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The problem of verifying the nonnegativity of a function on a finite abelian group is a long-

standing challenging problem. The basic representation theory of finite groups indicates that a 
function 𝑓 on a finite abelian group 𝐺 can be written as a linear combination of characters of irre-

ducible representations of 𝐺 by 𝑓 (𝑥) =∑
𝜒∈𝐺 𝑓 (𝜒)𝜒(𝑥), where 𝐺 is the dual group of 𝐺 consisting 

of all characters of 𝐺 and 𝑓 (𝜒) is the Fourier coefficient of 𝑓 at 𝜒 ∈𝐺. In this paper, we show that 
by performing the fast (inverse) Fourier transform, we are able to compute a sparse Fourier sum 
of squares (FSOS) certificate of 𝑓 on a finite abelian group 𝐺 with complexity that is quasi-linear 
in the order of 𝐺 and polynomial in the FSOS sparsity of 𝑓 . Moreover, for a nonnegative function 
𝑓 on a finite abelian group 𝐺 and a subset 𝑆 ⊆𝐺, we give a lower bound of the constant 𝑀 such 
that 𝑓 +𝑀 admits an FSOS supported on 𝑆. We demonstrate the efficiency of the proposed algo-

rithm by numerical experiments on various abelian groups of orders up to 107. As applications, we 
also solve some combinatorial optimization problems and the sum of Hermitian squares (SOHS) 
problem by sparse FSOS.

1. Introduction

Let 𝑋 be a finite set and let 𝐹 be a nonnegative real-valued function on 𝑋. This paper concerns the sum of squares (SOS) sparsity 
of 𝐹 in the sense of Fourier support [1]. More precisely, if we equip 𝑋 with an abelian group structure, i.e., we choose a finite abelian 
group 𝐺 together with a bijection 𝜑 ∶𝐺↦𝑋, then 𝑓 ∶= 𝐹◦𝜑 can be naturally identified with an element in the group algebra ℂ[𝐺]. 
The basic representation theory [2, Chapter 1] of finite groups indicates that the function 𝑓 can be written as a linear combination 
of characters of irreducible representations of 𝐺:

𝑓 (𝑥) =
∑
𝜒∈𝐺

𝑓 (𝜒)𝜒(𝑥), 𝑥 ∈𝐺,
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where 𝐺 is the dual group of 𝐺 consisting of all characters of 𝐺 and 𝑓 (𝜒) is the Fourier coefficient of 𝑓 at 𝜒 ∈ 𝐺. A subset 𝑆 ⊆ 𝐺
containing those 𝜒 ∈𝐺 such that 𝑓 (𝜒) ≠ 0 is called a Fourier support of 𝑓 . An Fourier sum of squares (FSOS) certificate of a nonnegative 
function 𝑓 on 𝐺 is a finite family {𝑔𝑖}𝑖∈𝐼 of functions on 𝐺 such that

𝑓 =
∑
𝑖∈𝐼

|𝑔𝑖|2.
Clearly, an FSOS certificate of 𝑓 indeed proves that 𝑓 is a nonnegative function on 𝐺. With the aim of reducing computational 
complexity, this paper focuses on computing a sparse FSOS certificate. Here, an FSOS certificate {𝑔𝑖}𝑖∈𝐼 of 𝑓 is sparse if there is a 
small subset 𝑆 ⊆𝐺 on which each 𝑔𝑖 is supported.

In [1,3], based on graph theory, the authors provide interesting theoretical bounds on the sparsity of FSOS. In this paper, we focus 
on the computational aspect of FSOS. Our main contributions are as follows:

1. We first formulate the problem of computing sparse FSOS as the optimization problem (5). Next we prove in Theorem 3.5 that 
the square root of 𝑓 provides a closed-form solution to a properly formulated convex relaxation of (5). Based on that, we design 
Algorithm 1 to compute a sparse FSOS of a nonnegative function in quasi-linear time. Numerical experiments are presented in 
Tables 1, 2, 3 to demonstrate the efficiency of our algorithm.

2. In Theorem 3.5, we only select terms of large magnitude in 
√
𝑓 to compute a sparse FSOS. We expound the reasons why this 

heuristic term selection strategy works very well in practice in Theorem 5.4. Furthermore, we show in Proposition 3.6 that the 
terms selected by our method remain unchanged under the group isomorphism.

