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ABSTRACT
We present a method based on symbolic-numeric reduction
to geometric involutive form to compute the primary com-
ponent and the differential operators for an isolated singular
solution of a polynomial ideal. The singular solution can be
exact or approximate. If the singular solution is known with
limited accuracy, then we propose a new method to refine it
to high accuracy.

Categories and Subject Descriptors: G.1.5 [Mathe-
matics of Computing]: Roots of Nonlinear Equations; I.1.2
[Symbolic and Algebraic Manipulation]: Algebraic Algo-
rithms

General Terms: Algorithms, Theory

Keywords: Involutive System, Numerical Linear Algebra,
Differential Operator, Index, Multiplicity

1. INTRODUCTION
Consider an ideal I generated by a polynomial system

F = {f1, . . . , ft}, where fi ∈ C[x1, . . . , xs], i = 1, . . . , t.
For a given isolated singular solution x̂ = (x̂1, . . . , x̂s) of F ,
suppose Q is the isolated primary component whose asso-
ciate prime is P = (x1 − x̂1, . . . , xs − x̂s), we use symbolic-
numeric method based on the geometric jet theory of partial
differential equations introduced in [36, 37, 43] to compute
the index ρ and multiplicity µ, such that Q = (I, P ρ) and
µ = dim(C[x]/Q). The multiplication structure of the quo-
tient ring C[x]/Q is computed from the null space of the
involutive form of Q. The differential operators are deter-
mined by computing the normal form of a polynomial with
undetermined coefficients up to degree ρ − 1. If the singu-
lar solution is only known with limited accuracy, then the
primary ideal Q has a cluster of solutions. A refined solu-
tion with higher accuracy can be obtained by averaging the
eigenvalues of each multiplication matrix [5].

∗This research was partially supported by NKBRPC
(2004CB318000) and the Chinese National Natural Science
Foundation under Grant 10401035.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’08, July 20–23, 2008, Hagenberg, Austria.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

Inspired by recent works in [8, 9], we apply the involu-
tive criterion to the truncated coefficient matrices formu-
lated from the Taylor series expansions of polynomials in
prolonged systems of F at x̂ to order k. The number of
columns of these coefficient matrices is fixed by

(

k+s−1
s

)

.
The differential operators can be obtained from the null
space of the truncated coefficient matrix of the involutive
system. Our algorithm for computing differential operators
could be regarded as a primal version of the one given in [9].

Our method for computing index and multiplicity is also
related to the one presented in [2]. The algorithm they
presented for computing multiplicity is based on Bayer and
Stillman’s theory on regularity [3]. It was pointed out in [21]
that the concept of involutivity of symbol is equivalent to its
Mumford regularity. Our criterion for involutivity is simi-
lar to their stopping criterion for regularity. However we
do not need homogenization procedure while the algorithm
in [2] works for homogenous polynomials.

If a singular solution is only known with limited accu-
racy, by choosing a tolerance, we can compute the index,
multiplicity and differential operators for this approximate
singular solution. It is well known that numeric computa-
tions deeply depend on the choice of tolerance. In order
to obtain accurate information about the multiplicity struc-
ture, we propose a method to improve the accuracy of the
singular root.

Suppose x̂ = x̂exact + x̂error where x̂exact denotes the exact
singular solution of F . We observe that a good approxima-
tion ŷ of −x̂error can be computed from the null vectors
of the truncated coefficient matrix of the involutive system.
The singular solution x̂ + ŷ has higher accuracy compared
with x̂. We can apply our procedure iteratively to x̂ + ŷ
with a smaller tolerance. A singular solution accurately to
the full machine precision can usually be obtained in less
than 3 iterations, as is shown in our experiments. It is still
not clear how our refinement procedure related to the meth-
ods in [18, 19, 20, 32, 33]. The column dimension of the
matrix we used for refining the approximate singular solu-
tion is

(

ρ+s

s

)

. Our algorithm for refining an approximate
singular solution is not efficient when index ρ is big. We no-
tice that the number of deflations of the algorithms in [19,
20] is not closely related to the index, their algorithms can
be very efficient for singular solutions with large index.

All algorithms we present in this paper have been imple-
mented in Maple 11. We give two examples to illustrate our
methods along the paper. We also show the test results for
a set of benchmark problems. All computations are done in
Maple 11 with Digits := 14.
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2. ISOLATED PRIMARY COMPONENT

2.1 Preliminaries
The following paragraphs give a brief outline of the no-

tations and tools we use throughout this paper. We refer
to [6, 41] for detailed introduction.

Definition 1. Let I be an ideal in the ring of polynomials
over complex field denoted by C[x] = C[x1, . . . , xs]. Let f, g
be arbitrary elements in C[x].

• I is prime if fg ∈ I =⇒ f ∈ I or g ∈ I.

• I is primary if fg ∈ I =⇒ f ∈ I or gm ∈ I for some
positive integer m.

• I is radical if fm ∈ I =⇒ f ∈ I.

• The radical of I is the set
√

I = {f | fm ∈ I for some integer m ≥ 1}.

It should be noted that
√

I is an ideal. Every prime ideal
is a radical ideal and the radical of a primary ideal is a prime
ideal. An ideal is finitely generated if there exists a finite list
of elements f1, f2, . . . , ft ∈ I such that every element in I
can be written as a C[x]-linear combination of f1, f2, . . . , ft,
and denoted by I = (f1, f2, . . . , ft).

