)
, Ik′ = (ek′

1
, ek′

2
, . . . , ek′

d′
). (3.13)

Theorem 3.3. Comparing to Fx(x̂), the corank of Gx,λ1,b0(x̂, λ̂1,0) does not
increase, i.e., d′ ≤ d. Moreover, we can choose c′ and k′ such that c′ ⊆ c, k′ ⊆ k

and satisfy (3.11) and (3.12) respectively.
Proof. Let

Gc
x,λ1,b0

(x̂, λ̂1,0) =

(
F c
x (x̂) On,n−d −Ik
⋆ F c

x (x̂) On,d

)
,

be the matrix obtained fromGx,λ1,b0(x̂, λ̂1,0) by deleting its c1, c2, . . . , cd-th columns.
By (3.2) and (3.3) we claim that

rank(Gc
x,λ1,b0

(x̂, λ̂1,0)) = 2n− d.

Hence d′ ≤ d. Besides, there exists a set of positive integers c′ ⊆ c such that the
condition (3.11) is satisfied.

According to (3.3), it is clear that

rank(Gc
x,λ1,b0

(x̂, λ̂1,0), Ik+n) = 2n,

where Ik+n =

(
On,d

Ik

)
. Hence, we can choose k′ ⊆ k such that the condition (3.12)

is satisfied.
If d′ ≥ 1, then Yamamoto repeated the first-order deflation for G(x,λ1,b0) and

(x̂, λ̂1,0). By Theorem 3.3, we know that Yamamoto’s second-order deflation is e-
quivalent to adding d′ smoothing parameters b1 = (b1,1, . . . , b1,d′) to the first-order
differential system Fx(x)v1:

H(x,λ,b) =






F (x)− Ikb0 = 0,
Fx(x)v1 − Ik′b1 = 0,

Gx,λ1,b0(x,λ1,b0)v2 = 0,
(3.14)

where b = (b0,b1), λ = (λ1,λ2), and v2 ∈ C2n is a vector consisting of 2n − d′

variables λ2 = (λ2,1, . . . , λ2,2n−d′) concatenated to a vector (vc′1 , . . . , vc′d′ ) = (1, . . . , 1),

v2 = (λ2,1, . . . , 1
c′1

, . . . , 1
c′
d′

, . . . , λ2,2n−d′)T ∈ C
2n.

Let v̂2 denote the unique solution of Gx,λ1,b0(x̂, λ̂1,0)v2 = 0 with the fixed value 1
at positions c′1, . . . , c

′
d:

v̂2 = (λ̂2,1, . . . , 1
c′1

, . . . , 1
c′
d′

, . . . , λ̂2,2n−d′)T ∈ C
2n,

then (x̂, λ̂,0) is an isolated solution of H(x,λ,b) = 0.
Suppose Theorem 2.5 is applicable to the augmented systemH(x,λ,b), and yields

inclusions for x̂, λ̂, b̂0 and b̂1. Thus,

F̃ (x̂) = F (x̂)− Ikb̂0 = 0 and F̃x(x̂)v̂1 = Fx(x̂)v̂1 = Ik′ b̂1, (3.15)
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where F̃ (x) = F (x) − Ikb̂0. Smoothing parameters b̂1 might be very small, but
cannot be guaranteed to be zeros. Therefore, one can only prove the existence of an
isolated solution x̂ of F̃ (x) = 0, which satisfies the first-order differential conditions
approximately.

