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Abstract

In this paper we generalize the factorization theorem of Gouveia, Parrilo and Thomas

to a broader class of convex sets. Given a general convex set, we define a slack operator

associated to the set and its polar according to whether the convex set is full dimensional,

whether it is a translated cone and whether it contains lines. We strengthen the condition

of a cone lift by requiring not only the convex set is the image of an affine slice of a given

closed convex cone, but also its recession cone is the image of the linear slice of the closed

convex cone. We show that the generalized lift of a convex set can also be characterized

by the cone factorization of a properly defined slack operator.

Key words: lift; convex set; recession cone; polyhedron; cone factorization; nonnegative rank;

positive semidefinite rank.

1 Introduction

Given a linear programming problem, how to reformulate it to a standard form with fewer

constraints is an important problem. In [11], Yannakakis proved that the nonnegative rank of

a slack matrix of a polytope P is the minimum number k such that P is the linear image of

an affine slice of the nonnegative quadrant Rk
+. In [3, 6], Yannakakis’s result was generalized

to decide whether a convex body C (a compact convex set containing the origin in its interior)

is the linear image of an affine slice of a given convex cone K (K-lift) via cone factorizations

of slack operators. Although it was claimed that results in [6] hold for all convex sets, we

notice that it is more complicated to identify whether a non-compact convex set C containing

no lines has a K-lift since C could be generated by not only extreme points but also extreme

directions. Moreover, if a convex set contains lines, then it has no extreme points or extreme
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directions. Furthermore, if the convex set does not contain the origin in its interior, linear

functions corresponding to its polar cannot characterize the convex set completely (see Example

3.1). These facts motivate us to study how to extend the definitions of K-lift and the slack

operator to a general convex set and show the relationship between lifts of convex sets and cone

factorizations of slack operators when the convex set is not a convex body.

Our contribution: Let C be a closed convex set in Rn and K a closed convex cone in Rm.

We consider how to generalize the factorization theorem in [6] to a broader class of convex sets.

Our main results are as follows.

• When C contains the origin, since C = Coo, C can be described by all vectors in Co. When

C does not contain the origin, we show that a convex set C can be characterized completely

by vectors in Co, 0+Co = {l | 〈l, x〉 ≤ 0, ∀x ∈ C} and C3 = {l | 〈l, x〉 ≤ −1, ∀x ∈ C}.

• We extend the question of when a given convex body C is the linear image of an affine

slice of a convex cone to the case where C is not compact and may not contain the origin

in its interior and may contain lines. We introduce two ways to characterize the existence

of a K-lift of C. The first one is based on all points in C and the second one uses only

extreme points, extreme directions and an orthogonal basis of the lineality space of C if it

contains lines. Although the first method can be used to check the existence of a K-lift of

any convex set, it is difficult to use, see Remark 3.10. Therefore, in the paper, we focus on

the second method. We extend Definition 1,2 and Theorem 1 in [6] to a broader class of

convex sets and show that the generalized lift of a convex set can also be characterized by

the cone factorization of properly defined slack operator according to whether the convex

set is full dimensional, whether it is a translated cone and whether it contains a line.

• We specialize the results of the cone lift of general convex sets to polyhedra and show

that the conclusion can be strengthened when C and K are both polyhedra. When K is a

positive semidefinite convex cone, we give a lower bound on the positive semidefinite rank

of a polyhedron, which generalizes the result in [7]. We also extend results in [4, 5, 7]

to identify whether a given nonnegative matrix is a slack matrix of a polyhedron and

characterize the rank of a slack matrix in terms of the dimension of a polyhedron.

The paper is organized as follows. In Section 2, we provide some preliminaries about convex

sets and cones. Some well-known results in convex analysis are recalled. In Section 3, we

generalize the factorization theorem in [6, Theorem 1] to convex sets which are not convex

bodies. In Section 4, we specialize results established in Section 3 to the case where the convex

set is a polyhedron. Some results in [4, 5, 7] on the positive semidefinite rank of a slack matrix

are extended to the case that the convex set is a polyhedron.

2 Preliminary

In this section, we recall some definitions and known results about convex sets in [9]. Let Rn

be a n-dimensional linear space, Sm the space of real symmetric m×m matrices. A non-empty
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subset C ⊂ Rn is said to be convex if (1−λ)x+λy ∈ C whenever x ∈ C, y ∈ C and 0 < λ < 1.

We denote cl (C) and int (C) as the closure and interior of C respectively. The affine hull of

a convex set C, denoted by aff(C), is the unique smallest affine set containing C. If a closed

convex set C is compact and contains the origin in its interior, it is called a convex body.

A subset K of Rn is called a cone if it is closed under nonnegative scalar multiplication, i.e.

λx ∈ K when x ∈ K and λ ≥ 0. We denote the m-dimensional nonnegative quadrant by Rm
+

and the cone of m ×m real symmetric positive semidefinite (psd) matrices by Sm+ . A convex

cone K is pointed if it is closed and K ∩ −K = {0}. The polar of a non-empty convex cone K

is defined as

Ko = {x ∈ Rn | ∀y ∈ K, 〈x, y〉 ≤ 0}.

Given a set C, if there exists a cone C0 and a vector x ∈ Rn such that C = x+ C0, then C is

said to be a translated cone.

The recession cone 0+C of a non-empty convex set C is the set including all vectors y

satisfying x+ λy ∈ C for every λ ≥ 0 and x ∈ C. We say that C recedes in the direction of y.

The set 0+C ∩ (−0+C) is called the lineality space of C.

Let S0 be a set of points in Rn and S1 a set of directions in Rn. We define the convex hull

co (S) of S = S0 ∪ S1 to be the smallest convex set C in Rn such that C ⊇ S0 and C recedes

in all directions in S1.

Algebraically, a vector x belongs to co (S) if and only if it can be expressed in the form

x = λ1x1 + · · ·+ λkxk + λk+1xk+1 + · · ·+ λmxm,

k∑
i=1

λi = 1,

where x1, . . . , xk are vectors in S0 and xk+1, . . . , xm are vectors whose directions are in S1 and

λi ≥ 0 for 1 ≤ i ≤ m. If S0 = {0} and S1 is not empty, then C = co (S0 ∪ S1) is a cone which

is also denoted as cone (S1).

The relative interior ri (C) of a convex set C in Rn is defined as the interior when C is

regarded as a subset of its affine hull aff(C). A face of a convex set C is a convex subset C ′ of

C such that every closed line segment in C with a relative interior in C ′ has both endpoints in

C ′. The zero-dimensional faces of C are called the extreme points of C. If C ′ is a half-line face

of a convex set C, we shall call the direction of C ′ an extreme direction of C. If C is a convex

cone, an extreme ray is a face which is a half-line emanating from the origin. Note that every

extreme direction of a closed convex set C can also be regarded as an extreme ray of 0+C. Let

x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in Rn, the inner product of x, y in Rn is

expressed by 〈x, y〉 =
n∑

i=1

xiyi.

The polar of a non-empty convex set C ⊂ Rn is a closed convex set defined as

Co = {x ∈ Rn | ∀y ∈ C, 〈x, y〉 ≤ 1}.

We have Coo = cl (co (C ∪ {0})).
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The indicator function δ (·, C) is defined by

δ (x,C) =

 0 if x ∈ C,

+∞ if x /∈ C.

The support function δ∗ (x,C) of a convex set C ∈ Rn is defined by

δ∗ (x,C) = sup{〈x, y〉 | y ∈ C}.

The barrier cone of C is defined as the effective domain of δ∗ (x,C):

domδ∗ (x,C) = {x | δ∗ (x,C) < +∞}.

A convex function f is said to be proper if its epigraph is non-empty and contains no vertical

lines, i.e. if f(x) < +∞ for at least one x and f(x) > −∞ for every x.

Theorem 2.1 [9, Theorem 8.3] Let C be a non-empty closed convex set, and let y 6= 0.

If there exists even one x ∈ C such that the half-line {x + λy | λ ≥ 0} is contained in C, then

the same thing is true for every x ∈ C, i.e. one has y ∈ 0+C.

Theorem 2.2 [9, Theorem 18.5] Let C be a closed convex set containing no lines, and

let S be the set of all extreme points and extreme directions of C. Then C = co (S).

Theorem 2.3 [9, Theorem 8.7] Let f be a closed proper convex function. Then all the

non-empty level sets of the form {x | f(x) ≤ α}, α ∈ R, have the same recession cone and the

same lineality space.