Definition 2. If P and Q are ideals and have the property
that (1) fg ∈ Q and f /∈ Q implies g ∈ P , (2) Q ⊆ P , (3)
g ∈ P implies gρ ∈ Q for some positive integer ρ, then Q is
primary and P the prime ideal belonging to Q.

If Q is a primary ideal then P =
√

Q is the prime ideal
belonging to Q and Q is called P -primary.

Definition 3. Every polynomial ideal has an irredundant
primary decomposition, i.e. I = ∩r

i=1Qi, where Qi are pri-
mary, Qi  ∩j 6=iQj. We call Qi a primary component
(ideal) of I. Qi is said to be isolated if no prime ideal be-
longing to Qj , j 6= i, is divisible by a prime ideal belonging
to Qi.

Definition 4. ρ is called the index of a primary ideal Q if
ρ is the minimal nonnegative integer such that

√
Q

ρ ⊆ Q.

Theorem 1. [41] Suppose the polynomial ideal I has an
isolated primary component Q whose associated prime P is
maximal, and ρ is the index of Q.
If σ < ρ, then

dim(C[x]/(I, P σ−1)) < dim(C[x]/(I, P σ)). (1)

If σ ≥ ρ, then

Q = (I, P ρ) = (I, P σ). (2)

Corollary 1. If a polynomial ideal I has an isolated pri-
mary component Q whose associated prime P is maximal,
then the index ρ of Q is less than or equal to the multiplicity
µ of Q.

Proof: The multiplicity µ of the isolated primary compo-
nent Q is equal to the dimension of the quotient algebra
C[x]/(I, P ρ). Since the dimension of C[x]/(I, P σ) increases
strictly until σ = ρ, the multiplicity µ is bigger than or equal
to the index ρ. 2

2.2 SNEPSolver
Consider a polynomial system F = {f1, . . . , ft}, where

fi ∈ C[x1, . . . , xs] is of degree d, i = 1, . . . , t and s ≤ t. The
system can be written as

M
(0)
d · [xd

1, x
d−1
1 x2, . . . , x

2
s, x1, . . . , xs, 1]

T = [0, . . . , 0]T

in terms of its coefficient matrix M
(0)
d . Here and hereafter,

[...]T means the transposition. Further, [ξ1, ξ2, . . . , ξs] is one
of the solutions of the polynomial system, if and only if

[ξd
1 , ξd−1

1 ξ2, . . . , ξ
2
s , ξ1, . . . , ξs, 1]

T

is a null vector of the coefficient matrix M
(0)
d .

Since the number of monomials is usually much greater
than the number of polynomials, the dimension of the null
space can be large. Completion methods for polynomial ide-
als based on critical pairs [1, 10, 11, 17, 24, 25, 28, 29, 30,
31, 39, 40] aim to include additional polynomials belonging
to the ideal generated by F , until the normal form is de-
termined capable of deciding membership of the ideal. The
method in [35, 36, 37, 43] focuses on direct methods to cal-
culate and minimize these dimensions by using the criterion
of involution for PDE R [15, 34]. Here R is equivalent to
polynomial system F by the bijection

φ : xi ↔ ∂

∂xi

, 1 ≤ i ≤ s.

In the following, we briefly explain the symbolic-numeric
elimination method in the language of polynomial algebra.
We study the variety

V (F ) =
{

[xd, . . . , 1] ∈ CNd | M
(0)
d · [xd, . . . , 1]T = 0

}

,

where Nd =
(

d+s

s

)

, xj denotes all monomials of total degree
equal to j. All distinct monomials are regarded as indepen-

dent variables and V (F ) is simply the null space of M
(0)
d .

A single prolongation of the system F is to multiply the
polynomials in F by variables, so that the resulting aug-
mented system has degree d + 1. Successive prolongations
of the system yield F = F (0), F (1), F (2), . . ., and a sequence
of corresponding linear constant matrix systems:

M
(0)
d · vd = 0, M

(1)
d · vd+1 = 0, M

(2)
d · vd+2 = 0, · · ·

where vi =
[

xi,xi−1, . . . ,x, 1
]T

.
A single geometric projection is defined as

π(F ) =
{

[xd−1, . . . , 1]∈ CNd−1 | ∃xd,M
(0)
d · [xd, . . . , 1]T = 0

}

.

The projection operator π maps a point in CNd to one in
CNd−1 by eliminating the monomials of the highest degree
d. A numeric projection operator π̂ based on singular value
decomposition (SVD) was purposed in [4, 36, 42]. We first

find the singular value decomposition M
(0)
d = U · Σ · V.