In order to verify the existence of an isolated singular solution of a slightly per-
turbed system, we should add the smoothing parameters b1 back to the original
system. Let us consider the modified system:

H̃(x,λ,b) =






F (x)− Ikb0 −X1b1 = 0,
Fx(x)v1 − Ik′b1 = 0,

G̃x,λ1,b0(x,λ1,b0,b1)v2 = 0,

(3.16)

where X1 = (xc′1
ek′

1
, . . . , xc′

d′
ek′

d′
) and

G̃(x,λ1,b0,b1) =

{
F (x)− Ikb0 −X1b1 = 0,

Fx(x)v1 − Ik′b1 = 0.
(3.17)

Theorem 3.4. Let

F̃ (x,b) = F (x) − Ikb0 −X1b1, (3.18)

then we have

Fx(x)v1 − Ik′b1 = 0 ⇐⇒ F̃x(x,b)v1 = 0. (3.19)

Proof. Recall that

b1 = (b1,1, b1,2, . . . , b1,d′)T and v1 = (λ1,1, . . . , 1
c1
, . . . , 1

cd
, . . . , λ1,n−d)

T ,

then

F̃x(x,b)v1 = Fx(x)v1 − (0, · · · , b1,1ek′

1

c′1

, · · · , b1,d′ek′

d′

c′
d′

, · · · ,0)v1

= Fx(x)v1 − (ek′

1
, . . . , ek′

d′
)b1 (since c′ ⊆ c)

= Fx(x)v1 − Ik′b1.

According to Theorem 3.4, we can rewrite the system (3.16) as

H̃(x,λ,b) =





F̃ (x,b) = 0,

F̃x(x,b)v1 = 0,

G̃x,λ1,b0(x,λ1,b0,b1)v2 = 0.

(3.20)

Therefore, if we can prove that (x̂, λ̂, b̂) is a regular solution of H̃(x,λ,b) = 0, then

by Theorem 3.4, x̂ is guaranteed to be an isolated singular solution of F̃ (x, b̂) = 0.
Theorem 3.5. The Jacobian matrices of (3.14) and (3.16) share the same null

space.
Proof. The Jacobian matrix Hx,λ,b(x̂, λ̂,0) of (3.14) computes to




Fx(x̂) On,n−d

Fxx(x̂)v̂1 F c
x(x̂)

−Ik
On,d

O2n,2n−d′

On,d′

−Ik′

⋆
On,d

On,d

F c′

x (x̂) On,n−d −Ik
⋆ F c

x(x̂) On,d

On,d

On,d


 , (3.21)
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while the Jacobian matrix H̃x,λ,b(x̂, λ̂,0) of (3.16) computes to




Fx(x̂) On,n−d

Fxx(x̂)v̂1 F c
x(x̂)

−Ik
On,d

O2n,2n−d′

−X̂
−Ik′

⋆
On,d

On,d

F c′

x (x̂) On,n−d −Ik
⋆ F c

x(x̂) On,d

−Ik′

On,d′


 , (3.22)

where the matrix X̂ consists of vectors x̂c′(i)ek′(i), i = 1, . . . , d′. Since k′ ⊆ k, we can
reduce the last column of the block matrix (3.22) by its third and sixth columns to
get the block matrix (3.21). Therefore, two Jacobian matrices (3.21) and (3.22) are
of the same corank and share the same null space.

Suppose the Jacobian matrix Hx,λ,b(x̂, λ̂,0) is still singular, i.e.,

rank(Hx,λ,b(x̂, λ̂,0)) = 4n− d′′, (d′′ ≥ 1). (3.23)

Let c′′ = {c′′1 , c′′2 , . . . , c′′d′′} and k′′ = {k′′1 , k′′2 , . . . , k′′d′′} be two sets of positive integers
such that

rank(Hc′′

x,λ,b(x̂, λ̂,0)) = 4n− d′′, (3.24)

rank(Hc′′

x,λ,b(x̂, λ̂,0), Ik′′+3n) = 4n, (3.25)

Hc′′

x,λ,b(x̂, λ̂,0) is a matrix obtained from Hx,λ,b(x̂, λ̂,0) by deleting its c′′1 , c
′′
2 , . . . , c

′′
d′′-

th columns, and

Ik′′+3n =

(
O3n,d′′

Ik′′

)
, Ik′′ = (ek′′

1
, ek′′

2
, . . . , ek′

d′′
). (3.26)

Theorem 3.6. Comparing to Gx,λ1,b0(x̂, λ̂1,0), the corank of Hx,λ,b(x̂, λ̂,0)
does not increase, i.e., d′′ ≤ d′. Moreover, we can choose c′′ and k′′ such that c′′ ⊆ c′,
k′′ ⊆ k′ and satisfy (3.24) and (3.25) respectively.

