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ABSTRACT
We associate mirror games with the universal game algebra and

use the *-representation to describe quantum commuting operator

strategies. We provide an algebraic characterization of whether or

not a mirror game has perfect commuting operator strategies. This

new characterization uses a smaller algebra introduced by Paulsen

and others for synchronous games and the noncommutative Null-

stellensatz developed by Cimpric, Helton and collaborators. An

algorithm based on noncommutative Gröbner basis computation

and semidefinite programming is given for certifying that a given

mirror game has no perfect commuting operator strategies.
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1 INTRODUCTION
Quantum nonlocal games have been an active area of research for

mathematicians, physicists, and computer scientists in past decades.

The violation of Bell inequality has verified the non-locality of

quantum mechanics [1], which can be explained in the framework

of nonlocal games [8, 34]. A nonlocal game has two or multiple

players and a verifier. The verifier sends a question to each player

separately, and each player sends an answer back to the verifier

without communicating with the others. The verifier determines

whether the players win for the given questions and answers. We
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have a classical strategy if the players can only share classical

information. We have a quantum strategy if we allow the players

to share quantum information. Bell inequality violations have been

proved in the CHSH game [7], where the winning probability using

classical strategies is at most 3/4, while a quantum strategy using

an entangled state shared by two players can achieve a success

probability cos
2 (𝜋/8) ≈ 0.85. Noncommutative Positivstellensätze

have been used to study nonlocal games in [11, 32].

A synchronous game is a nonlocal game with two players called

Alice and Bob, where Alice and Bob are sent the same question and

win if and only if they send the same response. Paulsen and his

collaborators found a simpler formulation using a smaller algebra

and hard zeroes to study synchronous games in [19, 35]. It has

been shown that the success probability of a synchronous game is

given by the trace of a bilinear function on a smaller algebra, see

Theorem 5.5 in [35], and Theorem 3.2 in [19]. In [2, 19, 42], they

give algebraic characterizations of perfect quantum commuting

operator strategies for a general game using noncommutative Null-

stellensätze [4–6] and Positivstellensätze [3, 17, 18, 29]. Theorem

8.3 and 8.7 in [2] provide a simplified version of the Nullstellensatz

theorem for synchronous games.

In [27], Lupini, et al. introduce a new class of nonlocal games

called imitation games, in which another player’s answer com-

pletely determines each player’s answer. Any synchronous game

is an imitation game as the players send the same answers for the

same questions. Some imitation games are not synchronous, such as

mirror games, unique games [37], and variable assignment games

[27]. Lupini, etc., associates a C*-algebra with any imitation game

and characterizes perfect quantum commuting strategies in terms

of the properties of this C*-algebra.

As an interesting subclass of imitation games, mirror games in-

clude unique games and synchronous games. Theorem 5.5 in [35]

for synchronous games has been generalized to Theorem 6.1 in [27]

for mirror games, and a representation of perfect quantum com-

muting strategies for mirror games in terms of traces is also given

in the paper. It is natural to ask whether one can obtain similar

results as Theorem 8.3 and 8.7 in [2] for mirror games. We answer

the question in Theorem 3.1: we provide an algebraic character-

ization of whether or not a mirror game has perfect commuting

operator strategies based on a noncommutative Nullstellensatz and

sums of squares. This new characterization uses a smaller algebra

introduced by Paulsen and others for synchronous games and the
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noncommutative Nullstellensatz developed by Cimpric, Helton, and

collaborators [4–6]. An example is given to demonstrate how to

use noncommutative Gröbner basis algorithm [30] and semidefinite

programming [41] to verify that a given mirror game has no perfect

commuting operator strategies. It would be interesting to see how

to extend these results to imitation games.

The paper is organized as follows. Section 2 introduces some

preliminary results and definitions of nonlocal games. Some back-

ground material on classical strategies and quantum strategies of

nonlocal games are included. We also introduce the universal game

algebra and its *-representation. Section 3 contains our main re-

sult on characterizing whether or not a mirror game has perfect

commuting operator strategies based on a noncommutative Null-

stellensatz and sums of squares. Finally, Section 4 shows how to

use noncommutative Gröbner basis and semidefinite programming

to verify that a given mirror game has no perfect commuting op-

erator strategies. A running example is given to demonstrate the

computations.

2 PRELIMINARIES
A nonlocal game G involves a verifier and two players, Alice and

Bob. For fixed non-empty finite sets 𝑋,𝑌 and 𝐴, 𝐵, there exists

a distribution 𝜇 on 𝑋 × 𝑌 . After choosing a pair (𝑥,𝑦) ∈ 𝑋 × 𝑌

randomly according to 𝜇 (𝑥,𝑦), the verifier sends elements 𝑥 to

Alice and 𝑦 to Bob as questions. Alice and Bob send the verifier

corresponding answers 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. After receiving an answer

from each player, the verifier evaluates the scoring function

𝜆 : 𝑋 × 𝑌 ×𝐴 × 𝐵 −→ {0, 1} (2.1)

If 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 1, we say Alice and Bob win; otherwise, they lose

the game. Alice and Bob know the sets 𝑋,𝑌,𝐴, 𝐵 and the scoring

function 𝜆, but they can’t communicate during the game. Alice and

Bob can make some arrangements before the game starts.

A deterministic strategy for the players consists of two functions:

𝑎 : 𝑋 −→ 𝐴, 𝑏 : 𝑌 −→ 𝐵, (2.2)

and Alice sends 𝑎(𝑥) to the verifier if she receives 𝑥 , and Bob sends
𝑏 (𝑦) to the verifier if he receives 𝑦. Given a deterministic strategy,

the players win the game G with an expectation∑︁
𝑥,𝑦

𝜇 (𝑥,𝑦)𝜆(𝑥,𝑦, 𝑎(𝑥), 𝑏 (𝑦)) . (2.3)

We can also give a probabilistic strategy forG as follows: for each

pair (𝑥,𝑦) ∈ 𝑋 × 𝑌 , let Alice and Bob have mutually independent

distributions 𝑝𝑥,𝑎, 𝑞𝑦,𝑏 for 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵. When the players receive

the questions (𝑥,𝑦), Alice sends the answer 𝑎 to the verifier with

probability 𝑝𝑥,𝑎 and Bob sends the answer 𝑏 to the verifier with

probability 𝑞𝑦,𝑏 . The winning expectation is∑︁
𝑥,𝑦,𝑎,𝑏

𝜇 (𝑥,𝑦)𝑝𝑥,𝑎𝑞𝑦,𝑏𝜆(𝑥,𝑦, 𝑎, 𝑏) . (2.4)

All deterministic strategies and probabilistic strategies are col-

lectively referred to as classical strategies. We record the set of

all classical strategies as 𝐶𝑐 , which is a closed set. Notice that any

probabilistic strategy can be expressed as a convex combination of

deterministic strategies so that the maximal winning expectation

of a nonlocal game G with classical strategies is always obtained

by some deterministic strategy. The classical value of G is defined

as the maximal winning expectation

𝜔𝑐 (G) = max

𝑎,𝑏

∑︁
𝑥,𝑦

𝜇 (𝑥,𝑦)𝜆(𝑥,𝑦, 𝑎(𝑥), 𝑏 (𝑦)). (2.5)

We use the Dirac notation in quantum information to represent

the unit vector (a state) in Hilbert space. If Alice and Bob are allowed

to share a quantum entangled state |𝜓 ⟩ ∈ H𝐴 ⊗ H𝐵 , where both

H𝐴 andH𝐵 are finite-dimensional Hilbert space, and then they can

have a quantum strategy described as follows:

• If Alice receives 𝑥 , she performs the projection-valued mea-

sure (PVM) 𝑃𝑥,𝑎 onH𝐴 part of |𝜓 ⟩ and sends the measure-

ment result 𝑎 to the verifier.

• If Bob receives 𝑦, he performs the PVM 𝑄𝑦,𝑏 onH𝐵 part of

|𝜓 ⟩ and sends the measurement result 𝑏 to the verifier.

If we replace PVM by POVM (positive operator-valued measure),

the results below will also hold [14, 36].

We record the set of all finite-dimensional quantum strategies

as 𝐶𝑞 . If we drop the requirement of finite dimension, i.e., H𝐴,H𝐵

can be infinite-dimensional Hilbert spaces, then we get a set of

quantum strategies denoted as𝐶𝑞𝑠 . Slofstra [38, 39] has proved that

neither 𝐶𝑞 nor 𝐶𝑞𝑠 is a closed set. We denote the closure of 𝐶𝑞 as

𝐶𝑞𝑎 . It is evident that

𝐶𝑐 ⊆ 𝐶𝑞 ⊆ 𝐶𝑞𝑠 ⊆ 𝐶𝑞𝑎

Each of the above ” ⊆ ” is strictly inclusive. The first strict inclusion

comes from Bell’s inequality, and the last two strict inclusions come

from results in [9, 12, 38, 39].