The approximate rank r of M
(0)
d is the number of singu-

lar values bigger than a fixed tolerance. The tolerance is
chosen according to the number of correct digits for the co-
efficients of the input polynomials. The dimension of F is

defined as the dimension of the null space of M
(0)
d , so we

have dim F = dim Nullspace(M
(0)
d ) = Nd − r. Deleting

the first r rows of V yields an approximate basis for the

null space of M
(0)
d . To estimate dim π̂(F ), the components
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of the approximate basis for the null space of M
(0)
d cor-

responding to the monomials of the highest degree d are
deleted. This projected basis yields an approximate span-
ning set for π̂(F ). Application of the SVD to each of these
approximate spanning sets yields the approximate dimen-
sions of π̂(F ), π̂

2(F ), π̂
3(F ), ..., which are required for the

approximate involutive form test.
The symbol matrix of polynomials of degree d is simply

the submatrix of the coefficient matrix M
(0)
d corresponding

to the monomials of the highest degree d. One of the most
important requirements of involutive systems is that their
symbols are involutive. The following criterion of involution
for zero dimensional polynomial systems is given in [43].

Theorem 2. [43] A zero dimensional polynomial system F
is involutive at order m and projected order ℓ if and only if
π

ℓ(F (m)) satisfies the projected elimination test:

dim π
ℓ
(

F (m)
)

= dim π
ℓ+1

(

F (m+1)
)

, (3)

and the symbol involutive test:

dim π
ℓ
(

F (m)
)

= dim π
ℓ+1

(

F (m)
)

. (4)

The following algorithm given in [37, 43] solves zero di-
mensional polynomial systems based on the symbolic-numeric
completion method.

Algorithm 1. SNEPSolver
Input: A zero dimensional ideal I = (f1, . . . , ft) where the
polynomials are in C[x] of degree d and a tolerance τ .
Output: Dimension of the quotient ring C[x]/I and its mul-
tiplication matrices Mx1

, . . . , Mxs .

• Apply the symbolic-numeric completion method to F =
{f1, . . . , ft} with tolerance τ , we obtain the table of

dim π̂
ℓ(F (m)).

• We seek the smallest m such that there exists an ℓ with
π̂

ℓ(F (m)) approximately involutive, i.e., satisfying the
conditions (3, 4). If there are several such values for
the given m, then choose the largest such ℓ.

• The number of solutions of polynomial system F is d =
dim(C[x]/I) = dim π̂

ℓ(F (m)).

• The multiplication matrices Mx1
, . . . , Mxs are formed

from the null vectors of π̂
ℓ(F (m)) and π̂

ℓ+1(F (m)).

Remark 1. Instead of choosing monomials to form a nor-
mal set of size d, we compute the SVD of the approximate
basis of the null space of π̂

ℓ+1(F (m)). According to (4), the
first d left singular vectors permit a stable representation of
the other rows in the approximate basis of the null space
of π̂

ℓ(F (m)), a polynomial basis formed from these singu-
lar vectors leads to a stable representation of multiplicative
structure of the quotient ring C[x]/I . The solutions of F
can be obtained by computing eigenvalues and eigenvectors
of the multiplication matrices [1, 5, 25].

2.3 Algorithm for Computing Isolated Primary
Component

For a given isolated solution of the ideal I = (f1, . . . , ft),
suppose Q is the isolated primary component whose asso-
ciate prime P = (x1−x̂1, . . . , xs−x̂s), we apply SNEPSolver
to compute the index ρ, such that Q = (I, P ρ) and the mul-
tiplication structure of the quotient ring C[x]/Q.

Algorithm 2. IsolatedPrimaryComponent
Input: An isolated multiple solution x̂ of an ideal I =
(f1, . . . , ft), a tolerance τ .
Output: The multiplicity µ, the index ρ, and multiplication
matrices Mx1

, . . . , Mxs of the quotient ring C[x]/Q where
Q = (I, P ρ).

• Form the prime ideal P = (x1 − x̂1, . . . , xs − x̂s).

• Compute dk = dim(C[x]/(I, P k)) as described above by
SNEPSolver for the given tolerance τ until dk = dk−1,
then set ρ = k − 1, µ = dρ and Q = (I, P ρ).

• Compute the multiplication matrices Mx1
, . . . , Mxs of

C[x]/Q by SNEPSolver.

Symbolic methods based on the uniqueness of the reduced
Gröbner basis are given in [12, 16] to determine the index
of Q. However, when the multiple zero is only known with
finite precision, their methods are subject to numerical sta-
bility problem.

Remark 2. The set made up of these computed multiplica-
tion matrices {Mx1

, . . . , Mxs} is called numerical local ring
in [8] for a given root x̂.

Since the ideal (I, P k) is generated by polynomials

Fk = {f1, . . . , ft, (x1 − x̂1)
α1 · · · (xs − x̂s)

αs ,
s

∑

i=1

αi = k}.

Without loss of generality, suppose d ≤ k, we prolong all
polynomials fi to have degree k. Since all monomials of

degree k + j appear in the prolonged system F
(j)
k , the sym-

bol matrices of F
(j)
k always have full rank, i.e., the symbols

of F
(j)
k are involutive. The dimension of the prolonged sys-

tem, denoted by dim F
(j)
k = dim Nullspace(M

(j)
k ), decreases

strictly until it is stabilized, where M
(j)
k is the coefficient

matrix of F
(j)
k . So we have the following simple criterion of

involution for polynomial system Fk.

Theorem 3. The zero dimensional polynomial system Fk

is involutive at order m if and only if

dim F
(m)
k = dim F

(m+1)
k . (5)

Example 1. [32] Consider an ideal I generated by the poly-
nomials

{f1 = x2
1 + x2 − 3, f2 = x1 + 0.125x2

2 − 1.5}. (6)

The system has (1, 2) as a 3-fold solution.