Proof. Similar to the proof of Theorem 3.3, let Hc′

x,λ,b(x̂, λ̂,0) be the matrix

obtained from Hx,λ,b(x̂, λ̂,0) by deleting its c′1, c
′
2, . . . , c

′
d′-th columns. By (3.11) and

(3.12), we claim that

rank(Hc′

x,λ,b(x̂, λ̂,0)) = 4n− d′.

Therefore, d′′ ≤ d′, and there exists a set of positive integers c′′ ⊆ c′ such that the
condition (3.24) is satisfied.

Meanwhile, we know that rank(Gc′

x,λ1,b0
(x̂, λ̂1,0), Ik′+n) = 2n, then

rank(Hc′

x,λ,b(x̂, λ̂,0), Ik′+3n) = 4n,

where Ik′+3n =

(
O3n,d′

Ik′

)
. Therefore, we can choose k′′ ⊆ k′ such that the condition

(3.25) is satisfied.
EXAMPLE 3.1. [4, DZ1] Consider a polynomial system

F = {x4
1 − x2x3x4, x

4
2 − x1x3x4, x

4
3 − x1x2x4, x

4
4 − x1x2x3}.



10

The system F has (0, 0, 0, 0) as a 131-fold isolated zero. Since Fx(x̂) = O4,4, we have
d = 4, c = k = {1, 2, 3, 4}, v1 = (1, 1, 1, 1)T , then

G(x,b0) =





F (x)− Ikb0 = 0,
4x3

1 − x3x4 − x2x4 − x2x3 = 0,
4x3

2 − x3x4 − x1x4 − x1x3 = 0,
4x3

3 − x2x4 − x1x4 − x1x2 = 0,
4x3

4 − x2x3 − x1x3 − x1x2 = 0.

The Jacobian matrix of G(x,b0) at (0,0) is

Gx,b0(0,0) =

(
O4,4 −Ik
O4,4 O4,4

)
,

Hence, d′ = 4, c′ = k′ = {1, 2, 3, 4} and

H(x,λ,b) =





F (x)− Ikb0 −X1b1 = 0,
Fx(x)v1 − Ik′b1 = 0,

G̃x,b0(x,b0,b1)v2 = 0,

(3.27)

where v2 = (1, 1, 1, 1, λ1, λ2, λ3, λ4)
T , and G̃x,b0(0,0,0)v2 = 0 has a unique solution

(λ̂1, λ̂2, λ̂3, λ̂4) = (0, 0, 0, 0). The Jacobian matrix of H(x,λ,b) at (0,0,0) is

Hx,λ,b(0,0,0) =




O4,4 −Ik O4,4 O4,4

O4,4 O4,4 O4,4 −Ik′

O4,4 O4,4 −Ik′ −Ik′

A O4,4 O4,4 O4,4


 , A =




0 −2 −2 −2
−2 0 −2 −2
−2 −2 0 −2
−2 −2 −2 0


 ,

which is nonsingular. Therefore, we obtain a regular and square augmented system
H(x,λ,b) and a perturbed system

F̃ (x,b) =





x4
1 − x2x3x4 − b1 − b5x1 = 0,

x4
2 − x1x3x4 − b2 − b6x2 = 0,

x4
3 − x1x2x4 − b3 − b7x3 = 0,

x4
4 − x1x2x3 − b4 − b8x4 = 0.

Applying the verification method based on Theorem 2.5 to H(x,λ,b), we show

in Section 4 that a slightly perturbed system F̃ (x, b̂) for

|b̂i| ≤ 2.9e− 323, i = 1, . . . , 8

has an isolated singular solution x̂ within

|x̂i| ≤ 4.8e− 323, i = 1, 2, 3, 4.