3. Applications of FSOS to combinatorial optimization problems and the sum of Hermitian squares (SOHS) problem are presented. 
Remarkably, we show that one can prove the pigeon-hole principle by an FSOS certificate of sparsity 𝑂(𝑛2) in Proposition 6.2. 
As a comparison, any resolution refutation requires exponentially many inference steps to prove the pigeon-hole principle [4, 
Theorem 16, Corollary 18]. In Theorem 6.4, we give sufficient conditions for the existence of a lifting of FSOS on a finite abelian 
group to SOHS on unit circle in complex plane. Moreover, Example 6.6 indicates that such a lifting may provide a much simpler 
certificate for the nonnegativity of polynomials on cubes.

We remark that although the graph theoretic approach in [1] can be turned into an algorithm to compute sparse FSOS, it is inefficient 
since it only uses the Fourier support of the given function. However, more information about FSOS sparsity can be acquired by 
exploring the structure of coefficients of that function and this observation eventually leads to our Algorithm 1.

The rest of the paper is organized as follows: In Section 3, we establish a proper formulation of the convex relaxation of FSOS 
sparsity minimization problem. In Section 4, we give an algorithm to compute a sparse FSOS of a given nonnegative function. 
Numerical experiments are provided to demonstrate the correctness and efficiency of our algorithm. In section 5, we present an 
error analysis to validate the term selection strategy in the algorithm. In Section 6, we discuss applications of FSOS to combinatorial 
optimization problems and the SOHS problem.

2. Preliminaries

In this section, we recall some basic definitions and results in representation theory [5,2] and graph theory [6–8].

2.1. Group theory and representation theory

Let 𝐺 be a finite abelian group. A nonzero complex valued function 𝜒 on 𝐺 is called a character of 𝐺 if it satisfies:

𝜒(𝑥𝑦) = 𝜒(𝑥)𝜒(𝑦), 𝑥, 𝑦 ∈𝐺.

The set 𝐺 of all characters of 𝐺 is called the dual group of 𝐺. A subset 𝑆 ⊆ 𝐺 is called symmetric if 𝜒 ∈ 𝑆 implies 𝜒−1 ∈ 𝑆 . It is 
straightforward to verify that 𝐺 is a finite abelian group, with the group operation given by pointwise multiplication. Since 𝐺 is a 
finite abelian group, all irreducible representations of 𝐺 are one dimensional. Hence we may identify 𝐺 with the set of all irreducible 
representations of 𝐺.

The fundamental theorem [9] of finite abelian groups implies that

𝐺 ≃ℤ𝑛1
×⋯ ×ℤ𝑛𝑘

.

For any positive integer 𝑑, we also have

ℤ̂𝑑 =
{
𝜒𝑙(𝑥) ∶= exp

(2𝑖𝜋𝑙𝑥
𝑑

)
,0 ≤ 𝑙 ≤ 𝑑 − 1

}
.

Moreover, if 𝐺1, 𝐺2 are finite abelian groups, then 𝐺1 ×𝐺2 =𝐺1 ×𝐺2. Therefore we can regard each 𝜒 ∈𝐺 as

𝜒(𝑥1,… , 𝑥𝑘) =
𝑘∏
𝑗=1

exp
(2𝑖𝜋𝑙𝑗𝑥𝑗

𝑛𝑗

)
, (𝑥1,… , 𝑥𝑘) ∈ℤ𝑛1

×⋯ ×ℤ𝑛𝑘
,

2

for some 0 ≤ 𝑙𝑗 ≤ 𝑛𝑗 − 1, 1 ≤ 𝑗 ≤ 𝑘. Accordingly, 𝜒−1 is identified with
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𝜒−1(𝑥1,… , 𝑥𝑘) =
𝑘∏
𝑗=1

exp
(−2𝑖𝜋𝑙𝑗𝑥𝑗

𝑛𝑗

)
, (𝑥1,… , 𝑥𝑘) ∈ℤ𝑛1

×⋯ ×ℤ𝑛𝑘
.

In particular, ℤ̂𝑛
2 consists of square-free monomials in 𝑛 variables. We have the following theorem for functions on finite abelian 

groups.

Theorem 2.1. [2, Chapter 1] Let 𝐺 be a finite abelian group. Any function 𝑓 ∶𝐺→ ℂ can be uniquely written as a linear combination of 
elements in 𝐺, i.e., there is a unique 𝑓 ∶𝐺→ℂ such that

𝑓 =
∑
𝜒∈𝐺

𝑓 (𝜒)𝜒. (1)

The unique expansion of 𝑓 in (1) is called the Fourier expansion of 𝑓 . We define the support of 𝑓 by supp(𝑓 ) ∶= {𝜒 ∶ 𝑓 (𝜒) ≠ 0}. 
The cardinality of supp(𝑓 ) is called the sparsity of 𝑓 .