Corollary 2.4 [9, Corollary 14.2.1] The polar of the barrier cone of a non-empty closed

convex set C is the recession cone of C.

Theorem 2.5 [9, Theorem 13.1] Let C be a convex set. Then x ∈ cl (C) if and only if

〈x, x∗〉 ≤ δ∗ (x,C) for every vector x∗.

3 Cone lifts of non-compact convex sets

Let ext1(C) denote the set of extreme points of a closed convex set C and ext2(C) the set

of extreme rays of a closed convex cone C. An extreme ray is also the common direction of

vectors in this ray. In the following part of our paper, we represent each extreme ray by one

vector and denote ext2(C) as the collection of such vectors.

If C is a compact convex set containing the origin in its interior, according to [6, Definition

1], a K-lift of C ⊂ Rn is a set Q = K ∩L where L ⊂ Rm is an affine subspace and π : Rm → Rn

is a linear map such that

C = π(K ∩ L). (3.1)

If L intersects the interior of K, we say that Q is a proper K-lift of C. Define the operator

S : Rn × Rn → R to be S(x, y) = 1− 〈x, y〉. The Slack operator Sc of C is the restriction of S

to ext1(C)× ext1(Co). The slack operator SC is K-factorizable if there exist maps

A : ext1(C)→ K, B : ext1(Co)→ K∗
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such that SC(x, y) = 〈A(x), B(y)〉 for all (x, y) ∈ ext1(C)× ext1(Co), see [6, Definition 2].

In this section, we explain how to generalize the argument in [6] to more general convex

sets and show the relationship between cone lifts of convex sets and cone factorizations of slack

operators when the closed convex set is not a convex body.

3.1 C is full dimensional

Assume that C is a full dimensional closed convex set in Rn, we define

Co = {x | δ∗ (x,C) ≤ 1}, 0+Co = {x | δ∗ (x,C) ≤ 0}, C3 = {x | δ∗ (x,C) ≤ −1}.

It is clear that Co, C3 are closed convex sets containing no lines and 0+Co is a closed pointed

cone that contains C3. Let

D1 = ext1(Co)\0, D2 = ext2(0+Co) ∩ {x | δ∗ (x,C) = 0}, D3 = ext1(C3).

By Theorem 2.3, we have 0+Co = 0+C3. Let

D32 = ext2(0+Co) ∩ {x | δ∗ (x,C) = −1}.

It is clear that D32 ⊆ D3 but D32 is not always equal to D3.

Example 3.1 We consider a compact convex set

C = {(x, y) | x+ y ≥ 1, x+ y ≤ 3, y − x ≥ −1, y − x ≤ 1}.

Then, we have

Co = {(x, y) | 2x+ y ≤ 1, x+ 2y ≤ 1, x ≤ 1, y ≤ 1},

0+Co = {(x, y) | x ≤ 0, y ≤ 0},

C3 = {(x, y) | x ≤ −1, y ≤ −1},

see Figure 1. Furthermore, we have D32 = ∅ and

D1 = {(−1, 1), (
1

3
,

1

3
), (1,−1)}, D2 = {(−1, 0), (0,−1)}, D3 = {(−1,−1)}.

Figure 1: Example 3.1

Remark 3.2 According to Theorem 2.2 and 2.3, we can show:
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1. The convex set Co can be expressed as convex combinations of all points in D1 and all

directions of vectors in D2 and D32.

2. The convex cone 0+Co can be expressed as convex combinations of all directions of vectors

in D2 and D32.

3. The convex set C3 can be expressed as convex combinations of all points in D3 and all

directions of vectors in D2 and D32.

Theorem 3.3 Given a full dimensional closed convex set C ⊂ Rn, the following state-

ments are true:

1. The set D1 is empty if and only if Co is a closed cone. If D1 is not empty, for every

vector x in D1, we have δ∗ (x,C) = 1.

2. The set D2 is empty if C contains the origin in its interior. When C is not compact and

contains the origin on its boundary, D2 is not empty and each extreme ray of 0+Co is the

direction of a vector in D2.

3. The set D3 is empty if and only if C contains the origin. If D3 is not empty, for every

vector x in D3, δ∗ (x,C) = −1.

Moreover, the convex cone generated by Co is domδ∗ (x,C).

Proof Since Co contains no lines, D1 is empty if and only if the origin is the only extreme

point of Co, i.e. Co is a closed cone. If there exists an extreme point x ∈ D1 such that

δ∗ (x,C) < 1, then there exists λ > 0 such that δ∗ ((1 + λ)x,C) ≤ 1 and δ∗ ((1− λ)x,C) ≤ 1.

So (1 − λ)x and (1 + λ)x are both in Co which contradicts to the fact that x is an extreme

point of Co.

When C contains the origin in its interior, Co is compact and 0+Co contains only zero

vector. Hence, D2 is empty. If C contains the origin, for every x in domδ∗ (x,C), we have

δ∗ (x,C) ≥ 0. If the origin is on its boundary, there exists a supporting hyperplane of C

through the origin. So Co is not compact and 0+Co contains a nonzero vector. Combined with

the fact that δ∗ (x,C) = 0 for all x in 0+Co, D2 can represent all extreme rays of 0+Co.

It is clear that C3 is empty if and only if δ∗ (y, C) ≥ 0 for all y ∈ Rn. By Theorem 2.5, this

is equal to say that C contains the origin. Therefore, D3 is empty if and only if C contains the

origin. Similar arguments can be used to show δ∗ (x,C) = −1 for every vector x in D3.

For every x ∈ cone (Co), there exists λ ≥ 0 and y ∈ Co such that x = λy. So δ∗ (x,C) =

λδ∗ (y, C) < ∞ and x ∈ domδ∗ (x,C). On the other hand, for each x ∈ domδ∗ (x,C), if

δ∗ (x,C) = M > 0, then x/M is in Co and x is in cone (Co). Hence cone (Co) = domδ∗ (x,C).

Remark 3.4 When C does not contain the origin, it is not easy to identify whether

the set D2 is empty. The convex set C in Example 3.1 does not contain the origin, D2 =

{(−1, 0), (0,−1)}. However, for the convex set C defined by C = {(x, y) | y ≥ x+1, y ≥ −x+1},
we have Co = 0+Co = {(x, y) | x + y ≤ 0, y − x ≤ 0}. The extreme rays of 0+Co are
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l1 = (−1,−1) and l2 = (1,−1). We have δ∗ (l1, C) = δ∗ (l2, C) = −1 < 0. Hence, the set D2 is

empty.

When C contains the origin in its interior, by Theorem 3.3, D2 and D3 are empty and C can

be characterized by D1 alone. However, when C does not contain the origin in its interior, as

shown by the following example, the linear functions with coefficients in D1 or D1 ∪D2 cannot

characterize C completely.

Example 3.1 (continued) In this example, every linear function f(x) = 〈l1, x〉 where l1 ∈
D1 has maximal value 1 on C, therefore,

E1 = {(x, y) | c1x+ c2y ≤ 1, (c1, c2) ∈ D1} = {(x, y) | −x+ y ≤ 1, x− y ≤ 1, x+ y ≤ 3}.

The linear function f(x) = 〈l2, x〉 where l2 ∈ D2 has maximal value 0 on C and

E2 = {(x, y) | c1x+ c2y ≤ 0, (c1, c2) ∈ D2} = {(x, y) | x ≥ 0, y ≥ 0}.

The linear function f(x) = 〈l3, x〉 where l3 ∈ D3 has maximal value −1 on C, hence,

E3 = {(x, y) | c1x+ c2y ≤ −1, (c1, c2) ∈ D3} = {(x, y) | x+ y ≥ 1}.

Figure 2: Example 3.1

We show below that a full dimensional closed convex set C can be characterized completely

by elements in D1, D2 and D3.

Theorem 3.5 Let C ⊂ Rn be a full dimensional closed convex set. Then we have

x ∈ C ⇐⇒


〈l1, x〉 ≤ 1 ∀ l1 ∈ D1,

〈l2, x〉 ≤ 0 ∀ l2 ∈ D2,

〈l3, x〉 ≤ −1 ∀ l3 ∈ D3.

(3.2)

Proof Since C is full dimensional, Co contains no lines and D1, D2 and D3 are well defined.