3.3. Higher-order deflations. For higher-order deflations, we show inductive-
ly how to add new smoothing parameters properly to the original system in order
to derive a regular and square augmented system, which can be used to prove the
existence of an isolated singular solution of a slightly perturbed system.

Let H(0)(x) = F (x), for the (s+1)-th-order deflation, we add smoothing param-
eters b(s) = (b0, . . . ,bs) and consider the following square system

H(s+1)(x,λ(s+1),b(s)) =






F̃ (x,b(s)) = 0,

F̃x(x,b
(s))v1 = 0,

...

G
(s)

x,λ(s),b(s−1)(x,λ
(s),b(s))vs+1 = 0,

(3.28)
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λ(s+1) = (λ1, . . . ,λs+1) are extra variables corresponding to vectors {v1, . . . ,vs+1},
G(s)(x,λ(s),b(s)) consists of the first 2sn polynomials in H(s+1)(x,λ(s+1),b(s)),

F̃ (x,b(s)) = F (x)−X0b0 −X1b1 − · · · −Xsbs, (3.29)

the matrix Xj (0 ≤ j ≤ s) consists of vectors 1
j! · x

j

c
(j)
i

· e
k
(j)
i

, i = 1, . . . , dj , where

c(j) and k(j) are two sets of positive integers selected at the j-th-order deflation
satisfying conditions obtained by replacing the polynomial system F (x) in (3.2)

and (3.3) by the j-th augmented system H(j)(x,λ(j),b(j−1)) and replacing Ik by

Ik(j)+(2j−1)n =

(
O(2j−1)n,dj

Ik(j)

)
, Ik(j) = (e

k
(j)
1
, e

k
(j)
2
, . . . , e

k
(j)
dj

), where dj is the

corank of H
(j)

x,λ(j),b(j−1)(x̂, λ̂
(j)

,0).

Theorem 3.7. The corank ds+1 of H
(s+1)

x,λ(s+1),b(s)(x̂, λ̂
(s+1)

,0) does not increase

and the number of deflations needed to derive a regular solution of an augmented
system (3.28) is less than the depth of Dx̂, i.e., we have

d0 ≥ d1 ≥ · · · ≥ ds+1 ≥ · · · ≥ dρ−1 = 0. (3.30)

Moreover, we can choose c(j) and k(j) satisfying

c(s) ⊆ · · · ⊆ c(0) and k(s) ⊆ · · · ⊆ k(0). (3.31)

Proof. By applying Theorems 3.3, 3.5 and 3.6 inductively, we can prove that
the deflation process (3.28) produces a decreasing nonnegative-integer sequence d0 ≥
d1 ≥ · · · ≥ ds+1 ≥ · · · , which is as same as the sequence consisting of coranks of
the Jacobian matrices of the augmented systems by Yamamoto’s deflation method.
According to Theorem 3.2, the number of the first-order deflations (3.5) needed to
derive a regular and square augmented system is bounded by the depth of Dx̂. Hence
the number of the modified deflations (3.28) is also bounded by the depth of Dx̂. The
proof of (3.31) is similar to the proofs of Theorems 3.3 and 3.6.

Theorem 3.8. Suppose Theorem 2.5 is applicable to the augmented system (3.28)

and yields inclusions for x̂, λ̂ and b̂, then the perturbed system F̃ (x, b̂) has an isolated
singular solution at x̂.

Proof. Since (x̂, λ̂, b̂) is a solution of the augmented system (3.28), we have

F̃ (x̂, b̂) = 0 and F̃x(x̂, b̂)v̂1 = 0, v̂1 6= 0.

Hence, x̂ is an isolated singular solution of the perturbed system

F̃ (x, b̂) = F (x) −X0b̂0 −X1b̂1 − · · · −Xsb̂s.

EXAMPLE 3.2. [4, DZ2] Consider a polynomial system

F =
{
x4, x2y + y4, z + z2 − 7x3 − 8x2

}
.