Form the maximal ideal P = (x1 − 1, x2 − 2).
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• k = 2, we consider the system

F2 = {f1, f2, (x1 − 1)2, (x1 − 1)(x2 − 2), (x2 − 2)2}.

Since dimF2 = 1, dimF
(1)
2 = dimF

(2)
2 = 2, we have

dim(C[x]/(I, P 2)) = 2.

Similarly, we have

• k = 3, dim F3 = 1, dim F
(1)
3 = dim F

(2)
3 = 3, we have

dim(C[x]/(I, P 3)) = 3.

• k = 4, dim F4 = 1, dim F
(1)
4 = dim F

(2)
4 = 3, we have

dim(C[x]/(I, P 4)) = 3.

Therefore, the index and multiplicity of the root (1, 2) are:
ρ = 3, µ = 3. The multiplication matrices with respect to
the normal set {x1, x2, 1} are:

Mx1
=





0 −1 3
6 3 −10
1 0 0



 , Mx2
=





6 3 −10
−8 0 12
0 1 0



 (7)

The triple eigenvalues of Mx1
and Mx2

are 1 and 2 respec-
tively.

If the singular solution x̂ is only known approximately,
then the polynomial system Fk has a cluster of solutions.
The Schur factorization of multiplication matrices Mxi

con-
sists of only one block. As shown in [5], the average of the
cluster eigenvalues of Mxi

computed by Trace(Mxi
)/µ gives

a refined value for x̂i. We can apply the procedure again for
the refined singular solution and obtain singular solution
with higher accuracy.

Example 1 (continued) Suppose we are given an approx-
imate singular solution:

x̂ = (1 + 2.5428 × 10−4 + 2.4352 × 10−4 i,

2 + 8.4071 × 10−4 + 3.6129 × 10−4 i).

We choose a tolerance τ = 10−4 and apply Algorithm 2
to x̂ and the polynomial system (6). The dimensions com-
puted for the given tolerance are the same as shown above.
Therefore, we get the same index and multiplicity for the
approximate singular solution with respect to the given tol-
erance. The refined root computed from the multiplication
matrices is:

(1 + 9.5829 × 10−8 − 1.2762 × 10−7 i,

2 − 2.6679 × 10−6 + 3.5569 × 10−7 i).

Then use this refined solution as an initial one and set τ =
10−6, run Algorithm 2 again, we obtain:

(1 − 1.0000 × 10−15 + 2.5854 × 10−14 i, 2 + 8.4457 × 10−14).

3. MODIFIED SNEPSOLVER FOR COMPUT-
ING DIFFERENTIAL OPERATORS

To apprehend the structure of the dual space of an ideal
at a multiple zero further, we calculate a basis for the dual
space.

Let D(α) = D(α1, . . . , αs) : C[x] → C[x] denote the dif-
ferential operator defined by:

D(α1, . . . , αs) =
1

α1! · · ·αs!
∂xα1

1 · · · ∂xαs
s ,

for non-negative integer array α = [α1, . . . , αs]. We write
D = {D(α), |α| ≥ 0} and denote by SpanC(D) the C-vector
space generated by D and introduce a morphism on D that
acts as “integral”:

σxj
(D(α)) =

{

D(α1, . . . , αj − 1, . . . , αs), if αj > 0,
0, otherwise.

Definition 5. A subspace L of SpanC(D) is said to be closed
if

σxj
(L) ⊆ L, j = 1, . . . , s.

Definition 6. Given a zero x̂ = (x̂1, . . . , x̂s) of an ideal I,
we define the subspace of differential operators associated to
I and x̂ as

△x̂ := {L ∈ SpanC(D)|L(f)|x=x̂ = 0, ∀f ∈ I}. (8)

Theorem 4. [7] Let M be the maximal ideal (x1, . . . , xs)
of C[x]. There is a bijective correspondence between M-
primary ideals of C[x] and closed subspaces of SpanC(D):

{M-primary ideals in C[x]}
↑↓

{closed subspaces of Span
C
(D)}.

Moreover, for a zero dimensional M-primary ideal of C[x]
whose multiplicity is µ, we have that dimC(△x̂) = µ.

3.1 Algorithm for Computing Differential Op-
erators

The following algorithm computes the differential opera-
tors from the output of Algorithm 2. Moreover, the differen-
tial operators evaluated at the multiple zero are functionals
which constitute a set of bases for the dual space of the ideal
at the multiple zero.

Algorithm 3. DifferentialOperatorsI
Input: Multiplication matrices Mx1

, . . . , Mxs , multiple zero
x̂ and index ρ.
Output: L = {L1, . . . , Lµ}, a basis for the space △x̂.

• Write the Taylor expansion at x̂ of a polynomial h ∈
C[x] up to degree ρ − 1 with coefficients cα ∈ C:

Tρ−1(h) =
∑

α∈Ns,|α|<ρ

cα(x1 − x̂1)
α1 · · · (xs − x̂s)

αs .

• Compute the normal form of h from the multiplication
matrices Mx1

, . . . , Mxs , and expand it at x̂,

NF(h(x)) =
∑

β

dβ(x − x̂)β.