The necessity is clear. Suppose on the other hand that x satisfies the conditions on the right

hand side of (3.2), we shall show that x ∈ C. By Theorem 2.5, it is enough to show that

〈l, x〉 ≤ δ∗ (x,C) for every l ∈ domδ∗ (x,C). Let l0 = δ∗ (l, C), we prove that 〈l, x〉 ≤ l0 in all

three cases below:
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• If l0 > 0, then we have l/l0 ∈ Co. By Remark 3.2, there exist λ1i ≥ 0, λ2j ≥ 0, λ3k ≥ 0

and xi ∈ D1, yj ∈ D2, zk ∈ D32 satisfying the following equality:

l/l0 =
∑
i

λ1ixi +
∑
j

λ2jyj +
∑
k

λ3kzk,
∑
i

λ1i = 1.

According to the definitions of D1, D2, D3, we have

〈l/l0, x〉 =
∑
i

λ1i 〈xi, x〉+
∑
j

λ2j 〈yj , x〉+
∑
k

λ3k〈zk, x〉 ≤
∑
i

λ1i = 1.

• If l0 = 0, then l ∈ 0+Co. By Remark 3.2, there exist λ2j ≥ 0, λ3k ≥ 0 and yj ∈ D2,

zk ∈ D32 satisfying the following equality:

l =
∑
j

λ2jyj +
∑
k

λ3kzk.

So 〈l, x〉 =
∑
j

λ2j 〈yj , x〉+
∑
k

λ3k〈zk, x〉 ≤ 0.

• If l0 < 0, then l/|l0| ∈ C3. By Remark 3.2, there exist λ1i ≥ 0, λ2j ≥ 0, λ3k ≥ 0 and

xi ∈ D3, yj ∈ D2, zk ∈ D32 satisfying the following equality:

l/|l0| =
∑
i

λ1ixi +
∑
j

λ2jyj +
∑
k

λ3kzk,
∑
i

λ1i = 1.

So 〈l/|l0|, x〉 =
∑
i

λ1i 〈xi, x〉+
∑
j

λ2j 〈yj , x〉+
∑
k

λ3k〈zk, x〉 ≤
∑
i

−λ1i = −1.

Theorem 3.6 Suppose C ⊂ Rn is a full dimensional closed convex set. If there exists

x ∈ Rn such that 1− 〈l1, x〉 = 0, ∀l1 ∈ D1, −〈l2, x〉 = 0, ∀l2 ∈ D2, −1− 〈l3, x〉 = 0, ∀l3 ∈ D3,

then x is the only extreme point of C and C is a translated convex cone.

Proof By Theorem 3.5, x is in C. By Theorem 3.3 and Remark 3.2, for every l ∈
domδ∗ (x,C), there exist λ1i ≥ 0, i = 1, . . . , i1, λ2j ≥ 0, j = 1, . . . , j2 and λ3k ≥ 0, k = 1, . . . , k3

such that l =
i1∑
i=1

λ1ixi +
j2∑
j=1

λ2jyj +
k3∑
k=1

λ3kzk for xi ∈ D1, yj ∈ D2 and zk ∈ D32. Since for every

yj ∈ D2, δ∗ (yj , C) = 0, we have the following inequality:

δ∗ (l, C) ≤
i1∑
i=1

λ1i δ
∗ (xi, C) +

k3∑
k=1

λ3kδ
∗ (zk, C) =

i1∑
i=1

λ1i −
k3∑
k=1

λ3k

=

i1∑
i=1

λ1i 〈xi, x〉+

k3∑
k=1

λ3k〈zk, x〉 = 〈l, x〉.

Furthermore, it is clear that δ∗ (l, C) ≤ 〈l, x〉 + δ (l,domδ∗ (l, C)) for every l ∈ Rn. Take

closure for both sides, we have:

δ∗ (l, C) ≤ 〈l, x〉+ δ (l, cl (domδ∗ (x,C)))

= 〈l, x〉+ δ
(
l, (0+C)o

)
(by Corollary 2.4)

= δ∗
(
l, x+ 0+C

)
.
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This implies that C ⊆ x + 0+C. On the other hand, since x ∈ C, we have x + 0+C ⊆ C.

Therefore, C = x+ 0+C, i.e. C is a translated convex cone and contains x as the only extreme

point.

3.1.1 C contains no lines

When C ⊂ Rn is a full dimensional closed convex set and contains no lines, we set the slack

operator SC to be

SC =


S1
C(x, y) = 1− 〈x, y〉 for (x, y) ∈ C ×D1,

S2
C(x, y) = −〈x, y〉 for (x, y) ∈ C ×D2,

S3
C(x, y) = −1− 〈x, y〉 for (x, y) ∈ C ×D3.

(3.3)

In this definition, D1, D2 and D3 are disjoint and may be empty for some convex set C. If one

of them is empty, we just remove the corresponding slack operator from the definition.

Definition 3.7 Let K ⊂ Rm be a full dimensional closed convex cone and C ⊂ Rn a full

dimensional convex set containing no lines. We say that the slack operator SC defined by (3.3)

is K-factorizable, if there exist maps

A : C → K, B1 : D1 → K∗, B2 : D2 → K∗, B3 : D3 → K∗

such that

• Si
c(x, y) = 〈A(x), Bi(y)〉 for all (x, y) ∈ C ×Di and i = 1, 2, 3.

Theorem 3.8 Let K ⊂ Rm be a full dimensional closed convex cone and C ⊂ Rn a full

dimensional closed convex set containing no lines. Assume C is not a translated cone. If C has

a proper K-lift defined by (3.1), then the slack operator SC defined by (3.3) is K-factorizable.

Conversely, if SC defined by (3.3) is K-factorizable, then C has a K-lift defined by (3.1).

The proof of Theorem 3.13 can be modified slightly to show the correctness of Theorem 3.8.

Example 3.9 Consider C = {x | x ≥ −1}. Let K be S3+ and

L =



a11 a12 a13

a21 a22 a23

a31 a32 a33

 ∈ S3 | a11 = 1, a13 = 0, a23 = 0, a33 = a12 + 1

 .

We construct a linear map π from S3 to R1:


a11 a12 a13

a21 a22 a23

a31 a32 a33

→ a33. It is easy to check that

C has a K-lift, i.e. C = π(K ∩ L).

Now let us check whether the slack operator SC defined by (3.3) is K-factorizable. Because

C contains the origin in its interior, according to Theorem 3.3, D2 and D3 are empty. Since
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Co = {x | −1 ≤ x ≤ 0}, we have D1 = ext1(Co)\0 = {(−1)}. Let us define the maps

A : C → K, B1 : D1 → K∗ as

A(x) =


1 x 0

x x2 0

0 0 x+ 1

 , B1(y) =


0 0 0

0 0 0

0 0 −y

 .

Since 1− 〈x, y〉 = 〈A(x), B1(y)〉 for all (x, y) ∈ C ×D1, we claim that the slack operator SC is

K-factorizable.

Remark 3.10 Although Definition 3.7 and Theorem 3.8 have extended the argument in

[6] to more general convex sets, it is not easy to use. The main reason is that we have to define

the map A and check whether SC is factorizable for all points in C. This is difficult since C

usually contains infinite number of points even when it is a polyhedron.

By Theorem 2.2, if C contains no lines, every point in it can be expressed as the convex

combination of extreme points ext1(C) and extreme directions ext2(0+C). By introducing the

cone lift of the recession cone 0+C and defining its slack operator and cone factorization, we

extend results in [6] to non-compact convex sets.

Definition 3.11 Let K ⊂ Rm be a full dimensional closed convex cone. A K-lift of a

non-compact closed convex set C ⊂ Rn is a set Q = K ∩ L such that

C = π(K ∩ L), 0+C = π(K ∩ 0+L) (3.4)

where L ⊂ Rm is an affine subspace and π : Rm → Rn is a linear map. We say that Q is a

proper K-lift of C, if L ∩ int (K) 6= ∅.
We would like to emphasize that the condition 0+C = π(K ∩ 0+L) is not redundant and

cannot be deduced from the condition C = π(K ∩ L) in general, see the following example.

Example 3.9 (continued) Although we have C = π(K ∩ L), it is clear that

R1
+ = 0+C 6= π(K ∩ 0+L),

since

0+L =



a11 a12 a13

a21 a22 a23

a31 a32 a33

 ∈ S3 | a11 = 0, a13 = 0, a23 = 0, a33 = a12


and π(K ∩ 0+L) = {0}.