The system F has (0, 0,−1) as a 16-fold isolated zero. The Jacobian matrix of F at
x̂ = (0, 0,−1) is

Fx(x̂) =




0 0 0
0 0 0
0 0 −1


 , so that d0 = 2 and we choose c(0) = k(0) = {1, 2}.
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The first-order deflated system is

H(1)(x,λ(1),b(0)) =






F (x)−X0b0 = 0,
4x3 = 0,

2xy + x2 + 4y3 = 0,
−21x2 − 16x+ λ1 + 2zλ1 = 0,

where

X0 = (e1, e2) =




1 0
0 1
0 0


 , b0 =

(
b1
b2

)
, v1 = (1, 1, λ1)

T .

The Jacobian matrix of H(1)(x,λ1,b0) at (0, 0,−1, 0, 0, 0) is




0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−16 0 0 −1 0 0




, d1 = 2 and we choose c(1) = k(1) = {1, 2}.

Therefore, we derive the second-order deflated system

H(2)(x,λ(2),b(1)) =





F (x) −X0b0 −X1b1 = 0,
Fx(x)v1 −X ′

1b1 = 0,

G
(1)

x,λ(1),b(0)(x,λ
(1),b(1))v2 = 0,

where

X1 =




x 0
0 y
0 0


 , b1 =

(
b3
b4

)
, X ′

1 =




1 0
0 1
0 0


 ,

v2 = (1, 1, λ2, λ3, λ4, λ5)
T .

Moreover, G
(1)

x,λ(1),b(0)(x̂, λ̂
(1)

,0)v2 = 0 has a unique solution λ̂2 = (0,−16, 0, 0).

For the third-order deflation, we have d2 = 1, c(2) = k(2) = {1}, so

H(3)(x,λ(3),b(2)) =






F (x) −X0b0 −X1b1 −X2b2 = 0,
Fx(x)v1 −X ′

1b1 −X ′
2b2 = 0,

Fx(x)v
′
2 −X0v

′′
2 −X ′

1b1 −X ′
2b2 = 0,

Fxx(x)v1v
′
2 + F c(0)

x (x)λ3 −X ′′
2b2 = 0,

G
(2)

x,λ(2),b(1)(x,λ
(2),b(2))v3 = 0,

(3.32)

where

X2 =




1
2x

2

0
0


 , b2 = (b5), X ′

2 =




x
0
0


 , X ′′

2 =




1
0
0


 ,
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v′
2 = (1, 1, λ2)

T , v′′
2 = (λ4, λ5)

T , v3 = (1, λ6, λ7, . . . , λ16)
T .

Moreover, G
(2)

x,λ(2),b(1)(x̂, λ̂
(2)

,0)v3 = 0 has a unique solution

λ̂3 = (−2, 0, 0, 0,−16, 0, 0,−16, 0, 0,−42).

Finally, the Jacobian matrix H
(3)

x,λ(3),b(2)(x̂, λ̂
(3)

,0) becomes nonsingular, and we ob-

tain a perturbed polynomial system

F̃ (x,b) = F (x) −X0b0 −X1b1 −X2b2

=

{
x4 − b1 − b3x− 1

2
b5x

2, x2y + y4 − b2 − b4y, z + z2 − 7x3 − 8x2

}
. (3.33)

Notice that

Fx(x)v1 −X ′
0b1 −X ′

1b2 = 0 ⇐⇒ F̃x(x,b)v1 = 0,

so after applying the verification method based on Theorem 2.5 to the above aug-
mented system (3.32), we are able to verify that a slightly perturbed system F̃ (x, b̂)
for

|b̂i| ≤ 1.0e− 14, i = 1, 2, . . . , 5

has an isolated singular solution x̂ within

|x̂i| ≤ 1.0e− 14, i = 1, 2, and |1 + x̂3| ≤ 1.0e− 14.