The winning expectation for the given quantum strategy is∑︁
𝑥,𝑦,𝑎,𝑏

𝜇 (𝑥,𝑦) · ⟨𝜓 |𝑃𝑥,𝑎 ⊗ 𝑄𝑦,𝑏 |𝜓 ⟩ · 𝜆(𝑥,𝑦, 𝑎, 𝑏) . (2.6)

If we take all of the quantum strategies, the supremum of winning

expectations is

𝜔𝑞 (G) = sup

H𝐴,H𝐵,𝜓,

𝑃𝑥,𝑎,𝑄𝑦,𝑏

∑︁
𝑥,𝑦,𝑎,𝑏

𝜇 (𝑥,𝑦) · ⟨𝜓 |𝑃𝑥,𝑎 ⊗𝑄𝑦,𝑏 |𝜓 ⟩ · 𝜆(𝑥,𝑦, 𝑎, 𝑏),

(2.7)

which is called the quantum value of G. The quantum value can

certainly be attained in 𝐶𝑞𝑎 , but not necessarily in 𝐶𝑞 or 𝐶𝑞𝑠 .

Now we give a quantum commuting operator strategy for G as

follows. Let H be a (perhaps infinite-dimensional) Hilbert space,

|𝜓 ⟩ ∈ H , and for every (𝑥,𝑦) ∈ 𝑋 × 𝑌 , Alice and Bob have PVMs

{𝐸 (1)𝑥𝑎 , 𝑎 ∈ 𝐴} and {𝐸 (2)𝑦
𝑏
, 𝑏 ∈ 𝐵}, respectively. Those two sets

of PVMs satisfy the following conditions:

𝐸 (1)𝑥𝑎𝐸 (2)
𝑦

𝑏
= 𝐸 (2)𝑦

𝑏
𝐸 (1)𝑥𝑎 , ∀ (𝑥,𝑦, 𝑎, 𝑏) ∈ 𝑋 × 𝑌 ×𝐴 × 𝐵. (2.8)

When Alice receives an input 𝑥 , she performs {𝐸 (1)𝑥𝑎 , 𝑎 ∈ 𝐴} on |𝜓 ⟩
and sends the result 𝑎 to the verifier; Similarly, when Bob receives

an input 𝑦, he performs {𝐸 (2)𝑦
𝑏
, 𝑏 ∈ 𝐵} on |𝜓 ⟩ and sends the result

𝑏 to the verifier.

We denote the set of all the quantum commuting operator strate-

gies as 𝐶𝑞𝑐 . We know that 𝐶𝑞𝑐 is closed [13]. Given a quantum

commuting operator strategy of G, the winning expectation is∑︁
𝑥,𝑦,𝑎,𝑏

𝜇 (𝑥,𝑦) · ⟨𝜓 |𝐸 (1)𝑥𝑎 · 𝐸 (2)𝑦
𝑏
|𝜓 ⟩ · 𝜆(𝑥,𝑦, 𝑎, 𝑏) . (2.9)
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Then the supremum of winning expectation (note that it can cer-

tainly be obtained) is

𝜔𝑐𝑜 (G) = sup

H,𝜓,

𝐸 (1)𝑥𝑎 , 𝐸 (2)𝑦
𝑏

∑︁
𝑥,𝑦,𝑎,𝑏

𝜇 (𝑥,𝑦)·⟨𝜓 |𝐸 (1)𝑥𝑎 ·𝐸 (2)
𝑦

𝑏
|𝜓 ⟩·𝜆(𝑥,𝑦, 𝑎, 𝑏)

(2.10)

which is called the quantum commuting operator value of G.

It is easy to see that 𝐶𝑞𝑎 ⊆ 𝐶𝑞𝑐 [13], so that we have 𝜔𝑐 (G) ≤
𝜔𝑞 (G) ≤ 𝜔𝑐𝑜 (G). If we restrict the Hilbert space H to be finite-

dimensional in the commuting operator strategies, then 𝜔𝑞 (G) =
𝜔𝑐𝑜 (G) (see [38, 40]). There exist games G for which 𝜔𝑞 (G) <

𝜔𝑐𝑜 (G) in the infinite-dimensional case, see [13, 39]. The problem

of whether 𝐶𝑞𝑐 = 𝐶𝑞𝑎 is the famous Tsirelson’s problem, and it is

true if and only if the Connes’ embedding conjecture is true [10].

Kirchberg shows that Connes’ conjecture has several equivalent re-

formulations in operator algebras and Banach space theory [22]. In

[25], Klep and Schweighofer show that Connes’ embedding conjec-

ture on von Neumann algebras is equivalent to the tracial version

of the Positivstellensatz. In 2020, Ji and his collaborators proved

𝑀𝐼𝑃∗ = 𝑅𝐸, which implies that Connes’ embedding conjecture

is false [20]. But we still don’t know an explicit counterexample.

See [13, 16, 33] for recent results on the Connes’ embedding prob-

lem. This is the main motivation for us to study quantum nonlocal

games.

We say a strategy is perfect if and only if the players can certainly

win the gamewith this strategy. A natural problem is to ask whether

there exists a perfect strategy in𝐶𝑐 (or𝐶𝑞,𝐶𝑞𝑠 ,𝐶𝑞𝑎,𝐶𝑞𝑐 ) for a given

game G.

In [27], the authors introduce a new class of nonlocal games

called imitation games, and they provide an algebraic characteriza-

tion of perfect commuting operator strategies for these games. In

this paper, we mainly discuss the mirror game, which is a special

subclass of imitation games.

Definition 2.1 (mirror game). Let G be a nonlocal game with
a question set 𝑋 × 𝑌 , an answer set 𝐴 × 𝐵 and a scoring function
𝜆 : 𝑋 × 𝑌 × 𝐴 × 𝐵 → {0, 1}. The distribution on 𝑋 × 𝑌 is the
uniform distribution.We say𝐺 is a mirror game if there exist functions
𝜉 : 𝑋 → 𝑌 and 𝜂 : 𝑌 → 𝑋 such that:

𝜆(𝑥, 𝜉 (𝑥), 𝑎, 𝑏)𝜆
(
𝑥, 𝜉 (𝑥), 𝑎′, 𝑏

)
= 0, ∀𝑥 ∈ 𝑋, 𝑎 ≠ 𝑎′ ∈ 𝐴,𝑏 ∈ 𝐵, (2.11)

𝜆(𝜂 (𝑦), 𝑦, 𝑎, 𝑏)𝜆
(
𝜂 (𝑦), 𝑦, 𝑎, 𝑏′

)
= 0, ∀𝑦 ∈ 𝑌, 𝑎 ∈ 𝐴,𝑏 ≠ 𝑏′ ∈ 𝐵.(2.12)

Example 2.1. Let 𝑋 = 𝑌 = 𝐴 = 𝐵 = {0, 1} and the scoring

function 𝜆 be given as follows:

(𝑎, 𝑏)

𝜆 (𝑥,𝑦)
(0,0) (0,1) (1,0) (1,1)

(0,0) 1 0 1 0

(0,1) 0 0 1 1

(1,0) 0 1 0 0

(1,1) 1 0 0 1

We can check that G = (𝑋,𝑌,𝐴, 𝐵, 𝜆) is a mirror game with

𝜉 : 0 ↦→ 0, 1 ↦→ 0, 𝜂 : 0 ↦→ 0, 1 ↦→ 1.

We use the universal game algebra and representation defined in

[2] to describe the relations between the PVMs in the commuting

operator strategy below.

Definition 2.2 (universal game algebra). Let

e = (𝑒 (1)𝑥𝑎 )𝑥∈𝑋,𝑎∈𝐴 ∪ (𝑒 (2)𝑦
𝑏
)𝑦∈𝑌,𝑏∈𝐵 (2.13)

andC⟨e⟩ be the noncommutative free algebra generated by the tuple e.
Let I be the two-sided ideal generated by the following polynomials:{

𝑒 (1)𝑥𝑎𝑒 (2)
𝑦

𝑏
− 𝑒 (2)𝑦

𝑏
𝑒 (1)𝑥𝑎 | ∀𝑥,𝑦, 𝑎, 𝑏

}
∪

{
(𝑒 (1)𝑥𝑎 )2 − 𝑒 (1)𝑥𝑎 | ∀𝑥, 𝑎

}
∪

{
(𝑒 (2)𝑦

𝑏
)2 − 𝑒 (2)𝑦

𝑏
| ∀𝑦,𝑏

}
∪

{
𝑒 (1)𝑥𝑎1

𝑒 (1)𝑥𝑎2

| ∀𝑥, 𝑎1 ≠ 𝑎2

}
∪

{
𝑒 (2)𝑦

𝑏1

𝑒 (2)𝑦
𝑏2

| ∀𝑦, 𝑏1 ≠ 𝑏2

}
∪

{∑︁
𝑎∈𝐴

𝑒 (1)𝑥𝑎 − 1 | ∀𝑥
}
∪

{∑︁
𝑏∈𝐵

𝑒 (2)𝑦
𝑏
− 1 | ∀𝑦

}
.