We define the slack operator SC of a full dimensional closed convex set C as

SC =


S1
C(x, y) = 1− 〈x, y〉 for (x, y) ∈ ext1(C)×D1,

S2
C(x, y) = −〈x, y〉 for (x, y) ∈ ext1(C)×D2,

S3
C(x, y) = −1− 〈x, y〉 for (x, y) ∈ ext1(C)×D3,

Si
0+C(x, y) = −〈x, y〉 for (x, y) ∈ ext2(0+C)×Di, i = 1, 2, 3.

(3.5)
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In this definition, D1, D2 and D3 are disjoint and may be empty for some convex set C. If one

of them is empty, we just remove the corresponding slack operator from the definition.

Definition 3.12 Let K ⊂ Rm be a full dimensional closed convex cone and C ⊂ Rn a full

dimensional closed convex set containing no lines. We say that the slack operator SC defined

by (3.5) is K-factorizable, if there exist maps

A1 : ext1(C)→ K, A2 : ext2(0+C)→ K,

B1 : D1 → K∗, B2 : D2 → K∗, B3 : D3 → K∗,

such that

• Si
c(x, y) = 〈A1(x), Bi(y)〉 for all (x, y) ∈ ext1(C)×Di and i = 1, 2, 3.

• Si
0+C(x, y) = 〈A2(x), Bi(y)〉 for all (x, y) ∈ ext2(0+C)×Di and i = 1, 2, 3.

Theorem 3.13 Let K ⊂ Rm be a full dimensional closed convex cone. Assume C ⊂ Rn is

a full dimensional closed convex set containing no lines and C is not a translated cone. If C has

a proper K-lift defined by (3.4), then the slack operator SC defined by (3.5) is K-factorizable.

Conversely, if SC defined by (3.5) is K-factorizable, then C has a K-lift defined by (3.4).

Proof Suppose C has a proper K-lift, then we set L = w0 +L0 in Rm where L0 is a linear

subspace, w0 ∈ int (K) and π : Rm → Rn is a linear map such that C = π(K ∩ L), 0+C =

π(K ∩ 0+L). Since 0+L = L0, we have 0+C = π(K ∩ L0). We need to construct maps A1, A2

and B1, B2, B3 from the K-lift that factorize the slack operator SC .

For every point x1 ∈ ext1(C), there exists a point w1 in the convex set K ∩ L such that

π(w1) = x1. We define A1(x1) := w1. Moreover, for every point x2 ∈ ext2(0+C), there exists a

point w2 in the convex set K ∩ L0 such that π(w2) = x2. We define A2(x2) := w2.

The definitions of B1, B2 and B3 are similar to those given in [6, Theorem 1], which use

the properness condition to guarantee the strong duality holds. The only difference is that for

l1 ∈ D1, max{〈l1, x〉 | x ∈ C} is 1, for l2 ∈ D2, max{〈l2, x〉 | x ∈ C} is 0 and for l3 ∈ D3,

max{〈l3, x〉 | x ∈ C} is −1. Therefore, we only give the definitions and omit all proofs. For

every y1 ∈ D1, we define B1(y1) := z − π∗(y1) where z is any point in L⊥0 ∩ (K∗ + π∗(y1)) that

satisfies 〈w0, z〉 = 1. For every y2 ∈ D2, we define B2(y2) := z − π∗(y2) where z is any point in

L⊥0 ∩ (K∗+π∗(y2)) that satisfies 〈w0, z〉 = 0. For every y3 ∈ D3, we define B3(y3) := z−π∗(y3)

where z is any point in L⊥0 ∩ (K∗ + π∗(y3)) that satisfies 〈w0, z〉 = −1. It remains to check

that Si
c and Si

0+C have K-factorizations given in Definition 3.12. The K-factorization of Si
c

can be checked by the same method used in [6, Theorem 1]. For each x2 ∈ ext2(0+C) and

yi ∈ Di, i = 1, 2, 3, we have

〈x2, yi〉 = 〈π(w2), yi〉 = 〈w2, π
∗(yi)〉 = 〈w2, z −Bi(yi)〉

= −〈w2, Bi(yi)〉 = −〈A2(x2), Bi(yi)〉.

Therefore, Si
0+C is K-factorizable according to Definition 3.12.
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Suppose on the other hand that SC is K-factorizable, i.e. there exist maps A1, A2 and

B1, B2, B3 such that Si
c(x, y) = 〈A1(x), Bi(y)〉 for all (x, y) ∈ ext1(C) × Di, i = 1, 2, 3 and

Si
0+C(x, y) = 〈A2(x), Bi(y)〉 for all (x, y) ∈ ext2(0+C)×Di, i = 1, 2, 3. We construct the affine

space

L ={(x, z) ∈ Rn × Rm | 1− 〈x, y1〉 = 〈z,B1(y1)〉, ∀y1 ∈ D1,

− 〈x, y2〉 = 〈z,B2(y2)〉, ∀y2 ∈ D2, −1− 〈x, y3〉 = 〈z,B3(y3)〉, ∀y3 ∈ D3},

and let LK be the projection of L onto the second component z.

We need to show firstly that 0 /∈ LK . If 0 ∈ LK , there exists x ∈ Rn such that 1− 〈x, y1〉 =

0, ∀y1 ∈ D1, −〈x, y2〉 = 0, ∀y2 ∈ D2, −1 − 〈x, y3〉 = 0, ∀y3 ∈ D3. By Theorem 3.6, C

is a translated cone and this contradicts to the assumption. For each x ∈ ext1(C), we have

A1(x) ∈ K ∩ LK , then K ∩ LK 6= ∅.
Since C contains no lines, we can show that for every z ∈ K ∩ LK , there exists unique

xz ∈ Rn such that (xz, z) ∈ L. Hence, the map π from z to xz is a well defined affine map.

Since the origin is not in LK , we can extend the map to a linear map: Rm → Rn. We prove

below that C = π(K ∩ LK).

For every x ∈ Rn, if there exists z ∈ K such that (x, z) ∈ L, then 〈x, y1〉 = 1−〈z,B1(y1)〉 ≤
1, ∀y1 ∈ D1, 〈x, y2〉 = −〈z,B2(y2)〉 ≤ 0, ∀y2 ∈ D2, and 〈x, y3〉 = −1−〈z,B3(y3)〉 ≤ −1, ∀y3 ∈
D3. By Theorem 3.5, we have x ∈ C. Hence, π(K ∩ LK) ⊆ C.

For every x ∈ C, there exist λ1i ≥ 0, i = 1, . . . , i1, λ2j ≥ 0, j = 1, . . . , j2 such that

x =

i1∑
i=1

λ1ixi +

j2∑
j=1

λ2jyj ,

i1∑
i=1

λ1i = 1,

where xi ∈ ext1(C) and yj ∈ ext2(0+C). Let z =
i1∑
i=1

λ1iA1(xi) +
j2∑
j=1

λ2jA2(yj). Since SC is

K-factorizable, it is easy to check that z ∈ K ∩ LK and therefore, x = π(z) ∈ π(K ∩ LK). We

can deduce that C = π(K ∩ LK).

Furthermore, we need to show that 0+C = π(K ∩ 0+LK). Since C = π(K ∩ LK), we know

that 0+C ⊇ π(K ∩ 0+LK). On the other hand, for every x ∈ ext2(0+C), by the definition of

L, we claim that A2(x) is in K ∩ 0+LK . Hence, we have 0+C = π(K ∩ 0+LK).

The following example shows that the K-factorization of Si
c(x, y) for (x, y) ∈ ext1(C)×Di

and i = 1, 2, 3 cannot guarantee that the convex set C has a K-lift defined by (3.4). It is

necessary to consider the K-factorization of Si
0+C(x, y) for all (x, y) ∈ ext2(0+C) × Di and

i = 1, 2, 3 too.

Example 3.14 Let C be a 3-dimensional polyhedron in R3 defined by the following
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inequality:

C =



(x1, x2, x3) ∈ R3 :



1
√
3
3 0

0 2
√
3

3 0

−1
√
3
3 0

−1 −
√
3
3 0

0 − 2
√
3

3 0

1 −
√
3
3 0

0 0 −1




x1

x2

x3

 ≤



1

1

1

1

1

1

0





.

Figure 3: Example 3.14

The six vertices of C are {(cos(iπ/3), sin(iπ/3), 0), i = 0, . . . , 5} and 0+C = cone ({(0, 0, 1)}).
According to Definition 4.1, its slack matrix is

S :=



0 0 1 2 2 1 0

1 0 0 1 2 2 0

2 1 0 0 1 2 0

2 2 1 0 0 1 0

1 2 2 1 0 0 0

0 1 2 2 1 0 0

0 0 0 0 0 0 1


.