4. An Algorithm for Verifying Multiple Roots. Based on Theorems 3.7
and 3.8, we propose below an algorithm for computing verified error bounds such
that a slightly perturbed system is guaranteed to possess an isolated singular solution
within the computed bounds if the algorithm is successful.

Algorithm 4.1. viss

Input: A square polynomial system F ∈ C[x] = C[x1, . . . , xn], an approximate solu-
tion x̃ ∈ C

n and a tolerance ε.

Output: A new polynomial system in variables x and parameters b

F̃ (x,b) = F (x) −X0b0 −X1b1 − · · · −Xsbs,

and two verified inclusions

X = ([x1, x1], . . . , [xn, xn])
T
,

and

B =
(
[b1, b1], . . . , [b|b|, b|b|]

)T

.

1. Set s := 0, m := n, F̃ := F , G := F̃ , y := x, and ỹ := x̃.
2. Compute d := n− rank(Fx(x̃), ε), select integer sets c and k satisfying (3.2)

and (3.3) respectively.

3. Set F̃ := F̃ − Xsbs, where the matrix Xs consists of vectors 1
s! · xs

ci
· eki

,
i = 1, . . . , d.
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(a) If s ≥ 1, then set G := F̃ ; for j from 1 to s do
G := {G,Gyvj}; y := (y,λj ,bj−1).

(b) Compute ỹ := (ỹ,LeastSquares(Gy(ỹ)vs+1 = 0),0).
(c) Set G := {G,Gyvs+1}; y := (y,λs+1,bs); m := 2m.

4. Compute d := m− rank(Gy(ỹ), ε).
(a) If d = 0, apply verifynlss to G and ỹ to compute inclusions X and B for

x̂ and b̂, return F̃ , X and B.
(b) Otherwise, select c, k satisfying (3.2),(3.3) for the polynomial system

G, set s := s+ 1, y := x and go back to Step 3.
Remark 4.2. In Step 4 (a) of the algorithm viss, we apply INTLAB function

verifynlss [33] for computing an inclusion [X,B] for a regular solution of the polynomial
system G near ỹ. If verifynlss fails, then no useful information is available and the
inclusions returned by the algorithm viss contain only intervals [NaN,NaN]; Otherwise,

a successful output of the algorithm viss contains a family of perturbed systems F̃ (x,b)
to the input polynomial system F (x) and verified error bounds X and B such that there

exists a unique b̂ ∈ B and a unique x̂ ∈ X satisfying F̃ (x̂, b̂) = 0 and det(F̃x(x̂, b̂)) =
0.

Remark 4.3. If the output inclusion B contains zero, then F (x) = F̃ (x,0) ∈
F := {F̃ (x,b),b ∈ B}. Moreover, if the input system F (x) does have a singular
zero near x̃, then the unique isolated singular solution x⋆ of F (x) is guaranteed to be
within the output inclusion X.

Example 3.1. (continued) Given an approximate singular solution

x̃ = (0.0003445, 0.0009502, 0.0003171, 0.0006948)

and a tolerance ε = 0.005, applying the algorithm viss, it returns a new polynomial
system in variables x and parameters b:

F̃ (x,b) =






x4
1 − x2x3x4 − b1 − b5x1 = 0,

x4
2 − x1x3x4 − b2 − b6x2 = 0,

x4
3 − x1x2x4 − b3 − b7x3 = 0,

x4
4 − x1x2x3 − b4 − b8x4 = 0,

and two verified inclusions

X =




[−4.7619047619047, 0.47619047619047]
[−4.7619047619047, 0.47619047619047]
[−2.3809523809523, 0.23809523809523]
[−2.3809523809523, 0.23809523809523]


 · 1.0e− 323,

B =




[−2.8571428571428, 0.28571428571428]
...

[−2.8571428571428, 0.28571428571428]


 · 1.0e− 323.

We guarantee that there exists a unique system F̃ (x, b̂) ∈ F := {F̃ (x,b),b ∈ B}
satisfying |b̂i| ≤ 2.9e− 323, 1 ≤ i ≤ 8, which has a unique isolated singular solution x̂

within X, i.e., |x̂i| ≤ 4.8e− 323, i = 1, 2, 3, 4.