(2.14)

Then we define U = C⟨e⟩/I and equip U with the involution
induced by

(𝑒 (1)𝑥𝑎 )∗ = 𝑒 (1)𝑥𝑎 , (𝑒 (2)
𝑦

𝑏
)∗ = 𝑒 (2)𝑦

𝑏
. (2.15)

where the ” ∗ ” of a complex number is its conjugate. We callU the
universal game algebra of G.

For the universal game algebraU, we can use *-representation

to describe a commuting operator strategy. A *-representation of

U is a unital *-homomorphism

𝜋 : U → B(H), (2.16)

where B(H) denotes the set of bounded linear operators on a

Hilbert spaceH and 𝜋 satisfies 𝜋 (𝑢∗) = 𝜋 (𝑢)∗,∀𝑢 ∈ 𝑈 . It is obvious

that any commutative PVMs {𝐸 (1)𝑥𝑎 , 𝑎 ∈ 𝐴} and {𝐸 (2)𝑦
𝑏
, 𝑏 ∈ 𝐵}

can be obtained by the unital *-homomorphism

𝜋 : 𝑒 (1)𝑥𝑎 ↦→ 𝐸 (1)𝑥𝑎 , 𝑒 (2)
𝑦

𝑏
↦→ 𝐸 (2)𝑦

𝑏
, (2.17)

and given an arbitrary unital *-homomorphism, the image ofU’s

generators is commutative PVMs. Therefore, each commuting oper-

ator strategy corresponds to a pair (𝜋, |𝜓 ⟩), where 𝜋 : U → B(H)
is a *-representation and |𝜓 ⟩ ∈ H is a state (a unit vector). We can

use the language of representation to rewrite 𝜔𝑐𝑜 (G) as follows:

𝜔𝑐𝑜 (G) = sup

𝜋,𝜓

⟨𝜓 |𝜋 (ΦG) |𝜓 ⟩, (2.18)

where

ΦG =
∑︁
𝑥,𝑦

∑︁
𝑎,𝑏

𝜇 (𝑥,𝑦)𝜆(𝑥,𝑦, 𝑎, 𝑏)𝑒 (1)𝑥𝑎𝑒 (2)
𝑦

𝑏
, (2.19)

and the supremum is taken over all *-representations 𝜋 ofU into

bounded operators on a Hilbert spaceH and state |𝜓 ⟩ ∈ H .

Since we assume that 𝜇 is a uniform distribution, ΦG can be

simplified to

ΦG =
1

|𝑋 | · |𝑌 |
∑︁
𝑥,𝑦

∑︁
𝑎,𝑏

𝜆(𝑥,𝑦, 𝑎, 𝑏)𝑒 (1)𝑥𝑎𝑒 (2)
𝑦

𝑏
. (2.20)

It’s obvious that a game G has a perfect commuting operator strat-

egy if and only if

𝜔𝑐𝑜 (G) = 1. (2.21)

We also need the concept of tracial linear functional and tracial

state.
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Definition 2.3. A linear mapping 𝜏 : A → C on an algebra A
is said to be tracial if and only if

𝜏 (𝑎𝑏) = 𝜏 (𝑏𝑎), ∀𝑎, 𝑏 ∈ A . (2.22)

Given a Hilbert spaceH and an operator algebra A acting on H , a
state |𝜓 ⟩ ∈ H is called a tracial state if the linear mapping it induces
is tracial, i.e.

⟨𝜓 |𝑎𝑏 |𝜓 ⟩ = ⟨𝜓 |𝑏𝑎 |𝜓 ⟩, ∀𝑎, 𝑏 ∈ A . (2.23)

Especially if A is a von Neumann algebra, and there exists such a
tracial linearmapping 𝜏 onA, we say (A, 𝜏) is a tracial von Neumann
algebra.

The definition of determining set is given in [2].

Definition 2.4 (determining set). Let G be a nonlocal game; its
universal game algebra isU. A setF ⊆ U is denoted as a determining
set of G if it satisfies that a pair (𝜋, |𝜓 ⟩) is a perfect commuting
operator strategy if and only if 𝜋 (F )|𝜓 ⟩ = {0}.

According to Theorem 3.5 in [2], given any nonlocal game, we

have a natural determining set:

Proposition 2.1. Let G = (𝑋,𝑌,𝐴, 𝐵, 𝜆) be a nonlocal game, the
set of invalid elements

N = {𝑒 (1)𝑥𝑎𝑒 (2)
𝑦

𝑏
| 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0} (2.24)

is a determining set. We call it the invalid determining set.

Corollary 2.2. The left ideal L(N) generated by N is also a
determining set.

For a mirror game G, suppose its universal game algebra isU,

and we define:

𝑓
𝜂 (𝑦)
𝑦,𝑏

=
∑
𝑎∈𝐴,𝜆 (𝜂 (𝑦),𝑦,𝑎,𝑏 )=1

𝑒 (1)𝜂 (𝑦)𝑎 , (2.25)

𝑔
𝜉 (𝑥 )
𝑥,𝑎 =

∑
𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=1

𝑒 (2)𝜉 (𝑥 )
𝑏

. (2.26)

Definition 2.5. Let G = (𝑋,𝑌,𝐴, 𝐵, 𝜆) be a nonlocal game. For
𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, denote

𝐸𝑎𝑥,𝑦 = {𝑏 ∈ 𝐵 : 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 1} (2.27)

𝐸𝑏𝑥,𝑦 = {𝑎 ∈ 𝐴 : 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 1}. (2.28)

We define a mirror game as regular if and only if

∪𝑎∈𝐴𝐸𝑎𝑥,𝜉 (𝑥 ) = 𝐵 and ∪𝑏∈𝐵 𝐸𝑏
𝜂 (𝑦),𝑦 = 𝐴, ∀𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 . (2.29)

Remark that this condition appeared in [27] firstly, but they didn’t
name it.

Lemma 2.1. Amirror game G is regular if and only if the universal
game algebra satisfies:∑︁

𝑎∈𝐴
𝑔
𝜉 (𝑥 )
𝑥,𝑎 = 1, ∀𝑥 ∈ 𝑋 and

∑︁
𝑏∈𝐵

𝑓
𝜂 (𝑦)
𝑦,𝑏

= 1, ∀𝑦 ∈ 𝑌 . (2.30)

Proof. By the definition of regularity and the universal game

algebra. □

Example 2.1 (continued). For the mirror game G defined in Exam-
ple 2.1, we can compute that

𝑓
𝜂 (0)
0,0

= 𝑒 (1)0

0
, 𝑓

𝜂 (0)
0,1

= 𝑒 (1)0

1
, 𝑓

𝜂 (1)
1,0

= 0, 𝑓
𝜂 (1)
1,1

= 𝑒 (1)0

0
+𝑒 (1)0

1
= 1.

It is easy to check that
∑
𝑏∈𝐵 𝑓

𝜂 (𝑦)
𝑦,𝑏

= 1, ∀𝑦 ∈ 𝑌 . Similarly, we have

𝑔
𝜉 (0)
0,0

= 𝑒 (2)0

0
, 𝑔

𝜉 (0)
0,1

= 𝑒 (2)0

1
, 𝑔

𝜉 (1)
1,0

= 1, 𝑔
𝜂 (1)
1,1

= 0.

It is true that
∑
𝑎∈𝐴 𝑔

𝜉 (𝑥 )
𝑥,𝑎 = 1, ∀𝑥 ∈ 𝑋 . Hence, G is a regular mirror

game.
In the following sections, we’ll only consider regular mirror

games.