It has been shown in [6, Example 2] that the first 6×6 submatrix SH of S has a R5
+-factorization.
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However, we claim that the matrix S does not have a R5
+-factorization. If it does, we can assume

it has the following nonnegative decomposition: SH 0

0 1

 =

 A11 A12

A21 A22

 B11 B12

B21 B22

 .

Since A21B11 +A22B21 = 0, we have A22B21 = 0. We claim that A22 = 0. Otherwise, B21 will

be zero and SH = A11B11. This contradicts to the fact that SH has no R4
+-factorization. From

A21B12 + A22B22 = 1 and A22 = 0, we have B12 6= 0. However, since A11B12 + A12B22 = 0,

there exists one column of A11 which is a zero column. Therefore, SH has a nonnegative

decomposition in R4
+ which is also a contradiction. Hence, according to Theorem 4.5, C has no

R5
+-lift.

A cone K is nice if K∗+F⊥ is closed for all faces F of K [1]. In [8], Pataki points out that

K is nice if and only if F ∗ = K∗+F⊥ for all faces F of K. In [6, Corollary 1], they have shown

that if K is a nice cone, then whenever a convex body C has a K-lift (not necessarily proper),

the slack operator has a K-factorization. We extend their results to the case that C is not a

convex body.

Corollary 3.15 If K is nice cone and C ⊂ Rn is a full dimensional closed convex set

containing no lines and C is not a translated cone, then whenever C has a K-lift, SC has a

K-factorization.

Proof LetQ := K∩L inK and F be the minimal face ofK containingQ, i.e. Q∩ri (F ) 6= ∅.
If C has a K-lift defined by (3.4), then it is clear that Q = F ∩ L. Furthermore, we have

0+C = π(K ∩ 0+L) = π(0+Q) = π(0+(F ∩ L)) = π(F ∩ 0+L). Therefore, Q also have a

proper F -lift defined by (3.4). The F -factorization of slack operator SC defined by (3.12) can

be constructed by the same way as in the proof of Theorem 3.13. The maps A1 and A2 are

also maps to K. Since K is a nice cone and F is a face of K, we have F ∗ = K∗ + F⊥ [8,

Remark 1]. Similar to [6, Corollary 1], we can construct new maps B′i(y) = z ∈ K∗ such that

Bi(y)− z ∈ F⊥ for 1 ≤ i ≤ 3 and show that the slack operator SC is K-factorizable.

In Theorem 3.13, we have assumed that the full dimensional closed convex set C is not a

translated cone. If C is a translated cone, a K-lift of C can be defined as

C = b+ π(K ∩ L), (3.6)

where b ∈ Rn is a constant vector, L is a linear space and π : Rm → Rn is a linear map. In this

case, we only need to characterize ext2(0+C). Without loss of generality, we can assume b = 0

and C is a cone. We define the slack operator SC as

SC(x, y) = −〈x, y〉 for (x, y) ∈ ext2(C)× ext2(Co). (3.7)

We say that the slack operator SC is K-factorizable, if there exist maps

A : ext2(C)→ K, B : ext2(Co)→ K∗

such that
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• SC(x, y) = 〈A(x), B(y)〉 for all (x, y) ∈ ext2(C)× ext2(Co).

Theorem 3.16 Let K be a full dimensional closed convex cone in Rm and C a full

dimensional closed pointed convex cone in Rn. If C has a proper K-lift defined by (3.6), then

SC defined by (3.7) is K-factorizable. Conversely, if SC defined by (3.7) is K-factorizable, then

C has a K-lift defined by (3.6).

The proof that SC is K-factorizable if C has a proper K-lift is similar to the one given for

Theorem 3.13. We omit the proof here. Below we give a short proof to show that C has a

K-lift if SC is K-factorizable.

Proof Suppose SC is K-factorizable, we construct the linear space

L = {(x, z) | −〈x, y〉 = 〈z,B(y)〉, ∀y ∈ ext2(Co)}.

Let LK be the projection of L onto the second component z. Since C contains no lines, for

every z ∈ LK , there exists unique xz ∈ Rn such that (xz, z) ∈ L. Hence, we can define a linear

map π: LK → xz. Since L is a linear space, we can extend π to a linear map: Rm → Rn.

For every x ∈ Rn, if there exists z ∈ K such that (x, z) is in L, then 〈x, y〉 ≤ 0 for all y ∈
ext2(Co). Hence x ∈ Coo = cl (C) = C since C is a closed convex set. We have π(K ∩ L) ⊆ C.

On the other hand, since SC is K-factorizable, for every x ∈ ext2(C), (x,A(x)) ∈ L, hence

C ⊆ π(K ∩ L). The proof is completed.

3.1.2 C contains lines

When C is a full dimensional closed convex set containing lines, Definition 3.7 and Theorem

3.8 can be generalized without any change. However, when C contains lines, it has no extreme

points and 0+C contains no extreme rays, so Definition 3.12 and Theorem 3.13 need to be

adjusted properly.

Let L1 denote the lineality space of C and {l1 . . . , ls} be an orthogonal basis of L1. The

convex set containing lines can be decomposed as

C = C0 + L1, (3.8)

where C0 = C ∩ L⊥1 is a closed convex set containing no lines and L⊥1 is the orthogonal

complement of L1.

Lemma 3.17 L⊥1 is the affine hull of Co.

Proof Since C = C0+L1, we have Co = Co
0∩L⊥1 . The convex set C0 contains no lines, then

0+C0 contains no lines. By Corollary 2.4 and Theorem 3.3, we claim cl (cone (Co
0 )) = (0+C0)o.

Since (0+C0)o contains an interior, it is clear that cone (Co
0 ) contains an interior. As C0 is in L⊥1 ,

cone (Co
0 ) contains L1. Hence cone (Co) = cone (Co

0 ) ∩ L⊥1 has an interior in L⊥1 . Furthermore,

Co = Co
0 ∩ L⊥1 has an interior in L⊥1 too. Hence L⊥1 is the affine hull of Co.

We define the slack operator SC of a full dimensional closed convex set C containing lines
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as

SC =



S1
C0

(x, y) = 1− 〈x, y〉 for (x, y) ∈ ext1(C0)×D1,

S2
C0

(x, y) = −〈x, y〉 for (x, y) ∈ ext1(C0)×D2,

S3
C0

(x, y) = −1− 〈x, y〉 for (x, y) ∈ ext1(C0)×D3,

Si
0+C0

(x, y) = −〈x, y〉 for (x, y) ∈ ext2(0+C0)×Di, i = 1, 2, 3,

SL1
(x, y) = 〈x, y〉 for (x, y) ∈ {l1, . . . , ls} × {l1, . . . , ls}.

(3.9)

Definition 3.18 Let K ⊂ Rm be a full dimensional closed convex cone and C ⊂ Rn a full

dimensional non-compact closed convex set containing lines. We say that the slack operator

SC defined by (3.9) is K-factorizable, if there exist maps

A1 : ext1(C0)→ K, A2 : ext2(0+C0)→ K, A3 : {l1, . . . , ls} → K,

B1 : D1 → K∗, B2 : D2 → K∗, B3 : D3 → K∗, F : {l1, . . . , ls} → Rm,

such that

• Si
C0

(x, y) = 〈A1(x), Bi(y)〉 for all (x, y) ∈ ext1(C0)×Di and i = 1, 2, 3,

• Si
0+C0

(x, y) = 〈A2(x), Bi(y)〉 for all (x, y) ∈ ext2(0+C0)×Di and i = 1, 2, 3,

• SL1(x, y) = 〈A3(x), F (y)〉 for all (x, y) ∈ {l1, . . . , ls} × {l1, . . . , ls},

• 〈A3(x), Bi(y)〉 = 0 for all (x, y) ∈ {l1, . . . , ls} ×Di and i = 1, 2, 3,

• 〈A1(x), F (y)〉 = 0 for all (x, y) ∈ ext1(C0)× {l1, . . . , ls},

• 〈A2(x), F (y)〉 = 0 for all (x, y) ∈ ext2(0+C0)× {l1, . . . , ls}.

Theorem 3.19 Let K be a full dimensional closed convex cone in Rm. Assume C is a

full dimensional closed convex set in Rn which can be decomposed as (3.8) and C0 is not a

translated cone. If C has a proper K-lift defined by (3.4), then the slack operator SC defined

by (3.9) is K-factorizable. Conversely, if SC defined by (3.9) is K-factorizable, then C has a

K-lift defined by (3.4).