We notice that the input polynomial system F (x) = F̃ (x,0) ∈ F and its true

singular zero (0, 0, 0, 0) lies in X. Hence, due to the uniqueness of b̂ and x̂, we have

b̂i = 0, 1 ≤ i ≤ 8 and x̂i = 0, i = 1, 2, 3, 4.
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Special case. The breadth-one case where the corank of the Jacobian matrix
equals one occurs frequently. In the following, we show how to deal with this special
case more efficiently.

We have shown in [22, Theorem 3.8] that each step of deflation described by
(2.5) only reduces the multiplicity µ of the singular solution x̂ by 1. According to
Theorem 3.7, the number of deflations described by (3.28) will be µ − 1. Hence, the
algorithm viss generates an augmented regular system of the size (2µ−1n)× (2µ−1n).
However, in [23], we introduced a more efficient method based on the parameterized
multiplicity structure to obtain a deflated regular system G(x,b,λ), which is of the
size (µn)×(µn) and can be used to verify not only the existence of an isolated singular
solution, but also its multiplicity structure.

Let us introduce briefly the method in [23] for the special case of breadth one.
By adding µ− 1 smoothing parameter b0, b1, . . . , bµ−2 to a well selected polynomial,
assumed to be f1, we derive a square augmented system

G(x,b,λ) =





F̃ (x,b) = 0,

L1(F̃ ) = 0,
...

Lµ−1(F̃ ) = 0,

where

F̃ (x,b) =

{
f1(x) −

µ−2∑

ν=0

bνx
ν
1

ν!
, f2(x), . . . , fn(x)

}
,

and {1, L1, . . . , Lµ−1} is a parameterized basis of the local dual space in variables λ.
Furthermore, we proved that if Theorem 2.5 is applicable to G and yields inclusions
for x̂ ∈ Rn, b̂ ∈ Rµ−1 and λ̂ ∈ R(µ−1)×(n−1) such that G(x̂, b̂, λ̂) = 0, then x̂ is a

breadth-one singular solution of F̃ (x, b̂) = 0 with multiplicity µ and {1, L1, . . . , Lµ−1}
with λ = λ̂ is a basis of Dx̂.

EXAMPLE 4.1. [35, Example 4.11] Consider a polynomial system

F =
{
x2
1x2 − x1x

2
2, x1 − x2

2

}
.

The system F has (0, 0) as a 4-fold isolated zero.
We add the univariate polynomial −b1− b2x2 − b3

2 x
2
2 to the first equation in F to

obtain an augmented system





x2
1x2 − x1x

2
2 − b1 − b2x2 − b3

2 x
2
2 = 0,

x1 − x2
2 = 0,

2λ1x1x2 − λ1x
2
2 + x2

1 − 2x1x2 − b2 − b3x2 = 0,
λ1 − 2x2 = 0,

λ2
1x2 + 2λ1x1 − 2λ1x2 + 2λ2x1x2 − λ2x

2
2 − x1 − b3

2 = 0,
λ2 − 1 = 0,

λ2
1 + 2λ1λ2x2 − λ1 + 2λ2x1 − 2λ2x2 + 2λ3x1x2 − λ3x

2
2 = 0,

λ3 = 0,

which is of the size 8 × 8, while the algorithm viss generates a system of the size
16× 16. Applying verifynlss with an initial approximation

(0.002, 0.003,−0.001, 0.0015,−0.002, 0.002, 1.001,−0.01),
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we obtain verified inclusions

X =

(
[−0.00000000000001, 0.00000000000001]
[−0.00000000000001, 0.00000000000001]

)
,

B =




[−0.00000000000001, 0.00000000000001]
[−0.00000000000001, 0.00000000000001]
[−0.00000000000001, 0.00000000000001]


 .