3 MAIN RESULT
Given a universal game algebra U of a nonlocal game G, a general

noncommutative Nullstellensatz developed by Cimpric, Helton, and

their collaborators [5, 6] has been adapted to Theorem 4.1 and 4.3

in [2] to show that G has a perfect commuting operator strategy if

and only if there exists a *-representation 𝜋 : U → B(H) and a

state |𝜓 ⟩ ∈ H satisfying

𝜋 (L(N))|𝜓 ⟩ = {0}, (3.1)

which is also equivalent to

−1 ∉ L(N) + L(N)∗ + SOSU , (3.2)

where

SOSU =

{
𝑛∑︁
𝑖=1

𝑢∗𝑖 𝑢𝑖 | 𝑢𝑖 ∈ U, 𝑛 ∈ N
}
, (3.3)

L(N) is the left ideal generated by the invalid determining set N .

For synchronous games, the authors use a smaller algebra U(1)
which is the subalgebra of U generated by 𝑒 (1)𝑥𝑎 , and prove that a

synchronous game has a perfect commuting operator strategy if

and only if there exists a *-representation 𝜋 ′ : U(1) → B(H) and
a tracial state |𝜓 ⟩ ∈ H satisfying

𝜋 ′ (J (synchB(1))) |𝜓 ⟩ = {0}, (3.4)

where J (synchB(1)) is a two-sided ideal in U(1), see Theorem
8.3 and 8.7 in [2].

In Theorem 3.1, we generalize Theorem 8.3 and 8.7 in [2] for

mirror games and provide a characterization of whether or not

a mirror game has perfect commuting operator strategies using

smaller algebras U(1) and U(2), where U(1) is the subalgebra
of U generated by 𝑒 (1)𝑥𝑎 only, and U(2) is the subalgebra of U
generated by 𝑒 (2)𝑦

𝑏
only.

Let J (mir1) be the two-sided ideal ofU(1) generated by{
𝑒 (1)𝑥𝑎 𝑓

𝜂 (𝑦)
𝑦,𝑏

| 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0

}
, (3.5)

and J (mir2) be the two-sided ideal ofU(2) generated by{
𝑒 (2)𝑦

𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 | 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0

}
. (3.6)

Example 2.1 (continued). Let’s continue the computation in Ex-
ample 2.1. The two-sided ideal J (mir1) is generated by the following
elements:

{𝑒 (1)0

0
𝑒 (1)0

1
, 𝑒 (1)0

1
𝑒 (1)0

0
, 0, 𝑒 (1)0

0
, 𝑒 (1)0

1
, 𝑒 (1)1

1
𝑒 (1)0

0
, 𝑒 (1)1

1
𝑒 (1)0

1
, 0, 0}.

It is clear that J (mir1) is generated by {𝑒 (1)0

0
, 𝑒 (1)0

1
} in U(1).

Theorem 3.1 (main result). A regular mirror game with its
universal game algebraU and invalid determining setN has a perfect
commuting operator strategy if and only if any of the equivalent
conditions are satisfied:
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(1) There exists a *-representation 𝜋 : U → B(H) and a state
|𝜓 ⟩ ∈ H satisfying

𝜋 (L(N))|𝜓 ⟩ = {0}; (3.7)

(2) There exists a *-representation 𝜋 ′ : U(1) → B(H) and a tracial
state |𝜓 ⟩ ∈ H satisfying

𝜋 ′ (J (mir1)) |𝜓 ⟩ = {0}; (3.8)

(3) There exists a *-representation 𝜋 ′′ : U(2) → B(H) and a tracial
state |𝜙⟩ ∈ H satisfying

𝜋 ′′ (J (mir2)) |𝜙⟩ = {0}; (3.9)

(4) There exists a *-representation 𝜋 ′
0
ofU(1) mapping into a tracial

von Neumann algebraW ⊆ B(H) satisfying
𝜋 ′

0
(J (mir1)) = {0}; (3.10)

(5) There exists a *-representation 𝜋 ′′
0
ofU(2) mapping into a tracial

von Neumann algebraW′ ⊆ B(H) satisfying
𝜋 ′′

0
(J (mir2)) = {0}. (3.11)

To prove our main theorem, we introduce several lemmas.

Lemma 3.1. For every 𝑥 ∈ 𝑋 and 𝑎 ∈ 𝐴, we have 𝑒 (1)𝑥𝑎 − 𝑔
𝜉 (𝑥 )
𝑥,𝑎 ∈

L(N). Similarly, for every𝑦 ∈ 𝑌 and 𝑏 ∈ 𝐵, we have 𝑒 (2)𝑦
𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

∈
L(N).

Proof. Firstly, by

∑
𝑎′ 𝑒 (1)𝑥𝑎′ = 1, we have

𝑒 (1)𝑥𝑎 − 𝑔
𝜉 (𝑥 )
𝑥,𝑎

= 𝑒 (1)𝑥𝑎 −
( ∑︁
𝑎′∈𝐴

𝑒 (1)𝑥𝑎′

)
𝑔
𝜉 (𝑥 )
𝑥,𝑎 = 𝑒 (1)𝑥𝑎 − 𝑒 (1)𝑥𝑎 · 𝑔𝜉 (𝑥 )𝑥,𝑎

+
(∑︁
𝑎′≠𝑎

𝑒 (1)𝑥𝑎′

)
· ©­«

∑︁
𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=1

𝑒 (2)𝜉 (𝑥 )
𝑏

ª®¬
= 𝑒 (1)𝑥𝑎 · ©­«1 −

∑︁
𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=1

𝑒 (2)𝜉 (𝑥 )
𝑏

ª®¬
+

∑︁
𝑎′≠𝑎

∑︁
𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=1

𝑒 (1)𝑥𝑎′𝑒 (2)
𝜉 (𝑥 )
𝑏

.

Notice that

1 −
∑︁

𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=1

𝑒 (2)𝜉 (𝑥 )
𝑏

=
∑︁

𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=0

𝑒 (2)𝜉 (𝑥 )
𝑏

.

By the definition of L(N), we have

𝑒 (1)𝑥𝑎
(
1 − ∑

𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=1
𝑒 (2)𝜉 (𝑥 )

𝑏

)
=

∑
𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=0

𝑒 (1)𝑥𝑎𝑒 (2)
𝜉 (𝑥 )
𝑏

∈ L(N). (3.12)

On the other hand, it is known by the definition of mirror games

that 𝜆(𝑥, 𝜉 (𝑥), 𝑎′, 𝑏) = 0 when 𝑎′ ≠ 𝑎 and 𝜆(𝑥, 𝜉 (𝑥), 𝑎, 𝑏) = 1. Hence

we have 𝑒 (1)𝑥
𝑎′𝑒 (2)

𝜉 (𝑥 )
𝑏

∈ N which implies∑︁
𝑎′≠𝑎

∑︁
𝑏∈𝐵,𝜆 (𝑥,𝜉 (𝑥 ),𝑎,𝑏 )=1

𝑒 (1)𝑥𝑎′𝑒 (2)
𝜉 (𝑥 )
𝑏

∈ L(N). (3.13)

Therefore, we have

𝑒 (1)𝑥𝑎 − 𝑔
𝜉 (𝑥 )
𝑥,𝑎 ∈ L(N). (3.14)

Similarly, 𝑒 (2)𝑦
𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

can be rewritten as follows:

𝑒 (2)𝑦
𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

= 𝑒 (2)𝑦
𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

( ∑︁
𝑏′∈𝐵

𝑒 (2)𝑦
𝑏′

)
= 𝑒 (2)𝑦

𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

𝑒 (2)𝑦
𝑏
+

∑︁
𝑏′≠𝑏

𝑓
𝜂 (𝑦)
𝑦,𝑏

𝑒 (2)𝑦
𝑏′

=
©­«1 −

∑︁
𝑎∈𝐴,𝜆 (𝜂 (𝑦),𝑦,𝑎,𝑏 )=1

𝑒 (1)𝜂 (𝑦)𝑎
ª®¬ · 𝑒 (2)𝑦𝑏

+
∑︁
𝑏′≠𝑏

∑︁
𝑎∈𝐴,𝜆 (𝜂 (𝑦),𝑦,𝑎,𝑏 )=1

𝑒 (1)𝜂 (𝑦)𝑎 𝑒 (2)𝑦
𝑏′
.