Proof Suppose C has a proper K-lift, then we set L = w0 +L0 in Rm where L0 is a linear

subspace, w0 ∈ int (K) and π : Rm → Rn is a linear map such that C = π(K ∩ L), 0+C =

π(K ∩ 0+L). Since 0+L = L0, we have 0+C = π(K ∩ L0). We need to construct maps

A1, A2, A3, B1, B2, B3 and F that factorize the slack operator SC from the K-lift. We can

define A1, A2, B1, B2, B3 by the same way used in the proof of Theorem 3.13. For every li,

i = 1, . . . , s, there exists a point wi ∈ K ∩ L0 such that π(wi) = li. So we define A3(li) := wi

for i = 1, . . . , s. Furthermore, we define F (li) := π∗(li) for i = 1, . . . , s.

The equalities for Si
C0

, Si
0+C0

, i = 1, . . . , 3 in Definition 3.18 can be checked by the same

method used in the proof of Theorem 3.13. For each x, y ∈ {l1, . . . , ls}, we have

〈x, y〉 = 〈π(A3(x)), y〉 = 〈A3(x), F (y)〉.
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For each x ∈ {l1, . . . , ls} and y ∈ Di, we have

〈A3(x), Bi(y)〉 = 〈A3(x), z − π∗(y)〉 = −〈π(A3(x)), y〉 = −〈x, y〉 = 0.

For each x ∈ ext1(C0) and y ∈ {l1, . . . , ls}, we have

〈A1(x), F (y)〉 = 〈π(A1(x)), y〉 = 〈x, y〉 = 0.

For each x ∈ ext2(0+C0) and y ∈ {l1, . . . , ls}, we have

〈A2(x), F (y)〉 = 〈π(A2(x)), y〉 = 〈x, y〉 = 0.

Therefore, SC is K-factorizable.

Suppose SC is K-factorizable. We need to construct an affine space L:

L ={(x, z) ∈ Rn × Rm | x = x1 + x2 such that x1 ∈ L⊥1 and x2 ∈ L1,

1− 〈x1, y1〉 = 〈z,B1(y1)〉, ∀y1 ∈ D1, −〈x1, y2〉 = 〈z,B2(y2)〉, ∀y2 ∈ D2,

− 1− 〈x1, y3〉 = 〈z,B3(y3)〉, ∀y3 ∈ D3, 〈x2, li〉 = 〈z, F (li)〉, ∀i = 1, . . . , s}.

Let LK be the projection of L onto the second component z.

We need to show that 0 /∈ LK . If 0 ∈ LK , there exists x = x1 + x2 such that 1− 〈x1, y1〉 =

0, ∀y1 ∈ D1, −〈x1, y2〉 = 0, ∀y2 ∈ D2, −1− 〈x1, y3〉 = 0, ∀y3 ∈ D3. By Theorem 3.6, C0 is a

translated convex cone and this leads to a contradiction. Moreover, K ∩LK 6= ∅ since for each

x ∈ ext1(C0), we have A1(x) ∈ K ∩ LK .

Now we prove that for each z ∈ K ∩ LK , there exists unique x ∈ Rn such that (x, z) ∈ L.

If for some z ∈ K ∩ LK , there exist two different points x1 = x11 + x12 and x2 = x21 + x22
such that both (x1, z) and (x2, z) are in L. Because 〈x11 − x21, y〉 = 0 for y ∈ D1 ∪ D2 ∪ D3,

we have 〈x11 − x21, y〉 = 0 for y ∈ Co. According to Lemma 3.17, L⊥1 is the affine hull of Co,

hence x11 − x21 ∈ L1. Since x11 − x21 is also in L⊥1 , we have x11 − x21 = 0. Furthermore, because

〈x12 − x22, li〉 = 0, 1 ≤ i ≤ s and x12 − x22 ∈ L1, we also have x12 − x22 = 0. Hence, the map π

from z to xz is a well defined affine map. Since the origin is not in LK , we can extend it to

a linear map: Rm → Rn. By the same method used in proving Theorem 3.13, we can show

C = π(K ∩ LK) and 0+C = π(K ∩ 0+LK).

Remark 3.20 If K is a nice cone, the proper condition can also be removed from Theorem

3.19. In this case, the K-lift of C and the K-factorization of the slack operator SC is equivalent.

When C is a closed translated convex cone that contains lines, C can be decomposed as

(3.8) and we have results similar to those given in Theorem 3.16. The slack operator SC of a

convex set C containing lines is defined as

SC =

 SC0
(x, y) = −〈x, y〉 for (x, y) ∈ ext2(C0)× ext2(Co),

SL1
(x, y) = −〈x, y〉 for (x, y) ∈ {l1, . . . , ls} × {l1, . . . , ls}.

(3.10)
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Definition 3.21 We say that the slack operator SC defined by (3.10) is K-factorizable,

if there exist maps

A2 : ext2(C0)→ K, A3 : {l1, . . . , ls} → K,

B : ext2(Co)→ K∗, F : {l1, . . . , ls} → Rm,

such that

• SC0(x, y) = 〈A2(x), B(y)〉 for all (x, y) ∈ ext2(C0)× ext2(Co),

• SL1
(x, y) = 〈A3(x), F (y)〉 for all (x, y) ∈ {l1, . . . , ls} × {l1, . . . , ls},

• 〈A2(x), F (y)〉 = 0 for all (x, y) ∈ ext2(C0)× {l1, . . . , ls},

• 〈A3(x), B(y)〉 = 0 for all {l1, . . . , ls} × ext2(Co).

Theorem 3.22 Let K be a full dimensional convex cone in Rm and C is a full dimensional

closed translated convex cone in Rn that contains lines and C can be decomposed as (3.8). If C

has a proper K-lift defined by (3.6), then SC defined by (3.10) is K-factorizable. Conversely,

if SC defined by (3.10) is K-factorizable, then C has a K-lift defined by (3.6).

Theorem 3.22 can be proved using similar arguments for Theorem 3.16 and Theorem 3.19.

3.2 C is not full dimensional

Theorem 3.23 Let C be a closed convex set in Rn. The polar Co contains lines if and

only if C is contained in a non-trivial linear space. When C contains the origin, C is not full

dimensional if and only if Co contains lines.

Proof Co contains lines if and only if there exists a ∈ Rn such that δ∗ (a,C) ≤ 0 and

δ∗ (−a,C) ≤ 0, i.e. C is contained in the set {x | aTx = 0}.
When C contains the origin, C is not full dimensional if and only if there exists a ∈ Rn such

that C is contained in {x | aTx = 0}.
We assume that the convex set C is not full dimensional and contains no lines. Then Co

may or may not contain lines. If Co contains no lines, we have the same results as the case

that C is full dimensional. When Co contains lines, there exists no extreme point or extreme

direction in Co and the sets D1, D2 and D3 are empty. Let L2 denote the lineality space of Co.

Assume Co = C ′ + L2 such that C ′ = Co ∩ L⊥2 . The closed convex set C ′ contains no lines. It

is clear that 0+C ′ = 0+Co ∩L⊥2 . Recall that C3 = {x | δ∗ (x,C) ≤ −1}, C ′3 = C3 ∩L⊥2 contains

no lines. Let

D′1 = ext1(C ′)\0, D′2 = ext2(0+C ′) ∩ {x | δ∗ (x,C ′) = 0}, D′3 = ext1(C ′3).

Let

D′32 = ext2(0+C ′) ∩ {x | δ∗ (x,C ′) = −1}.

Then D′32 ⊆ D′3.
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Theorem 3.24 Assume a closed convex set C ⊂ Rn is not full dimensional and contains

no lines. For a vector x ∈ Rn, x ∈ C if and only if for every l ∈ D′1, 〈l, x〉 ≤ 1, for every

l ∈ D′2, 〈l, x〉 ≤ 0, for every l ∈ D′3, 〈l, x〉 ≤ −1 and x ∈ L⊥2 , where L2 is the lineality space of

Co.

Proof Similar to the proof of Theorem 3.5.

Assume the closed convex set C is not full dimensional and contains no lines. By replacing

Di by D′i for i = 1, 2, 3 in Theorem 3.5 and Definition 3.12, we can define the slack operator

SC and its K-factorization, then all results in Subsection 3.1.1 can be extended trivially to the

case that C is not full dimensional. Although results in Subsection 3.1.2 can also be extended

to the case that the closed convex set C is not full dimensional and contains lines, it becomes

much more complicated and we omit the discussions here.