• Find scalars aαβ ∈ C such that dβ =
∑

α
aαβcα. For

each β such that dβ 6= 0, return the operator

Lβ =
∑

α

aαβ
1

α1! · · ·αs!
∂xα1

1 · · · ∂xαs
s =

∑

α

aαβD(α).

An alternative procedure for computing these differential
operators based on Gröbner basis computation is given in
[7]. Our algorithm can be applied to polynomial system
with floating point coefficients since it computes the normal
form stably from the multiplication matrices computed by
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SNEPSolver. Furthermore, in [7], the degree of polynomial
h(x) is bounded by the multiplicity µ which is larger or equal
to our degree bound ρ according to Corollary 1.
Example 1 (continued) We compute the differential op-
erators at the exact solution (1, 2):

• Write the Taylor expansion of a polynomial at (1, 2)
up to degree ρ − 1 = 2,

h(x) = c0,0 + c1,0(x1 − 1) + c0,1(x2 − 2) + c2,0(x1 − 1)2

+c1,1(x1 − 1)(x2 − 2) + c0,2(x2 − 2)2.

• From the multiplication matrices (7), we obtain the
normal form of h by replacing x2

1, x1x2, x
2
2 with

x2
1 = −x2 + 3, x1x2 = 6x1 + 3x2 − 10, x2

2 = −8x1 + 12.

The differential operators are:






L1 = D(0, 0),
L2 = D(0, 1) − D(2, 0) + 2D(1, 1) − 4D(0, 2),
L3 = D(1, 0) − 2D(2, 0) + 4D(1, 1) − 8D(0, 2).

Corollary 2. Applying the differential operators output from
Algorithm 3 to the polynomials in F , we obtain a new poly-
nomial system

{Lj(fi) | Lj ∈ L, fi ∈ F, 1 ≤ j ≤ µ, 1 ≤ i ≤ t}, (9)

and x̂ becomes its isolated simple solution.

Proof: If x̂ is a singular solution of system (9), then there
exists a non-trivial differential operator Lτ , its differential
order | τ |≥ 1. Take Lβ ∈ L that has the highest differential
order in L. Then Lτ ◦ Lβ is a differential operator for F at
x̂ which is not included in L. It is a contradiction. 2

Suppose the multiple solution x̂ is only known with lim-
ited accuracy. Deflation method demonstrated in [19, 20]
adds new equations and variables to F to have x̂ become a
simple solution, then use Newton iteration to refine it. The
new polynomial system (9) also has x̂ as its simple root,
however, it is not clear whether we can use the attained
information to refine x̂.

3.2 Specialized SNEPSolver
We have applied Algorithms 2 and 3 to a set of examples

shown in the Table 1. For some examples, the systems be-
come too large after we add all monomials of high degrees.
In this subsection, we propose a modified SNEPSolver. The
matrices we used to verify the involutivity are much smaller
than the ones used by SNEPSolver.

Suppose x̂ = (x̂1, . . . , x̂s) is an isolated zero of a set of
multivariate polynomials F = {f1, . . . , ft}. Let P = (x1 −
x̂1, . . . , xs− x̂s) and I be an ideal having P -primary isolated
component. Let

Tk(F ) = {Tk(f1), . . . , Tk(ft)},
where Tk(fi) =

∑

|α|<k
fi,α(x− x̂)α denotes truncated Tay-

lor series expansions of the polynomial fi at x̂ to order k.
The zero can be moved to the origin by changing of vari-
ables. For simplicity, we suppose x̂ is the origin.

The ideal (I, P k) is generated by the polynomials Fk =
Tk(F ) ∪ P k. The lower submatrices of the symbol matri-

ces of Fk and prolonged system F
(j)
k are identity matrices

corresponding to monomials in P k and P k+j . Therefore the

symbol matrices are of full column rank, the dimensions and

null spaces of coefficient matrices of the systems Fk and F
(j)
k

can be computed from the coefficient matrices generated by
the truncated systems Tk(F ) and Tk(F (j)). So we can work
with the coefficient matrices of truncated system Tk(F ) and

truncated prolonged systems Tk(F (j)) instead of the coeffi-
cient matrices of F ∪ P k and their prolongations. For sim-

plicity, we still use M
(j)
k to denote the coefficient matrices

of the system Tk(F (j)). Let d
(j)
k = dim Nullspace(M

(j)
k ).

Since all polynomials are truncated by degree k, the co-

efficient matrix M
(j)
k has only

(

k+s−1
s

)

columns. Further-
more, the number of prolongations m has an upper bound:
m ≤ max(1, k − min(ldeg(f1), . . . , ldeg(ft))), where ldeg(f)
denotes the lowest degree of f .

Example 2. [19] The following polynomial system has 15
regular solutions and three 4-fold multiple solutions:

{f1 = x3
1+x2

2+x2
3−1,f2 = x2

1+x3
2+x2

3−1,f3 = x2
1+x2

2+x3
3−1}

We pick the multiple root x̂ = (1, 0, 0). By changing of
variables, we get a new system {g1 = x3

1 + 3x2
1 + 3x1 + x2

2 +
x2

3, g2 = x2
1 +2x1 +x3

2 +x2
3, g3 = x2

1 +2x1 +x2
2 +x3

3} has the
4-fold multiple solution x̂ = (0, 0, 0). Let P = (x1, x2, x3).