We still have (
1 − ∑

𝑎∈𝐴,𝜆 (𝜂 (𝑦),𝑦,𝑎,𝑏 )=1
𝑒 (1)𝜂 (𝑦)𝑎

)
· 𝑒 (2)𝑦

𝑏

=
∑
𝑎∈𝐴,𝜆 (𝜂 (𝑦),𝑦,𝑎,𝑏 )=0

𝑒 (1)𝜂 (𝑦)𝑎 𝑒 (2)𝑦
𝑏
∈ L(N), (3.15)

and by the definition of the mirror game, we have∑︁
𝑏′≠𝑏

∑︁
𝑎∈𝐴,𝜆 (𝜂 (𝑦),𝑦,𝑎,𝑏 )=1

𝑒 (1)𝜂 (𝑦)𝑎 𝑒 (2)𝑦
𝑏′

∈ L(N). (3.16)

Therefore, we have

𝑒 (2)𝑦
𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

∈ L(N). (3.17)

□

Lemma 3.2. We have the following inclusion relations:

{𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

| 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0} ⊆ L(N); (3.18)

{𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 | 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0} ⊆ L(N). (3.19)

Proof. Notice that

𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

= 𝑒 (1)𝑥𝑎𝑒 (2)
𝑦

𝑏
− 𝑒 (1)𝑥𝑎

(
𝑒 (2)𝑦

𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

)
As 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0, we know 𝑒 (1)𝑥𝑎𝑒 (2)

𝑦

𝑏
∈ N ⊆ L(N). By Lemma

3.1, we have 𝑒 (2)𝑦
𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

∈ L(N). Therefore, we have

𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

∈ L(N). (3.20)

For 𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 , we have

𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 = 𝑒 (2)𝑦

𝑏
𝑒 (1)𝑥𝑎 − 𝑒 (2)𝑦

𝑏

(
𝑒 (1)𝑥𝑎 − 𝑔

𝜉 (𝑥 )
𝑥,𝑎

)
= 𝑒 (1)𝑥𝑎𝑒 (2)

𝑦

𝑏
− 𝑒 (2)𝑦

𝑏

(
𝑒 (1)𝑥𝑎 − 𝑔

𝜉 (𝑥 )
𝑥,𝑎

)
(as 𝑒 (1)𝑥𝑎 always commutes with 𝑒 (2)𝑦

𝑏
)

We still have 𝑒 (1)𝑥𝑎𝑒 (2)
𝑦

𝑏
∈ N ⊆ L(N) by 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0, and

𝑒 (1)𝑥𝑎 − 𝑔
𝜉 (𝑥 )
𝑥,𝑎 ∈ L(N) by Lemma 3.1. Then we have

𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 ∈ L(N). (3.21)

□

Lemma 3.3. We have J (mir1) ⊆ L(N) and J (mir2) ⊆ L(N).
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Proof. Firstly let us consider a monomial

𝑤 (𝑒 (1)) = 𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡𝑎𝑡 ∈ U(1),

we have:

𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡𝑎𝑡 − 𝑔

𝜉 (𝑥𝑡 )
𝑥𝑡 ,𝑎𝑡 𝑒 (1)

𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡−1

𝑎𝑡−1

= 𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡𝑎𝑡 − 𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡−1

𝑎𝑡−1
𝑔
𝜉 (𝑥𝑡 )
𝑥𝑡 ,𝑎𝑡

= 𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡−1

𝑎𝑡−1

(
𝑒 (1)𝑥𝑡𝑎𝑡 − 𝑔

𝜉 (𝑥𝑡 )
𝑥𝑡 ,𝑎𝑡

)
∈ L(N).

Then we have

𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡−1

𝑎𝑡−1
𝑒 (1)𝑥𝑡𝑎𝑡 − 𝑔

𝜉 (𝑥𝑡 )
𝑥𝑡 ,𝑎𝑡 𝑔

𝜉 (𝑥𝑡−1 )
𝑥𝑡−1,𝑎𝑡−1

· · ·𝑔𝜉 (𝑥1 )
𝑥1,𝑎1

= 𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡𝑎𝑡 − 𝑔

𝜉 (𝑥𝑡 )
𝑥𝑡 ,𝑎𝑡 𝑒 (1)

𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡−1

𝑎𝑡−1

+ 𝑔𝜉 (𝑥𝑡 )𝑥𝑡 ,𝑎𝑡

(
𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡−1

𝑎𝑡−1
− 𝑔

𝜉 (𝑥𝑡−1 )
𝑥𝑡−1,𝑎𝑡−1

𝑒 (1)𝑥1

𝑎1
· · · 𝑒 (1)𝑥𝑡−2

𝑎𝑡−2

)
+ · · · + 𝑔𝜉 (𝑥𝑡 )𝑥𝑡 ,𝑎𝑡 · · ·𝑔𝜉 (𝑥2 )

𝑥2,𝑎2

(
𝑒 (1)𝑥1

𝑎1
− 𝑔

𝜉 (𝑥1 )
𝑥1,𝑎1

)
∈ L(N).

(3.22)

It’s known that 𝑔
𝜉 (𝑥𝑡 )
𝑥𝑡 ,𝑎𝑡 · · ·𝑔𝜉 (𝑥1 )

𝑥1,𝑎1
= 𝑤∗ (𝑔). Then equation (3.22) can

be written as

𝑤 (𝑒 (1)) −𝑤∗ (𝑔) ∈ L(N). (3.23)

Suppose

𝑝 =
∑︁

𝑥, 𝑦,𝑎,𝑏, 𝜆 (𝑥, 𝑦,𝑎,𝑏) = 0

𝑢,𝑤

𝑢 (𝑒 (1)) ·𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

·𝑤 (𝑒 (1)) ∈ J (mir1),

where𝑢 (𝑒 (1)),𝑤 (𝑒 (1)) are monomials inU(1) and 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0,

we compute:

𝑝 =
∑︁ (

𝑢 (𝑒 (1)) · 𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

·
(
𝑤 (𝑒 (1)) −𝑤∗ (𝑔)

)
+ 𝑢 (𝑒 (1)) · 𝑒 (1)𝑥𝑎 𝑓

𝜂 (𝑦)
𝑦,𝑏

𝑤∗ (𝑔)
)

=
∑︁ (

𝑢 (𝑒 (1)) · 𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

·
(
𝑤 (𝑒 (1)) −𝑤∗ (𝑔)

)
+𝑤∗ (𝑔) 𝑢 (𝑒 (1)) · 𝑒 (1)𝑥𝑎 𝑓

𝜂 (𝑦)
𝑦,𝑏

)
.

The second ” = ” is true because 𝑤∗ (𝑔) is a polynomial in U(2),
which commutes with all of elements in U(1). By the equation

(3.23), we know that

𝑢 (𝑒 (1)) · 𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

·
(
𝑤 (𝑒 (1)) −𝑤∗ (𝑔)

)
∈ L(N), (3.24)

and from Lemma 3.2 we know

𝑤∗ (𝑔)𝑢 (𝑒 (1)) · 𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

∈ L(N). (3.25)

Then we conclude that every 𝑝 ∈ J (mir1) satisfies 𝑝 ∈ L(N),
which means J (mir1) ⊆ L(N).

Similarly, we have

𝑒 (2)𝑦1

𝑏1

· · · 𝑒 (2)𝑦𝑡
𝑏𝑡

− 𝑓
𝜂 (𝑦𝑡 )
𝑦𝑡 ,𝑏𝑡

𝑒 (2)𝑦1

𝑏1

· · · 𝑒 (2)𝑦𝑡−1

𝑦𝑡−1

= 𝑒 (2)𝑦1

𝑏1

· · · 𝑒 (2)𝑦𝑡
𝑏𝑡

− 𝑒 (2)𝑦1

𝑏1

· · · 𝑒 (2)𝑦𝑡−1

𝑏𝑡−1

𝑓
𝜂 (𝑦𝑡 )
𝑦𝑡 ,𝑏𝑡

= 𝑒 (2)𝑦1

𝑏1

· · · 𝑒 (2)𝑦𝑡−1

𝑏𝑡−1

(𝑒 (2)𝑦𝑡
𝑏𝑡

− 𝑓
𝜂 (𝑦𝑡 )
𝑦𝑡 ,𝑏𝑡

) ∈ L(N). (3.26)

It is also true that

𝑤 (𝑒 (2)) −𝑤∗ (𝑓 ) = 𝑒 (2)𝑦1

𝑏1

· · · 𝑒 (2)𝑦𝑡−1

𝑏𝑡−1

𝑒 (2)𝑦𝑡
𝑏𝑡

−𝑓 𝜂 (𝑦𝑡 )
𝑦𝑡 ,𝑏𝑡

𝑓
𝜂 (𝑦𝑡−1 )
𝑦𝑡−1,𝑏𝑡−1

· · · 𝑓 𝜂 (𝑦1 )
𝑦1,𝑦1

∈ L(N). (3.27)

Then for

𝑞 =
∑︁

𝑢 (𝑒 (2)) · 𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 ·𝑤 (𝑒 (2)) ∈ J (mir2),

we also have

𝑞 =
∑ (

𝑢 (𝑒 (2)) · 𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 · (𝑤 (𝑒 (2)) −𝑤∗ (𝑓 ))

+𝑢 (𝑒 (2)) · 𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 𝑤∗ (𝑓 )

)
=

∑ (
𝑢 (𝑒 (2)) · 𝑒 (2)𝑦

𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 · (𝑤 (𝑒 (2)) −𝑤∗ (𝑓 ))

+𝑤∗ (𝑓 )𝑢 (𝑒 (2)) · 𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎

)
∈ L(N). (3.28)

Therefore we have J (mir2) ⊆ L(N). □

Lemma 3.4. Let (𝜋, |𝜓 ⟩) be a perfect commuting operator strategy
of a regularmirror gameG, then |𝜓 ⟩ is a tracial state on both 𝜋 (U(1))
and 𝜋 (U(2)).