2.2. Fourier sum of squares of functions on finite abelian groups

In this subsection, we briefly summarize the theory of Fourier sum of squares (FSOS) developed in [1,3]. The definition of FSOS 
is as follows:

Definition 2.2. [1] Let 𝑓 be a nonnegative function on finite abelian group 𝐺, i.e. 𝑓 (𝑥) ≥ 0 for all 𝑥 ∈𝐺, then an FSOS representation 
of 𝑓 is in form of

𝑓 =
∑
𝑖∈𝐼

|𝑔𝑖|2. (2)

Here {𝑔𝑖}𝑖∈𝐼 is a finite family of functions on 𝐺, which is called an FSOS certificate of 𝑓 . Moreover, we say {𝑔𝑖}𝑖∈𝐼 is a sparse FSOS 
certificate of 𝑓 if 

⋃
𝑖∈𝐼 supp(𝑔𝑖) has small cardinality.

Clearly, an FSOS representation of 𝑓 provides a certificate of nonnegativity of 𝑓 , making it of significantly valuable in both 
mathematics and computer science. The close relationship between the FSOS representation and semidefinite programming problem 
is highlighted in [1]. The following theorem, stated in [1], elucidates this connection.

Proposition 2.3. [1, Proposition 1] Let 𝑓 be a real-valued function on finite abelian group 𝐺, then 𝑓 has an FSOS representation if and 
only if there exists a Hermitian positive semidefinite matrix 𝑄 ∈ℂ|𝐺|×|𝐺|, with rows and columns indexed by 𝐺, such that

𝑓 (𝜒) =
∑

𝜒=𝜒 ′−1𝜒 ′′

𝑄(𝜒 ′, 𝜒 ′′), 𝜒 ∈𝐺, (3)

where 𝑄(𝜒 ′, 𝜒 ′′) is the element of 𝑄 indexed by 𝜒 ′ and 𝜒 ′′. A Hermitian positive semidefinite matrix 𝑄 ∈ℂ|𝐺|×|𝐺| that satisfies the afore-

mentioned conditions is called a Gram matrix of 𝑓 .

Moreover, for any finite abelian group 𝐺 and any nonnegative function 𝑓 on 𝐺, [1] directly provides the following Gram matrix:

Proposition 2.4. [1, Proposition 3] Let 𝑓 be a nonnegative function on finite abelian group 𝐺, define the Hermitian matrix 𝑄 ∈ℂ|𝐺|×|𝐺|, 
𝑄(𝜒, 𝜒 ′) = 1|𝐺|𝑓 (𝜒−1𝜒 ′), then 𝑄 is a Gram matrix of 𝑓 .

For ease of reference, we record below two known results about upper bound of the FSOS sparsity of nonnegative functions on 
special groups.

Theorem 2.5. [1, Theorem 3] Let 𝑁, 𝑑 be positive integers such that 𝑑 divides 𝑁 . Then there exists 𝑇 ⊆ ℤ̂𝑁 with |𝑇 | ≤ 3𝑑 log2(𝑁∕𝑑) such 
that any nonnegative function on ℤ𝑁 of degree at most 𝑑 has an FSOS with support 𝑇 .

Theorem 2.6. [3, Theorem 3.2] Every degree 𝑟 nonnegative polynomial on ℤ𝑛
2 has an FSOS certificate of degree ⌈(𝑛 + 𝑟 − 1)∕2⌉.

3. The problem of computing sparse FSOS and its convex relaxation

We formulate the problem of computing the sparsest FSOS as the optimization problem (8) and present its convex relaxation (9). 
We prove in Theorem 3.5 that the point-wise square root of the given function provides a solution to (9), which can be computed in 
3

quasi-linear time in |𝐺|.
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3.1. The FSOS sparsity minimization problem

We recall that Proposition 2.4 gives a Gram matrix

𝑄(𝜒,𝜒 ′) = 1|𝐺|𝑓 (𝜒−1𝜒 ′), 𝜒,𝜒 ′ ∈𝐺. (4)

It is very efficient to compute 𝑄 via (4), but one usually gets a dense Gram matrix, as the next example illustrates.