• k = 2. We have:

[T2(g1), T2(g2), T2(g3)]
T = M

(0)
2 · [x1, x2, x3, 1]

T ,

where

M
(0)
2 =





3 0 0 0
2 0 0 0
2 0 0 0





and d
(0)
2 = 3. The prolonged matrix M

(1)
2 is obtained

by adding zero elements to M
(0)
2 . Hence d

(1)
2 = 3 and

d2 = dim(C[x]/(I, P 2)) = 3.

• k = 3. We have:

[T3(g1), T3(g2), T3(g3)]
T = M

(0)
3 ·

[

x2
1, . . . , x3, 1

]T
,

where

M
(0)
3 =





3 0 0 1 0 1 3 0 0 0
1 0 0 0 0 1 2 0 0 0
1 0 0 1 0 0 2 0 0 0





and d
(0)
3 = 7. After the first prolongation, we have:

[T3(x1g1), T3(x1g2), T3(x1g3), . . . , T3(g3)]
T =

M
(1)
3 ·

[

x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3, x1, x2, x3, 1

]T
,

where

M
(1)
3 =







































3 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
3 0 0 1 0 1 3 0 0 0
1 0 0 0 0 1 2 0 0 0
1 0 0 1 0 0 2 0 0 0







































.
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We have d
(1)
3 = 4. The prolonged matrix M

(2)
3 is ob-

tained by adding zeros to M
(1)
3 , hence d

(2)
3 = 4, and

d3 = dim(C[x]/(I, P 3)) = 4.

• k = 4. We compute d
(0)
4 = 17, d

(1)
4 = 8, and d

(2)
4 =

d
(3)
4 = 4. Hence,

d4 = dim(C[x]/(I, P 4)) = 4.

Since d3 = d4 = 4, the multiplicity of x̂ = (0, 0, 0) is µ = 4
and the index of the primary ideal is ρ = 3, and Q = (I, P 3).

The null space of the matrix M
(1)
3 has dimension 4 and

can be written as

N
(1)
3 = [e10, e9, e8, e5],

where ei is the i-th column of 10 × 10 identity matrix.
It is interesting to notice that the differential operators

can be obtained by multiplying the differential operators of

order less than 3 with the 4 null vectors in N
(1)
3 :

{D(0, 0, 0), D(0, 0, 1), D(0, 1, 0), D(0, 1, 1)}.
It is not a coincidence that the differential operators can be

obtained from null vectors of the coefficient matrix M
(1)
3 .

Theorem 5. Let Q = (I, P ρ) be the isolated primary com-
ponent of an ideal I = (f1, . . . , ft) at the multiple solu-
tion x̂ and µ be the multiplicity of x̂. Suppose the system
Fρ = Tρ(F ) ∪ P ρ is involutive at prolongation order m,

the null space of the matrix M
(m)
ρ is generated by vectors

v1,v2, . . . , vµ. Let

L = [D(ρ− 1, 0, . . . , 0), D(ρ− 2, 1, 0, . . . , 0), . . . , D(0, . . . , 0)]

denote the vector consists of all differential operator of order
less than ρ. Then a basis for the space △x̂ can be computed
as

Lj = L · vj , for 1 ≤ j ≤ µ.

Proof: Since the system Fρ is involutive at prolongation
order m, for any polynomial f ∈ I , the coefficient vector
f of the truncated polynomial Tρ(f) can be expressed as

f = c·M (m)
ρ , where c is a complex row vector. For 1 ≤ j ≤ µ,

we have

Lj(f) |x=x̂= Lj(Tk(f)) |x=x̂= c · M (m)
ρ · vj = 0. 2

Algorithm 4. DifferentialOperatorsII
Input: An isolated multiple solution x̂ = (x̂1, . . . , x̂s) of an
ideal I = (f1, . . . , ft) and a tolerance τ .

Output: The multiplicity µ, the index ρ of the primary
component Q = (I, P ρ) and a set of differential operators
L = {L1, . . . , Lµ}.

• Form the coefficient matrix M
(0)
k by computing the trun-

cated multivariate Taylor series expansions of f1, . . . , ft

at x̂ to order k. The prolonged matrix M
(j)
k is com-

puted by shifting M
(0)
k accordingly.

• Compute d
(j)
k = dim Nullspace(M

(j)
k ) for the given τ .

The prolongation is stopped until d
(m)
k = d

(m+1)
k = dk.

• If dk = dk−1, then set ρ = k − 1 and µ = dρ.

• Compute the null vectors of M
(m)
ρ denoted by v1, . . . ,vµ.

The differential operators are computed as Lj = L ·vj,
for j from 1 to µ.

Remark 3. If the zero is not at the origin, we can also

compute the matrix M
(0)
k by changing of variables yi = xi−

x̂i for 1 ≤ i ≤ s and compute the coefficients of polynomials
f1(y1 + x̂1, . . . , ys + x̂s), . . . , ft(y1 + x̂1, . . . , ys + x̂s) with
respect to the variables y1, . . . , ys. However, we only need
the coefficients of yα1

1 · · · yαs
s with total degree less than k.

Hence it is more efficient and numerically stable to compute
the Taylor expansions at x̂ to order k.

There is an impressive paper written by Dayton and Zeng
[9]. They compute the differential operators from the dual
space. We obtain the differential operators from studying
the primal space directly.