Proof. For the case 𝜋 (U(1)), it suffices to show that for any

different 𝑒 (1)𝑥1

𝑎1
and 𝑒 (1)𝑥2

𝑎2
, we have

⟨𝜓 |𝜋 (𝑒 (1)𝑥1

𝑎1
)𝜋 (𝑒 (1)𝑥2

𝑎2
) |𝜓 ⟩ = ⟨𝜓 |𝜋 (𝑒 (1)𝑥2

𝑎2
)𝜋 (𝑒 (1)𝑥1

𝑎1
) |𝜓 ⟩,

and we can complete the proof by using inductions on the length

of monomials and linearity.

In fact, since (𝜋, |𝜓 ⟩) is a perfect commuting operator strategy

of G, we have 𝜋 (L(N))|𝜓 ⟩ = {0} according to Definition 2.4 and

Proposition 2.1. Lemma 3.1 tells us that every 𝑒 (1)𝑥𝑎 −𝑔
𝜉 (𝑥 )
𝑥,𝑎 ∈ L(N),

so we have

𝜋 (𝑒 (1)𝑥1

𝑎1
− 𝑔

𝜉 (𝑥1 )
𝑥1,𝑎1

) |𝜓 ⟩ = 0, and 𝜋 (𝑒 (1)𝑥2

𝑎2
− 𝑔

𝜉 (𝑥2 )
𝑥2,𝑎2

) |𝜓 ⟩ = 0.

Therefore, we have

⟨𝜓 |𝜋 (𝑒 (1)𝑥1

𝑎1
)𝜋 (𝑒 (1)𝑥2

𝑎2
) |𝜓 ⟩

= ⟨𝜓 |𝜋 (𝑒 (1)𝑥1

𝑎1
)𝜋 (𝑔𝜉 (𝑥2 )

𝑥2,𝑎2
) |𝜓 ⟩

= ⟨𝜓 |𝜋
(
𝑒 (1)𝑥1

𝑎1
𝑔
𝜉 (𝑥2 )
𝑥2,𝑎2

)
|𝜓 ⟩ (𝜋 is a representation)

= ⟨𝜓 |𝜋
(
𝑔
𝜉 (𝑥2 )
𝑥2,𝑎2

𝑒 (1)𝑥1

𝑎1

)
|𝜓 ⟩ (𝑔𝜉 (𝑥2 )

𝑥2,𝑎2
commutes with 𝑒 (1)𝑥1

𝑎1
)

= ⟨𝜓 |𝜋 (𝑔𝜉 (𝑥2 )
𝑥2,𝑎2

)𝜋 (𝑒 (1)𝑥1

𝑎1
) |𝜓 ⟩

= ⟨𝜓 |𝜋 (𝑒 (1)𝑥2

𝑎2
)𝜋 (𝑒 (1)𝑥1

𝑎1
) |𝜓 ⟩.

This shows that |𝜓 ⟩ is a tracial state on 𝜋 (U(1)).
Similarly, using 𝑒 (2)𝑦

𝑏
− 𝑓

𝜂 (𝑦)
𝑦,𝑏

∈ L(N), we can prove that |𝜓 ⟩
is a tracial state on 𝜋 (U(2)). □

Now we can prove our main theorem.

Proof of Theorem3.1. We show that (1) ⇐⇒ (2) ⇐⇒ (4)
and (1) ⇐⇒ (3) ⇐⇒ (5).

Firstly, (1) is equivalent to the existence of a perfect commuting

operator strategy by the definition of the determining set.

(1) =⇒ (2): Suppose (𝜋, |𝜓 ⟩) is a pair that satisfies the conditions
in (1), and we let 𝜋 ′ be the restriction of 𝜋 toU(1). It is obvious

𝜋 ′ (J (mir1)) |𝜓 ⟩ = 𝜋 (J (mir1)) |𝜓 ⟩ ⊆ 𝜋 (L(N))|𝜓 ⟩ = {0},

where the first ” = ” comes from the restriction, the ” ⊆ ” is derived

from Lemma 3.3, and the second ” = ” is derived from Proposition

2.1. By Lemma 3.4, We know |𝜓 ⟩ is a tracial state. Then (1) =⇒ (2)
has been proved.
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(2) =⇒ (1): Using (𝜋 ′,𝜓 ), we define the following positive linear
functional

ℓ′ : U(1) → C, ℎ ↦→ ⟨𝜓 |𝜋 ′ (ℎ) |𝜓 ⟩.
Since |𝜓 ⟩ is a tracial state, we know ℓ′ is tracial. Next extend ℓ′ to
a linear functional ℓ onU by mapping a monomial

ℓ : 𝑤 (𝑒 (1))𝑢 (𝑒 (2)) ↦→ ℓ′
(
𝑤 (𝑒 (1))𝑢∗ (𝑓 )

)
,

where

𝑢∗ (𝑓 ) = 𝑓
𝜂 (𝑦𝑡 )
𝑦𝑡 ,𝑏𝑡

𝑓
𝜂 (𝑦𝑡−1 )
𝑦𝑡−1,𝑏𝑡−1

· · · 𝑓 𝜂 (𝑦1 )
𝑦1,𝑏1

if𝑢 (𝑒 (2)) = 𝑒 (2)𝑦1

𝑏1

· · · 𝑒 (2)𝑦𝑡−1

𝑏𝑡−1

𝑒 (2)𝑦𝑡
𝑏𝑡
.We show that ℓ is well-defined.

It is sufficient to show that ℓ is well defined on C. Notice that the
regularity ensures that:∑︁

𝑏∈𝐵
𝑓
𝜂 (𝑦)
𝑦,𝑏

= 1, ∀𝑦 ∈ 𝑌 . (by Lemma 2.1)

Then we have

ℓ

(∑︁
𝑏∈𝐵

𝑒 (2)𝑦
𝑏

)
= ℓ′

(∑︁
𝑏∈𝐵

𝑓
𝜂 (𝑦)
𝑦,𝑏

)
= ⟨𝜓 |𝜓 ⟩ = 1, ∀𝑦 ∈ 𝑌 .

On the other hand,

ℓ

(∑︁
𝑏∈𝐵

𝑒 (2)𝑦
𝑏

)
= ℓ (1) = ℓ′ (1) = 1.

Therefore, ℓ is really well defined.

Next we show that ℓ can distinguish −1 and SOSU +L(N) +
L(N)∗. The motivation of this proof is similar to the proof of

Theorem 8.3 in [2].

Since |𝜓 ⟩ is a tracial state, we know that ℓ is symmetric in a sense

that ℓ (ℎ∗) = ℓ (ℎ)∗ for all ℎ ∈ U(1). To check that ℓ is positive, let

ℎ =
∑
𝑖, 𝑗 𝛽𝑖 𝑗𝑤𝑖 (𝑒 (1))𝑢 𝑗 (𝑒 (2)) ∈ U, then we have

ℎ∗ℎ =
∑︁
𝑖, 𝑗

∑︁
𝑘,𝑠

𝛽∗𝑖 𝑗 𝛽𝑘𝑠 ·𝑤
∗
𝑖 (𝑒 (1))𝑤𝑘 (𝑒 (1))𝑢∗𝑗 (𝑒 (2))𝑢𝑠 (𝑒 (2)),

whence

ℓ
(
ℎ∗ℎ

)
=

∑︁
𝑖, 𝑗

∑︁
𝑘,𝑠

𝛽∗𝑖 𝑗 𝛽𝑘𝑠 · ℓ
′ (
𝑤∗
𝑖 (𝑒 (1))𝑤𝑘 (𝑒 (1))𝑢∗𝑠 (𝑓 )𝑢 𝑗 (𝑓 )

)
.