4 Cone lifts of polyhedra

Similar to [6, Section 3], we specialize results given in previous section to the case of cone

lifts of polyhedra. Let C ⊂ Rn be a polyhedron defined by a set of linear inequalities:

C = {x ∈ Rn : f1(x) ≤ α1, . . . , fk1(x) ≤ αk1 , g1(x) ≤ 0, . . . , gk2(x) ≤ 0, (4.1)

h1(x) ≤ −β1, . . . , hk3(x) ≤ −βk3},

where αi > 0 for 1 ≤ i ≤ k1 and βj > 0 for 1 ≤ j ≤ k3. The recession cone of C has the

following form:

0+C = {x ∈ Rn :f1(x) ≤ 0, . . . , fk1(x) ≤ 0, g1(x) ≤ 0, . . . , gk2(x) ≤ 0, (4.2)

h1(x) ≤ 0, . . . , hk3(x) ≤ 0}.

Let the convex set C be generated by a set of points c1, . . . , ct and directions r1, . . . , rs. We

extend the definition of a slack matrix in [6, 11].

Definition 4.1 We define the slack matrix of C as [ST
1 , S

T
2 , S

T
3 ]T , where

1. S1 ∈ Rk1×(t+s) whose (i, j)-entry is αi−fi(cj) for i = 1, . . . , k1, j = 1, . . . , t and (i, t+j)-

entry is −fi(rj) for i = 1, . . . , k1, j = 1, . . . , s.

2. S2 ∈ Rk2×(t+s) whose (i, j)-entry is −gi(cj) for i = 1, . . . , k2, j = 1, . . . , t and (i, t + j)-

entry is −gi(rj) for i = 1, . . . , k2, j = 1, . . . , s.

3. S3 ∈ Rk3×(t+s) whose (i, j)-entry is −βi − hi(cj) for i = 1, . . . , k3, j = 1, . . . , t and

(i, t+ j)-entry is −hi(rj) for i = 1, . . . , k3, j = 1, . . . , s.

Assume C is a full dimensional polyhedron containing no lines, the slack matrix S is called the

canonical slack matrix of C if fi, gi, hi represent the facets of C, αi = 1, βj = 1 for i = 1, . . . , k1,

j = 1, . . . , k3 and c1, . . . , ct and r1, . . . , rs are the vertices and the extreme directions of C

respectively.
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Definition 4.2 [6, Definition 7] Let M = (Mij) ∈ Rp×q
+ be a nonnegative matrix and K

a closed convex cone. Then, a K-factorization of M is a pair of ordered sets a1, . . . , ap ∈ K
and b1, . . . , bq ∈ K∗ such that 〈ai, bj〉 = Mij .

Definition 4.2 generalizes nonnegative factorizations of nonnegative matrices [11] to arbitrary

closed convex cones. We generalize results [3, Theorem 13], [6, Theorem 3] and [11, Theorem 3]

to show the equivalence between the K-lift of a polyhedron and the K-factorization of a slack

matrix.

When C is a full dimensional polyhedron containing no lines and K ⊂ Rm a full dimensional

polyhedral cone, the K-factorization of a slack operator is identical to the K-factorization of

the canonical slack matrix of C. Theorem 4.3 can be deduced directly from Theorem 3.13 and

3.16 when C is full dimensional.

Theorem 4.3 Let K be a full dimensional closed convex cone in Rm. If a full dimen-

sional polyhedron C ⊂ Rn containing no lines has a proper K-lift defined by 3.4, then every

slack matrix of C admits a K-factorization. Conversely, if some slack matrix of C has a

K-factorization, then C has a K-lift defined by 3.4.

4.1 K is a polyhedral cone

Although we have pointed out in previous section the condition 0+C = π(K ∩ 0+L) is not

redundant and cannot be deduced from the condition C = π(K ∩ L) in general. When C and

K are both polyhedra, (3.1) and (3.4) are equivalent.

Lemma 4.4 Let C ⊂ Rn be a full dimensional polyhedron containing no lines and K ⊂
Rm a full dimensional polyhedral cone, then C has a K-lift defined by (3.1) if and only if it has

a K-lift defined by (3.4).

Proof It is sufficient to show that if there exists an affine space L and a linear map

π from Rm to Rn such that C = π(K ∩ L), we will have 0+C = π(K ∩ 0+L). It is clear

that if we define Q to be K ∩ L, then Q is a polyhedron. For ∀x ∈ Q, there exist extreme

points α1, . . . , αt in Q and non-zero extreme directions αt+1, . . . , αt+s in 0+Q such that x =

λ1α1 + · · · + λtαt + λt+1αt+1 + · · · + λt+sαt+s, where λ1 + · · · + λt = 1 and λi ≥ 0 for

i = 1, . . . , t+s. Then we have π(x) = λ1π(α1)+ · · ·+λtπ(αt)+λt+1π(αt+1)+ · · ·+λt+sπ(αt+s).

So 0+C is generated by π(αt+1), · · · , π(αt+s). On the other hand, since αt+1, · · · , αt+s generate

0+Q = K ∩ 0+L, thus π(αt+1), · · · , π(αt+s) generate π(K ∩ 0+L). Hence, 0+C = K ∩ 0+L and

our proof is completed.

Theorem 4.5 Let C ⊂ Rn be a full dimensional polyhedron containing no lines and

K ⊂ Rm a full dimensional polyhedral cone. If C is not a translated convex cone, then C has

a K-lift defined by (3.1) if and only if the slack matrix of C has a K-factorization. If C is a

translated convex cone, we can have the same result if we replace the K-lift (3.1) by the K-lift

(3.6).

Proof According to Lemma 4.4, the polyhedron C has a K-lift defined by (3.1) if and

only if it has a K-lift defined by (3.4). The properness condition that L intersects int (K) is
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used to guarantee the strong duality in the proof Theorem 4.3 (see the proof of Theorem 1 in

[6]). When K is a polyhedral cone, the minimization problem involved in the proof becomes a

linear-programming problem and the strong duality holds if K ∩ L 6= ∅.
Example 4.6 Consider the polyhedron C ⊂ R2 defined by

C =



(x1, x2) ∈ R2 :



0 1

−2 +
√

3 1

1−
√

3
√

3− 1

−1 2−
√

3

−1 −2 +
√

3

1−
√

3 1−
√

3

−2 +
√

3 −1

0 −1



 x1

x2

 ≤



2

√
3

1

2−
√

3

√
3− 2

−2
√

3 + 3

√
3− 2

0





.

Figure 4: Example 4.6

By Theorem 4.5, C has a R6
+-lift if and only if the slack matrix S has a R6

+-factorization. We
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denote the coefficient matrix by H and the right hand side vector by d. The slack matrix S is

S =



0 1−
√
3
2

1
2 1 3

2 1 +
√
3
2 2 0

0 0 2−
√

3
√

3− 1 3−
√

3
√

3 2 2−
√

3

2−
√

3 0 0 2−
√

3
√

3− 1 3−
√

3
√

3
√

3− 1

√
3− 1 2−

√
3 0 0 2−

√
3
√

3− 1 3−
√

3 1

3−
√

3
√

3− 1 2−
√

3 0 0 2−
√

3
√

3− 1 1

√
3 3−

√
3
√

3− 1 2−
√

3 0 0 2−
√

3
√

3− 1

2
√

3 3−
√

3
√

3− 1 2−
√

3 0 0 2−
√

3

2 1 +
√
3
2

3
2 1 1

2 1−
√
3
2 0 0



.

We compute a R6
+-factorization of S as S = U · V where

U =



1 1 0 1−
√
3
2 0 0

1 −2
√

3 + 4 2−
√

3 0 0 0

√
3− 1 0

√
3
2 −

1
2 0 0

√
3
2 −

1
2

2−
√

3 0 0 2−
√

3 0 1

0 0 0 2−
√

3 2−
√

3 1

0 0
√
3
2 −

1
2 0

√
3− 1

√
3
2 −

1
2

0 −2
√

3 + 4 2−
√

3 0 1 0

0 1 0 1−
√
3
2 1 0



,

V =



0 0 0 0 1
√

3 2 0

0 0 1
2 1 1

2 0 0 0

0 0 0
√

3− 1 0 0 0 1

0 1 0 0 0 1 0 0

2
√

3 1 0 0 0 0 0

√
3− 1 0 0 0 0 0

√
3− 1 1


.