Example 3.1. The following function is considered in [1, Example 4]:

𝑓 ∶ℤ6 →ℂ, 𝑓 (𝑥) = 1 − 1
2
(𝜒(𝑥) + 𝜒−1(𝑥)),

where 𝜒(𝑥) = exp
(
𝑖𝜋𝑥
3

)
. The Gram matrix of 𝑓 found in [1] is:

1
6
⋅

⎡⎢⎢⎢⎢⎢⎢⎣

𝜒0 𝜒1 𝜒2 𝜒3 𝜒4 𝜒5

𝜒0 1 −1∕2 0 0 0 −1∕2
𝜒1 −1∕2 1 −1∕2 0 0 0
𝜒2 0 −1∕2 1 −1∕2 0 0
𝜒3 0 0 −1∕2 1 −1∕2 0
𝜒4 0 0 0 −1∕2 1 −1∕2
𝜒5 −1∕2 0 0 0 −1∕2 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

By this Gram matrix and techniques from graph theory, one can only get an FSOS with sparsity at least four. However, it turns out 
that 𝑓 has another sparse Gram matrix:

1
6
⋅

⎡⎢⎢⎢⎢⎢⎢⎣

𝜒0 𝜒1 𝜒2 𝜒3 𝜒4 𝜒5

𝜒0 3 −3 0 0 0 0
𝜒1 −3 3 0 0 0 0
𝜒2 0 0 0 0 0 0
𝜒3 0 0 0 0 0 0
𝜒4 0 0 0 0 0 0
𝜒5 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

from which one can obtain an FSOS of 𝑓 with sparsity two: 𝑓 (𝑥) = 1
2 |1 − 𝜒(𝑥)|2.

By Proposition 2.3, there is a 1-1 correspondence between (sparse) FSOS of 𝑓 and (sparse) Gram matrices. Therefore, the problem 
of computing sparse FSOS can be formulated as the following optimization problem:

min
𝑄 is a Gram matrix

#
(
{𝜒 ∶ ∃𝜒 ′,𝑄(𝜒,𝜒 ′) ≠ 0} ∪ {𝜒 ′ ∶ ∃𝜒,𝑄(𝜒,𝜒 ′) ≠ 0}

)
. (5)

Here, we label columns and rows of 𝑄 by characters of the group and 𝑄(𝜒, 𝜒 ′) denotes the element of 𝑄 labeled by 𝜒 and 𝜒 ′. We 
denote by #𝑆 the cardinality of a set 𝑆 .

Lemma 3.2. Let diag(𝑄) be the vector consisting of diagonal elements of 𝑄. Problem (5) is equivalent to the problem of minimizing the 
𝓁0-norm of diag(𝑄), i.e.

min
𝑄: Gram matrix

‖diag(𝑄)‖0. (6)

Proof. As 𝑄 =𝑄∗, we have 𝑄(𝜒, 𝜒 ′) ≠ 0 if and only if 𝑄(𝜒 ′, 𝜒) ≠ 0. This implies

#{𝜒 ′ ∶ ∃𝜒,𝑄(𝜒,𝜒 ′) ≠ 0} = #{𝜒 ∶ ∃𝜒 ′,𝑄(𝜒,𝜒 ′) ≠ 0}.

Moreover, 𝑄 is positive semidefinite, hence for 𝜒, 𝜒 ′ ∈𝐺, 𝑄(𝜒, 𝜒 ′) ≠ 0 implies 𝑄(𝜒, 𝜒) > 0 and 𝑄(𝜒 ′, 𝜒 ′) > 0. Therefore, we have

#{𝜒 ∶ ∃𝜒 ′,𝑄(𝜒 ′, 𝜒) ≠ 0} = #{𝜒 ∶𝑄(𝜒,𝜒) ≠ 0},

which implies the equivalence between (5) and (6). □

3.2. A convex relaxation

Although the problem of minimizing the 𝓁0-norm is notoriously difficult, one can relax the problem by replacing the 𝓁0-norm by 
4

the 𝓁1-norm, which is a widely used method in practice [10,11]. Our method of solving (6) is motivated by this popular method. 
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However, simply replacing ‖ diag(𝑄)‖0 by ‖ diag(𝑄)‖1 in (6) makes no sense in our situation. Let 𝑓 =
∑

𝜒∈𝐺 𝑓 (𝜒)𝜒 be a nonnegative 
function on a finite abelian group 𝐺, let 𝑄 be a Gram matrix of 𝑓 . Then, for any 𝜒 ′ ∈𝐺, we have∑

𝜒∈𝐺

𝑄(𝜒,𝜒𝜒 ′) = 𝑓 (𝜒 ′).