(3.29)

Set

ˇℎ =
∑︁
𝑖, 𝑗

𝛽𝑖 𝑗𝑤𝑖 (𝑒 (1))𝑢∗𝑗 (𝑓 ) ∈ U(1)

Then we have

ˇℎ∗ ˇℎ =
∑︁
𝑖, 𝑗

∑︁
𝑘,𝑠

𝛽∗𝑖 𝑗 𝛽𝑘𝑠𝑢 𝑗 (𝑓 )𝑤
∗
𝑖 (𝑒 (1))𝑤𝑘 (𝑒 (1))𝑢∗𝑠 (𝑓 ),

ℓ′
(

ˇℎ∗ ˇℎ

)
=

∑︁
𝑖, 𝑗

∑︁
𝑘,𝑠

𝛽∗𝑖 𝑗 𝛽𝑘𝑠 ℓ
′ (
𝑢 𝑗 (𝑓 )𝑤∗

𝑖 (𝑒 (1))𝑤𝑘 (𝑒 (1))𝑢∗𝑠 (𝑓 )
)
.

(3.30)

Since ℓ′ is tracial, we have

ℓ′
(
𝑤∗
𝑖 (𝑒 (1))𝑤𝑘 (𝑒 (1))𝑢∗𝑠 (𝑓 )𝑢 𝑗 (𝑓 )

)
= ℓ′

(
𝑢 𝑗 (𝑓 )𝑤∗

𝑖 (𝑒 (1))𝑤𝑘 (𝑒 (1))𝑢∗𝑠 (𝑓 )
)
.

This implies that the values in Equation (3.29) and Equation (3.30)

are the same. Therefore, we have

ℓ
(
ℎ∗ℎ

)
= ℓ′

(
ˇℎ∗ ˇℎ

)
≥ 0,

which implies ℓ (SOSU ) ≥ 0.

It remains to show that ℓ (L(N)) = {0}. Elements in L(N) are
linear combinations of monomials of the form

𝑤 (𝑒 (1))𝑢 (𝑒 (2))𝑒 (1)𝑥𝑎𝑒 (2)
𝑦

𝑏
= 𝑤 (𝑒 (1))𝑒 (1)𝑥𝑎𝑢 (𝑒 (2))𝑒 (2)

𝑦

𝑏
(3.31)

with 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0. Applying ℓ to Equation (3.31) gives that

ℓ

(
𝑤 (𝑒 (1))𝑒 (1)𝑥𝑎𝑢 (𝑒 (2))𝑒 (2)

𝑦

𝑏

)
= ℓ′

(
𝑤 (𝑒 (1))𝑒 (1)𝑥𝑎 𝑓

𝜂 (𝑦)
𝑦,𝑏

𝑢∗ (𝑓 )
)
.

But 𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

∈ J (mir1), whence

𝑤 (𝑒 (1))𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

𝑢∗ (𝑓 ) ∈ J (mir1) .

Hence we have

ℓ′
(
𝑤 (𝑒 (1))𝑒 (1)𝑥𝑎 𝑓

𝜂 (𝑦)
𝑦,𝑏

𝑢∗ (𝑓 )
)
= 0.

We have proved that ℓ (−1) = −1 and

ℓ
(
SOSU +𝔏(N) + 𝔏(N)∗

)
⊆ R≥0,

whence−1 ∉ SOSU +𝔏(N)+𝔏(N)∗, which implies (1) by Theorem

4.3 in [2].

(2) =⇒ (4): Now we have the pair (𝜋 ′, |𝜓 ⟩), where 𝜋 ′ : U(1) →
B(H) is a *-representation and |𝜓 ⟩ is a tracial state. Now we con-

struct the von Neumann algebraW and 𝜋 ′
0

: U(1) → W.

We denote the completion of {𝜋 ′ (U(1)) |𝜓 ⟩} ⊆ H as
ˇH , and it’s

obvious that
ˇH is a closed subspace ofH . Then we have

𝜋 ′ (U(1)) ˇH ⊆ ˇH ,

and 𝜋 ′ induces a *-representation 𝜋 ′ : U(1) → B( ˇH) naturally.
We letW = B( ˇH) and 𝜋 ′

0
= 𝜋 ′ as what we desire. Next we’ll prove

that W and 𝜋 ′
0
satisfy the requirement of the item (4).

Firstly notice that B( ˇH) is a von Neumann algebra because it is

closed in the weak operator topology.

Secondly, since |𝜓 ⟩ is a tracial state on B(H), |𝜓 ⟩ is also a tracial
state on 𝐵( ˇH). Thus 𝜏 : B( ˇH) → C, 𝑎 ↦→ ⟨𝜓 |𝑎 |𝜓 ⟩ is a tracial

linear functional onB( ˇH), and (B( ˇH), 𝜏) is a tracial von Neumann

algebra.

Lastly, to show 𝜋 ′ (J (mir1)) = {0}, it suffices to show the fol-

lowing claim:

For any 𝑢 ∈ U(1) and |𝜙⟩ = 𝜋 ′ (𝑢) |𝜓 ⟩ ∈ ˇH , we have

𝜋 ′ (J (mir1)) |𝜙⟩ = {0}.
We have

𝜋 ′ (J (mir1)) |𝜙⟩
= 𝜋 ′ (J (mir1)𝑢) |𝜓 ⟩ (the definition of 𝜙)
= 𝜋 ′ (J (mir1)) |𝜓 ⟩ (J (mir1) is a two-sided ideal)
= {0} (by item (2)).

(4) =⇒ (2): We start with the tracial von Neumann algebra W
with trace 𝜏 defined in (4) and perform a Gelfand-Naimark-Segal

(GNS) construction [21]. There is a Hilbert space K , a unit vector

𝜌 ∈ K , and a *-representation 𝜋 ′
1

: W → B(K) such that

𝜏 (𝑎) =
〈
𝜋 ′

1
(𝑎)𝜌, 𝜌

〉
, 𝑎 ∈ W .

Since𝜏 is a trace, 𝜌 is a tracial state for𝜋 ′
1
(W). Then the *-representation

𝜋 ′
1
◦ 𝜋 ′

0
: U(1) → B(K) together with 𝜌 ∈ K satisfy (2).

(1) =⇒ (3) is similar to (1) =⇒ (2), but using another side of

Lemma 3.3 and Lemma 3.4.
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(3) =⇒ (1) is similar to (2) =⇒ (1). Here, we extend ℓ′ :

U(2) → C to a linear functional ℓ1 from algebra U to C:

ℓ1 : 𝑢 (𝑒 (2))𝑤 (𝑒 (1)) ↦→ ℓ′
(
𝑢 (𝑒 (2))𝑤∗ (𝑔)

)
.

As

∑
𝑎∈𝐴 𝑔

𝜉 (𝑥 )
𝑥,𝑎 = 1, ∀𝑥 ∈ 𝑋 , we know that ℓ1 is well defined. The

proof of ℓ1 (SOSU(1) ) ≥ 0 is similar to the corresponding part in

(2) =⇒ (1).
For the proof of ℓ1 (L(N)) = {0}, since elements inU(1) com-

mute with those in U(2), elements in N can also be written as

𝑒 (2)𝑦
𝑏
𝑒 (1)𝑥𝑎 . Then elements in L(N) are linear combinations of

monomials of the form

𝑤 (𝑒 (1))𝑢 (𝑒 (2))𝑒 (2)𝑦
𝑏
𝑒 (1)𝑥𝑎 = 𝑢 (𝑒 (2))𝑒 (2)𝑦

𝑏
𝑤 (𝑒 (1))𝑒 (1)𝑥𝑎 (3.32)

with 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0. Applying the new ℓ1 to (3.32) gives that

ℓ1

(
𝑢 (𝑒 (2))𝑒 (2)𝑦

𝑏
𝑤 (𝑒 (1))𝑒 (1)𝑥𝑎

)
= ℓ′

(
𝑢 (𝑒 (2))𝑒 (2)𝑦

𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 𝑤∗ (𝑔)

)
.

But 𝑒 (2)𝑦
𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 ∈ J (mir2), whence 𝑢 (𝑒 (2))𝑒 (2)𝑦

𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 𝑤∗ (𝑔) ∈

J (mir2). Therefore we derive that

ℓ′
(
𝑢 (𝑒 (2))𝑒 (2)𝑦

𝑏
𝑔
𝜉 (𝑥 )
𝑥,𝑎 𝑤∗ (𝑔)

)
= 0.

i.e. we get ℓ1 (L(N)) = {0}. Using Theorem 4.3 in [2], we can show

(3) =⇒ (1).

Finally, the proofs of (3) =⇒ (5) and (5) =⇒ (3) are similar to

the proofs of (2) =⇒ (4) and (4) =⇒ (2). □

Remark 1. Theorem 3.1 may not hold if a mirror game is not reg-
ular. For example, let the scoring function 𝜆 = 0 for all questions and
answers. It is not a regular mirror game since J (mir1) = J (mir2) =
{0}. Items (2),(4) in Theorem 3.1 always hold. However, we can eas-
ily verify that G can’t have a perfect commuting operator strategy.
Therefore, Theorem 3.1 is only true for regular mirror games.