The R6
+-lift of C is:

C = {(x1, x2) | ∃y ∈ R6
+ s.t. Hx+ Uy = d}.
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If we eliminate x1 and x2 from Hx+ Uy = d, we have

{y ∈ R6
+ | y1 = 1 + (

√
3− 1)y4 +

√
3 + 1

2
y6 −

√
3 + 1

2
y3 − y5,

y2 =
1

2
− 1

2
y4 −

√
3 + 1

4
y6 +

√
3 + 1

4
y3}.

4.2 K is a positive semidefinite cone

The positive semidefinite rank (psd rank) of a polytope C is the smallest k such that C has

an Sk+-lift [6, 7], we refer to [2] for a nice survey on the mathematical properties of psd rank.

The definition can be extended to the case that C is a polyhedron. Since a positive semidefinite

cone is a nice cone, the psd rank of C is equal to the psd rank of the slack matrix of C. The

following lemma extends the result in [7, Proposition 3.8].

Lemma 4.7 Assume C is a full dimensional polyhedron containing no lines. The poly-

hedron C ⊂ Rn has a facet of psd rank k, then the psd rank of C is at least k + 1.

Proof Let F be a facet of C. Assume the slack matrix SF of F has psd rank k. Let

α1, . . . , αs be vertices of F and αs+1, . . . , αs+t extreme directions of F . Suppose the facets of

F correspond to the facets F1, . . . , Fr of C other than F . Since F 6= C, there exists a vertex

or an extreme direction denoted by α which does not belong to F and F (α) > 0. The slack

matrix SC of C contains a (r + 1)× (s+ t+ 1) submatrix which is indexed by F1, . . . , Fr, F in

the row and α1, . . . , αs, αs+1, . . . , αs+t, α in the column and has the following form

S′ =

 SF w

0 F (α)

 where w ∈ Rr
+ and F (α) > 0.

According to [7, Proposition 2.6], we know that the psd rank of S′ is k + 1. Hence SC has psd

rank at least k + 1.

The lower bound on the psd rank of a polytope given in [7, Proposition 3.2] can be extended

to the case of a polyhedron.

Theorem 4.8 If C ⊂ Rn is a full dimensional polyhedron that contains no lines, then the

psd rank of C is at least n.

Proof The proof is similar to the one given in [7, Proposition 3.2]. The only difference

is that if n = 1, C can be a half line. Hence there exists a slack matrix whose size is 1 by 2.

Obvious, the psd rank of this slack matrix is 1. Assume the statement holds up to dimension

n − 1. We select a facet F of C which has dimension n − 1 and its psd rank is at least n − 1.

By Lemma 4.7, the psd rank of C is at least n.

Remark 4.9 There exists a full dimensional polyhedron C ⊂ Rn that contains no lines

such that the psd rank of C is n. For example, consider the n-dimensional nonnegative orthant

Rn
+ = {x | xi ≥ 0, i = 1, . . . , n}. The slack matrix of Rn

+ is (0, In) where In is a unit matrix

and 0 is a zero vector and its psd rank is n.
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4.3 Identifying the slack matrix of a polyhedron

Gouveia et al. purposed in [5] algorithmic methods to identify whether a nonnegative

matrix is a slack matrix of a polyhedral cone or a polytope. These results can be generalized to

characterize the slack matrix of a polyhedron. Similar to [5, Lemma 10], we have the following

lemma:

Lemma 4.10 A nonnegative matrix S is a slack matrix of a polyhedron C if and only if

it is a slack matrix of a full dimensional polyhedron which contains no lines.

Proof Since the slack matrix of a polyhedron is also a slack matrix of its translation. We

can assume that the polyhedron contains the origin. Assume that C contains lines, and can be

decomposed as C = C0 +L1, where C0 = C ∩L⊥1 is a convex set containing no lines and L⊥1 is

the orthogonal complement of L1.

Let C be a polyhedron defined by a set of linear inequalities fi(x) ≤ αi, gj(x) ≤ 0 where

αi > 0, 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2. Every point in C can be expressed by the convex

combinations of a set of points c1, . . . , ct and directions r1, . . . , rs. According to Definition 4.1,

the slack matrix S of a polyhedron C can be factorized as

S = U · V =



α1 −f1
...

...

αk1
−fk1

0 −g1
...

...

0 −gk2



 1 · · · 1 0 · · · 0

c1 · · · ct r1 · · · rs

 . (4.3)

Since the linear functions corresponding to fi and gj are bounded above on C, fi and gj are

orthogonal to L1. Let Q be the orthogonal basis of L⊥1 , then we have fi · (I −QQT ) = 0 and

gj · (I −QQT ) = 0 where I is an identity matrix and 0 is a zero vector. We have the following

equalities:

S = U ·

 1 0

0 I −QQT +QQT

 · V
= U ·

 0 0

0 I −QQT

 · V + U ·

 1 0

0 QQT

 · V
= U ·

 1 0

0 Q

 ·
 1 0

0 QT

 · V.
Let U ′ = U ·

 1 0

0 Q

 and V ′ =

 1 0

0 QT

 · V , it is easy to see that S = U ′ · V ′ is the

slack matrix of QTC0, which is a polyhedron that contains no lines.
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If C0 is not full dimensional, aff(C0) is a nontrivial linear space. By similar transformations

used above, we can show that S is the slack matrix of C0 in aff(C0).

The following theorem and its proof is similar to [5, Theorem 6].

Theorem 4.11 A nonnegative matrix S ∈ Rp×q
+ with rank(S) ≥ 2 is a slack matrix of a

polyhedron if and only if S is a slack matrix of a polyhedral cone and there exists a vector whose

component consists of only 0 and 1 contained in the row space of S.

In [5, Theorem 14], [4, Corollary 5] and [7, Lemma 3.1], they characterized the rank of a

slack matrix in terms of the dimension of a polytope. When C is a pointed polyhedral cone,

its dimension is equal to the rank of its slack matrix [5, Lemma 13]). These results can be

extended to the case that C is a polyhedron.

Theorem 4.12 Let C ⊂ Rn be a n-dimensional polyhedron containing no lines. If C is

not a translated convex cone, then the rank of the slack matrix S is n+ 1.

Proof Suppose C is not a translated convex cone. Since the rank of its slack matrix does

not change after the translation of C and all the slack matrices of C have the same rank, we can

assume that C contains the origin and its canonical slack matrix can be written as (4.3). We

show that the matrix U is of full column rank. Otherwise, there exists a vector

 x1

x2

 such

that U ·

 x1

x2

 = 0. If x1 6= 0, set x1 = 1. Then 1− f(x2) = 0 for all f ∈ D1 and g(x2) = 0

for all g ∈ D2. By Theorem 3.6, C is a translated convex cone. This leads to a contradiction. If

x1 = 0, since for every vector y ∈ Co, there exist λ1i ≥ 0, 1 ≤ i ≤ k1 and λ2j ≥ 0, 1 ≤ j ≤ k2 such

that y =
k1∑
i=1

λ1i fi +
k2∑
j=1

λ2jgj for fi ∈ D1 and gj ∈ D2, we have 〈x2, y〉 = 0. Since dim(Co) = n,

Co contains an interior. We derive x2 = 0 since 〈y, x2〉 = 0 for each y in Co. Hence, U is a

full column rank matrix. Moreover, since C is a n-dimensional polyhedron, the dimension of

the cone in Rn+1 generated by vectors

 1

c1

 , . . . ,

 1

ct

 ,

 0

r1

 , . . . ,

 0

rs

 is n + 1.

Hence, the matrix V has rank n+ 1. Therefore, the rank of S is n+ 1.

Corollary 4.13 Let C be a polyhedron such that C = C0 + L1 where L1 is the lineality

space of C and C0 = C ∩ L⊥1 . If C is not a translated convex cone, then the rank of its slack

matrix S is dim(C0) + 1.

In [10, Theorem 3.2], they gave an upper bound d6 min{m,n}/7e of the nonnegative rank

for a rank-three nonnegative matrix in Rm×n. By Theorem 4.12 and Corollary 4.13, the slack

matrix S ∈ Rm×n of every polyhedron in R2 is rank-three except that the polyhedron is a

translated convex cone. It is easy to show that when min(m,n) ≥ 7, every such slack matrix

has a nontrivial nonnegative factorization. This fact motivates us to compute a R6
+-factorization

of the slack matrix S ∈ R8×8 in Example 4.6.
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