3.3 Algorithm for Refining Approximate Sin-
gular Solution

Suppose we are only given an approximate root

x̂ = x̂exact + x̂error,

where x̂error denotes the error in the solution and x̂exact

denotes the exact solution of the polynomial system F =
{f1, . . . , ft} with multiplicity µ and index ρ. The output
of Algorithm 4 is a set of differential operators satisfying
approximately,

Lj(fi) |x=x̂≈ 0, 1 ≤ j ≤ µ, 1 ≤ i ≤ t.

According to Remark 3, the matrix M
(0)
k in Algorithm 4

is the coefficient matrix of truncated polynomials Tk(G) =
{Tk(g1), . . . , Tk(gt)} where

gi = fi(y1 + x̂1,exact + x̂1,error, . . . , ys + x̂s,exact + x̂s,error)

obtained by changing of variables yi = xi− x̂i, for 1 ≤ i ≤ s.
The output of Algorithm 4 can be regarded equivalently as
the differential operators of system G = {g1, . . . , gt} at its
approximate solution ŷ = 0,

Lj(gi) |y=ŷ≈ 0, 1 ≤ j ≤ µ, 1 ≤ i ≤ t.

Suppose Algorithm 4 computes the multiplicity µ and in-
dex ρ correctly, and the system Gρ+1 = Tρ+1(G) ∪ P ρ+1,
P = (y1, . . . , ys) is involutive at prolongation order m for

a given tolerance. The matrix M
(m)
ρ+1 corresponds to the

coefficient matrix of the prolonged system Tρ+1(G
(m)) by

truncating the monomials yα for α ≥ ρ + 1. Similar to Al-

gorithm 1, we can use the null vectors of the matrix M
(m)
ρ+1

to form the multiplication matrices and compute a solution
ŷ which is usually a good approximation for −x̂error. This
is mainly due to the fact that

ŷ = −x̂error = (−x̂1,error, . . . ,−x̂s,error)

is an exact solution of the system G with the multiplicity µ
and index ρ.

Since all computations are done modular the ideal P ρ+1 =
(y1, . . . , ys)

ρ+1. If the given approximate solution x̂ is not
far away from the exact solution x̂exact, then we have ŷ ≈ 0,
the terms ŷα for α > ρ will be much closer to a zero vector.
We are performing a generalized Newton iteration modular
P ρ+1. The profound theory still need to be investigated
in future. We refer to [18] for interesting discussion on
quadratic Newton iteration for systems with multiplicity.
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Algorithm 5. MultipleRootRefiner(MRR for short)
Input: An isolated approximate singular solution x̂ of an
ideal I = (f1, . . . , ft) and a tolerance τ .
Output: Refined solution x̂, the multiplicity µ and index
ρ of the primary component Q = (I, P ρ) and differential
operators L = {L1, . . . , Lµ} for the refined solution.

• For given approximate root x̂ and tolerance τ , applying
Algorithm 4 to estimate the multiplicity µ and index ρ.

• Suppose the truncated system Gρ+1 is involutive at pro-
longation order m, then form the multiplication matri-
ces Mx1

, . . . , Mxs from the null vectors of the matrix

M
(m)
ρ+1. An approximate solution ŷ is obtained by av-

eraging the trace of each multiplication matrix.

• Set x̂ = x̂+ŷ and run the first two steps for the refined
solution. The tolerance is decreased according to the
solution ŷ.

• If ŷ converges to the origin, then we get the refined
solution x̂ with high accuracy. We apply Algorithm 4
to compute the differential operators with respect to the
refined solution. Otherwise, we decrease the tolerance
and run the above steps again.

Example 2 (continued) Suppose we are given an approx-
imate solution x̂ = (1.001,−0.002,−0.001 i). By changing
of variables, we have a perturbed system

G = {fj(y1 + 1.001, y2 − 0.002, y3 − 0.001 i), j = 1, 2, 3}.
Applying Algorithm 4 to estimate multiplicity and index for
a given tolerance τ = 10−2.

• The singular values of M
(1)
3 are: {6.2680, · · · , 0.2167,

4.6071 × 10−3, 1.7236 × 10−5, 5.5960 × 10−7, 3.5123 ×
10−9} and d

(1)
3 = 4.

• The singular values of M
(2)
3 are: {6.2680, · · · , 0.2168,

5.8533 × 10−3, 2.2785 × 10−5, 8.1321 × 10−6, 6.4922 ×
10−9} and d

(2)
3 = 4.

• The singular values of M
(2)
4 are: {7.2589, · · · , 0.07891,

2.0256 × 10−5, 5.2991 × 10−8, 7.4807 × 10−9, 7.4618 ×
10−12} and d

(2)
4 = 4.

So that for the given tolerance τ = 10−2, the multiplicity
is µ = 4 and the index is ρ = 3. The multiplication matri-

ces are formed from the null space of M
(2)
4 . The solution

computed by averaging the eigenvalues of the multiplication
matrices is

ŷ = (−0.0009994 − 7.5315 × 10−10 i,

0.002001 + 2.8002 × 10−8 i,

−1.4949 × 10−6 + 0.0010000 i).