In [25], Klep and Schweighofer show that Connes’ embedding

conjecture on von Neumann algebras is equivalent to the tracial ver-

sion of the Positivstellensatz. See [3, 23, 24] for more recent progress

in tracial optimizations. It has been shown in Theorem 8.7 [2] that,

given a *-algebra A satisfying the condition of Archimedean, i.e.

for every 𝑎 ∈ A, there is an 𝜀 ∈ N with 𝜀 − 𝑎∗𝑎 ∈ S̃OSA , where

S̃OSA = {𝑎 ∈ A | ∃𝑏 ∈ SOSA , 𝑎 − 𝑏 is a sum of commutators}.
(3.33)

Then there exists a ∗-representation 𝜋 : A → B(H) and a tracial

state 0 ≠ |𝜓 ⟩ ∈ H satisfying

𝜋 (𝑓 ) |𝜓 ⟩ = 0, for all 𝑓 ∈ 𝔏, (3.34)

if and only if there exists a ∗-representation 𝜋 : A → F into a

tracial von Neumann algebra (F , 𝜏) satisfying
𝜏 (𝜋 (𝑓 )) = 0, for all 𝑓 ∈ 𝔏; (3.35)

which is also equivalent to

−1 ∉ S̃OSA + 𝔏 + 𝔏∗, (3.36)

By cyclic unitary generators defined in [2], we can show that

both U(1) and U(2) are group algebra. And by Example 4.4 of [2]

we knowU(1) andU(2) are Archimedean. Hence, we can combine

the above equivalent condition (3.34), (3.36) with item (2), (4) of
our Theorem 3.1. Then we have the following corollary:

Corollary 3.2. A regular mirror game with its universal game
algebraU and invalid determining set N has a perfect commuting
operator strategy if and only if−1 ∉ S̃OSU(1)+J (mir1)+J (mir1)∗.
For a special case, if a mirror game satisfies

−1 ∈ SOSU(1) +J (mir1) + J (mir1)∗, (3.37)

then it cannot have a perfect commuting strategy. Similar results hold
for J (mir2).

Notice that J (mir1) is a two-sided ideal, so that J (mir1) +
J (mir1)∗ is still a two-sided ideal, generated by{

𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

, 𝑓
𝜂 (𝑦)
𝑦,𝑏

𝑒 (1)𝑥𝑎 | 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0

}
. (3.38)

Then we can use the noncommutative Gröbner basis method to

solve this ideal membership problem [26, 28, 30, 43]

4 A PROCEDURE FOR PROVING
NONEXISTENCE OF PERFECT STRATEGY

According to Corollary 3.2, we can prove that a regular mirror

game G doesn’t have a perfect commuting operator strategy using

noncommutative Gröbner basis and semidefinite programming.

The main steps of the procedure are listed as follows.

(1) LetC⟨𝑒 (1)⟩ be the free algebra generated by {𝑒 (1)𝑥𝑎 | 𝑥 ∈ 𝑋, 𝑎 ∈
𝐴}, and Π be the canonical projection from C⟨𝑒 (1)⟩ ontoU(1).
Then Π−1 (J (mir1)) is a two-sided ideal in C⟨𝑒 (1)⟩, generated
by {

𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

| 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0

}
∪

{
(𝑒 (1)𝑥𝑎 )2 − 𝑒 (1)𝑥𝑎 , 𝑒 (1)𝑥𝑎1

𝑒 (1)𝑥𝑎2

,
∑︁
𝑎∈𝐴

𝑒 (1)𝑥𝑎 − 1

}
.

(4.1)

Therefore Π−1 (J (mir1))+Π−1 (J (mir1))∗ is a two-sided ideal
generated by{

𝑒 (1)𝑥𝑎 𝑓
𝜂 (𝑦)
𝑦,𝑏

, 𝑓
𝜂 (𝑦)
𝑦,𝑏

𝑒 (1)𝑥𝑎 | 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 0

}
∪

{
(𝑒 (1)𝑥𝑎 )2 − 𝑒 (1)𝑥𝑎 , 𝑒 (1)𝑥𝑎1

𝑒 (1)𝑥𝑎2

,
∑︁
𝑎∈𝐴

𝑒 (1)𝑥𝑎 − 1

}
.

(4.2)

(2) We compute the noncommutative Gröbner basis GB

of Π−1 (J (mir1)) + Π−1 (J (mir1))∗.
(a) If 1 ∈ GB, then we have

−1 ∈ SOSC⟨𝑒 (1) ⟩ +Π−1 (J (mir1)) + Π−1 (J (mir1))∗ . (4.3)

Hence, we have

−1 ∈ SOSU(1) +J (mir1) + J (mir1)∗, (4.4)

which implies that the game can’t have a perfect strategy.

(b) Otherwise, we check whether there exist polynomials

𝑠 𝑗 ∈ U (1) such that

1 +
𝑘∑︁
𝑗=1

𝑠∗𝑗 𝑠 𝑗 ∈ Π−1 (J (mir1)) + Π−1 (J (mir1))∗ .

Let 𝑊𝑑 be the column vector composed of monomials in

C⟨𝑒 (1)⟩ having a total degree less than or equal to 𝑑 . Using an
SDP solver to test whether there exists a positive semidefinite

matrix 𝐺 such that

1 +𝑊 ∗
𝑑
𝐺𝑊𝑑 →GB 0 (4.5)
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• If (4.5) has a solution𝐺 , then the mirror game can’t have a

perfect strategy.

• Otherwise, set 𝑑 := 𝑑 + 1 and go back.

Remark 2. Since a free algebra generated by two or more vari-
ables is non-Noetherian, Buchberger’s procedure for computing a
non-commutative Gröbner basis may not terminate [31, 43]. Thus our
procedure may not terminate in finite steps.

If the procedure stops at some degree 𝑑 , we can verify that the
mirror game has no perfect commuting operator strategy. Otherwise,
we do not know whether the mirror game has a perfect commuting
operator strategy.

In fact, according to [27, Theorem 5.1], an imitation game G has
a perfect commuting operator strategy if and only if a tracial state
exists on the 𝐶∗-algebra 𝐶∗ (G). By [15, Remark 2.21], 𝐶∗ (G) is a
free hypergraph C*-algebra, and there is no algorithm to determine
whether a free hypergraph C*-algebra has a tracial state [15, Theorem
3.6]. Hence, there is no algorithm that terminates in finite steps to
determine whether a mirror game (an imitation game) has a perfect
commuting operator strategy.

Example 2.1 (continued). LetC⟨𝑒 (1)⟩ be the free algebra generated
by {𝑒 (1)𝑖

𝑗
| (𝑖, 𝑗) ∈ {0, 1}2}, and U(1) be the subalgebra of the

universal game algebra U generated by {𝑒 (1)𝑖
𝑗
| (𝑖, 𝑗) ∈ {0, 1}2}.

Then we have the natural projection Π : C⟨𝑒 (1)⟩ → U(1).
Notice that J (mir1) is *-closed. Hence, we have

J (mir1) + J (mir1)∗ = J (mir1),

and

Π−1 (J (mir1))
= {𝑒 (1)0

0
, 𝑒 (1)0

1
, 𝑒 (1)0

0
+ 𝑒 (1)0

1
− 1, 𝑒 (1)1

0
+ 𝑒 (1)1

1
− 1,

𝑒 (1)0

0
𝑒 (1)0

1
, 𝑒 (1)0

1
𝑒 (1)0

0
, 𝑒 (1)1

0
𝑒 (1)1

1
, 𝑒 (1)1

1
𝑒 (1)1

0
,

(𝑒 (1)0

0
)2 − 𝑒 (1)0

0
, (𝑒 (1)0

1
)2 − 𝑒 (1)0

1
,

(𝑒 (1)1

0
)2 − 𝑒 (1)1

0
, (𝑒 (1)1

1
)2 − 𝑒 (1)1

1
}

is a two-sided ideal in U (1). It is evident that

−1 ∈ SOSU(1) +J (mir1) ⇐⇒ −1 ∈ SOSC⟨𝑒 (1) ⟩ +Π−1 (J (mir1))

Using the software NCAlgebra (https://github.com/NCAlgebra/ ), we
can show that 1 is in the Gröbner basis of Π−1 (J (mir1)) i.e.,

−1 ∈ Π−1 (J (mir1)) .

Therefore, this game doesn’t have a perfect commuting operator strat-
egy.
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