This proves that there is a unique perturbed system F̃ (x, b̂) (|b̂i| ≤ 1.0e − 14, i =
1, 2, 3), which has a 4-fold breadth-one root x̂ within |x̂i| ≤ 1.0e− 14, i = 1, 2.

5. Experiments. In the following table, we show the performance of the algo-
rithm viss. The experiments are done in Maple 15 for Digits := 14 and Matlab R2011a
with INTLAB V6 under Windows 7. The first three examples DZ1, DZ2, DZ3 are
cited from [4] and the other examples are quoted from the PHCpack demos by Jan
Verschelde. We denote n the number of polynomial equations and µ the multiplicity.
The fourth column show the decrease of the coranks. The last two columns show the
quality of the interval vectors X and B. We define radius(X) = max{|xi − xi|/2, i =
1, . . . , n} and radius(B) = max{|bj − bj |/2, j = 1, . . . , |b|}. Codes of the algorithm
viss and examples are available at

http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/MMVISS.

Table 5.1
Algorithm Performance

System n µ corank(Gy(ỹ)) radius(X) radius(B)
DZ1 4 131 4 → 4 → 0 4.8e-323 2.9e-323
DZ2 3 16 2 → 2 → 1 → 0 1.0e-14 1.0e-14
DZ3 2 4 1 → 1 → 1 → 0 3.5e-8 1.6e-8
cbms1 3 11 3 → 0 2.4e-323 2.4e-323
cbms2 3 8 3 → 0 1.0e-323 2.9e-323
mth191 3 4 2 → 0 1.0e-14 1.0e-14
KSS 10 638 9 → 0 1.0e-14 1.0e-14
Caprasse 4 4 2 → 0 1.0e-14 1.0e-14
cyclic9 9 4 2 → 0 4.9e-14 6.3e-14
RuGr09 2 4 1 → 1 → 1 → 0 1.0e-14 1.0e-14
LiZhi12 100 3 1 → 1 → 0 1.0e-14 1.0e-14
Ojika1 2 3 1 → 1 → 0 1.0e-14 1.0e-14
Ojika2 3 2 1 → 0 1.0e-14 1.0e-14
Ojika3 3 2 1 → 0 1.5e-14 1.0e-14
Ojika4 3 3 1 → 1 → 0 1.0e-14 1.0e-14
Decker2 3 4 1 → 1 → 1 → 0 1.0e-14 1.0e-14

EXAMPLE 5.1. [4, DZ3] Consider a polynomial system

f1 =14x+ 33y − 3
√
5(x2 + 4xy + 4y2 + 2) +

√
7 + x3 + 6x2y + 12xy2 + 8y3,

f2 =41x− 18y −
√
5 + 8x3 − 12x2y + 6xy2 − y3 + 3

√
7(4xy − 4x2 − y2 − 2).

The system (f1, f2) has (2
√
7

5 +
√
5
5 ,−

√
7
5 + 2

√
5

5 ) as a 4-fold isolated zero.

http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/MMVISS
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In the experiment, we round the irrational coefficients of f1 and f2 into fourteen
digits and denote the input system by {f̃1, f̃2}. Given an approximate singular so-
lution x̃ = (1.506, 0.366) and a tolerance ε = 0.005, applying the algorithm viss to
{f̃1, f̃2}, we obtain successfully a new polynomial system in variables x and parame-
ters b:

F̃ (x,b) =

{
f̃1 = 0,

f̃2 − b1 − b2y − b3
2 y

2 = 0,

and two verified inclusions

X =

(
[1.50551422067815, 1.50551422777704]
[0.36527696237118, 0.36527696473749]

)
,

B =




[−0.00000049931159,−0.00000046644645]
[0.00000000000408, 0.00000000000566]
[0.00000000000059, 0.00000000000108]


 .

It is guaranteed that there exists a unique system

F̃ (x, b̂) ∈ F :=
{
F̃ (x,b),b ∈ B

}
,

which possesses a unique isolated singular solution x̂ within X.
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