Adding ŷ to x̂, we obtain the refined solution x̂. We ap-
ply Algorithm 5 twice to the new singular solution x̂ for
tolerance 10−5 and 10−8 respectively, and get the refined
solution:

x̂ = (1 + 7.0405 × 10−18 − 7.8146 × 10−19 i,

1.0307 × 10−16 − 1.9293 × 10−17 i,

1.5694 × 10−16 + 7.9336 × 10−17 i).

4. EXPERIMENTS
The following experiments are done for Digits := 14 in

Maple 11 under Windows. The systems DZ1 and DZ2 are
quoted from [9]. The system D2 [8] is positive dimensional,
but we can compute its isolated zero dimensional primary
component at the origin. The other examples are cited
from the PHCpack demos http://www.math.uic.edu/∼jan/.
The second column lists the singular solutions x̂, where
Z2 = (−.7071, .4082, .5774, .2500,−.1443,−.4082). We use
ρ and µ to represent the index and the multiplicity respec-
tively. The fifth column lists the increase in the number of
correct digits from the initial guess to the refined solutions
by SNEPSolver. The empty box denotes that SNEPSolver
fails after running out of memory. The sixth columns shows
the increase in the number of correct digits of the approxi-
mate solutions obtained by Algorithm MultipleRootRefiner.

System Zero ρ µ SNEPSolver MRR
cmbs1 (0, 0, 0) 5 11 5 → 14 3 → 11 → 15
cmbs2 (0, 0, 0) 4 8 5 → 15 3 → 13 → 15

mth191 (0, 1, 0) 3 4 5 → 10 → 154 → 9 → 15
LVZ (0, 0,−1) 7 18 5 → 10 → 14
KSS (1, 1, 1, 1, 1, 1) 5 16 5 → 11 → 14

Caprasse (2,−i
√

3, 2, i
√

3) 3 4 5 → 14 4 → 12 → 15
DZ1 (0, 0, 0, 0) 11 1315 → 14 5 → 14
DZ2 (0, 0,−1) 8 16 4 → 7 → 14

tangents1 Z2 4 4 3 → 10 → 16
D2 (0, 0, 0) 5 5 5 → 10 → 155 → 10 → 15

Ojika1 (1, 2) 3 3 5 → 7 → 14 3 → 6 → 18
Ojika2 (0, 1, 0) 2 2 5 → 10 → 155 → 10 → 14
Ojika3 (0, 0, 1) 3 4 5 → 9 → 14 4 → 8 → 15
Ojika4 (0, 0, 1) 3 3 5 → 10 → 143 → 7 → 15

Table 1: Algorithm Performance

5. CONCLUSION
The multiplicity structure of a singular solution has been

studied extensively in [2, 7, 8, 9, 14, 22, 23, 25, 26, 27]. Var-
ious methods have also been proposed for computing the
singular solutions to high accuracy [5, 18, 19, 20, 32, 33].
In this paper, we describe algorithms based on the geomet-
ric involutive form to completely describe the multiplicity
structure of an isolated singular solution.

If the polynomial system and the singular solutions are
known exactly, the tolerance is set to be zero. We compute
the multiplicity, index and differential operators by exact
linear algebra computation. If we are given an approximate
isolated singular solution of an exact polynomial system,
then we refine the singular solution to have high accuracy
and obtain accurate multiplicity structure with respect to
the refined solution. However, if the polynomials are only
known with limited accuracy, the results we computed de-
pend on a properly chosen tolerance. If there is no infor-
mation about correct digits of the input data, we decide the
tolerance by checking the biggest jump in the singular val-
ues of the coefficient matrix of the polynomial system F . It
is interesting to investigate whether we can find a nearby
polynomial system which has an isolated singular solution
with given structure, such as multiplicity, index or differen-
tial operators.
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Suppose the ideal I = (f1, . . . , ft) is zero dimensional,
then applying our method to each root, we can compute
the primary decomposition of I . However, I need not to be
zero dimensional. We only require that the primary compo-
nent Q is isolated and zero dimensional. Furthermore, the
algorithms we present can be generalized to compute an iso-
lated primary component for a maximal ideal represented
by polynomials, not only the ones generated by the singular
solutions.
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ACM Press, pp. 133–140.

[6] Cox, D., Little, J., and O’Shea, D. Ideals, Varieties, and
Algorithms. Springer-Verlag, New York, 1992. Undergraduate
Texts in Mathematics.

[7] Damiano, A., Sabadini, I., and Struppa, D. Computational
methods for the construction of a class of Noetherian
operators. Experiment. Math. 16 (2007), 41–55.

[8] Dayton, B. Numerical local rings and local solutions of
nonlinear systems. In SNC’07 Proc. 2007 Internat. Workshop
on Symbolic-Numeric Comput. (New York, 2007),
J. Verschelde and S. M. Watt, Eds., ACM Press, pp. 79–86.

[9] Dayton, B., and Zeng, Z. Computing the multiplicity structure
in solving polynomial systems. In Kauers [13], pp. 116–123.

[10] Faugère, J. A new efficient algorithm for computing Gröbner
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[29] Mourrain, B., and Trébuchet, P. Solving projective complete
intersection faster. In Proc. 2000 Internat. Symp. Symbolic
Algebraic Comput. ISSAC’00 (New York, 2000), C. Traverso,
Ed., ACM Press, pp. 430–443.
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