In particular, we have∑
𝜒∈𝐺

𝑄(𝜒,𝜒) =
∑
𝜒∈𝐺

𝑄(𝜒,𝜒𝜒0) = 𝑓 (𝜒0).

Here 𝜒0 is the identity element in 𝐺, i.e., 𝜒0(𝑥) = 1 for all 𝑥 ∈𝐺. As 𝑄 is positive semidefinite, we have

‖diag(𝑄)‖1 = ∑
𝜒∈𝐺

𝑄(𝜒,𝜒) = 𝑓 (𝜒0). (7)

The above calculation indicates the following

Lemma 3.3. Given a finite abelian group 𝐺 and a nonnegative function 𝑓 on 𝐺, ‖ diag(𝑄)‖1 is a constant value for any Gram matrix of 𝑓 .

As a consequence of Lemma 3.3, if we replace ‖ diag(𝑄)‖0 by ‖ diag(𝑄)‖1 directly in (6), then any Gram matrix of 𝑓 serves as an 
optimizer of the relaxed problem. Therefore, a more delicate consideration is necessary to alleviate (6). To that end, we observe that 
if 𝑄 is a Gram matrix of 𝑓 , then for any fixed character 𝜒 ∈𝐺, the matrix 𝑄1 defined by

𝑄1(𝜒 ′, 𝜒 ′′) ∶=𝑄(𝜒𝜒 ′, 𝜒𝜒 ′′), 𝜒 ′, 𝜒 ′′ ∈𝐺,

is also a Gram matrix of 𝑓 . Hence it is sufficient to find a sparse Gram matrix 𝑄 such that 𝑄(𝜒0, 𝜒0) ≠ 0 and the minimum of ‖ diag(𝑄)‖0 in (6) remains unchanged if we impose this extra condition. Thus we obtain

min
𝑄∶ Gram matrix

‖diag(𝑄)‖0 = min
𝑄∶ Gram matrix

#{𝜒 ≠ 𝜒0 ∶𝑄(𝜒,𝜒) ≠ 0} + 1, (8)

which is equivalent to (6) in the sense that they have the same optimal value. The convex relaxation problem for the right-hand side 
optimization problem in (8) is

min
𝑄∶ Gram matrix

∑
𝜒≠𝜒0

|𝑄(𝜒,𝜒)|,
which can be formulated as the following semidefinite programming problem:

min
𝑄∈ℂ𝐺×𝐺

⟨𝑄,𝐴⟩
s.t. ⟨𝑄,𝐵𝜒 ⟩ = 𝑓 (𝜒), 𝜒 ∈𝐺,

𝑄 ⪰ 0,

(9)

where

𝐴(𝜒,𝜒 ′) =

{
1, if 𝜒 = 𝜒 ′ ≠ 𝜒0
0, otherwise.

, 𝐵𝜒 (𝜒 ′, 𝜒 ′′) =

{
1, if 𝜒 ′−1𝜒 ′′ = 𝜒

0, otherwise.

It is clear that

⟨𝑄,𝐴⟩ = ∑
𝜒≠𝜒0

𝑄(𝜒,𝜒).

Since 𝑄 ⪰ 0, we have 𝑄(𝜒, 𝜒) ≥ 0 for each 𝜒 ∈𝐺 and this implies∑
𝜒≠𝜒0

𝑄(𝜒,𝜒) =
∑
𝜒≠𝜒0

|𝑄(𝜒,𝜒)|.
The conditions ⟨𝑄, 𝐵𝜒 ⟩ = 𝑓 (𝜒) are equivalent to (3), which ensures that 𝑄 is indeed a Gram matrix of 𝑓 . Now we arrive at the 
5

following result about the relation between (9) and (8).
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Proposition 3.4. The minimization problem (9) is a convex relaxation of (8). Moreover, (9) is equivalent to

max
𝑄∈ℂ𝐺×𝐺

𝑄(𝜒0, 𝜒0)

s.t. ⟨𝑄,𝐵𝜒 ⟩ = 𝑓 (𝜒), ∀𝜒 ∈𝐺,

𝑄 ⪰ 0,

(10)

Here 𝜒0 is the identity element in 𝐺.

Proof. The first part of the proposition can be verified easily by a direct computation and the second claim follows immediately by 
recalling the fact that 

∑
𝜒∈𝐺 𝑄(𝜒, 𝜒) is equal to the constant 𝑓 (𝜒0). □

3.3. A closed form solution to the convex relaxation

By the simple fact that a nonnegative function on a finite abelian group has a square root, we are able to prove that solving (9) is 
equivalent to computing the square root of 𝑓 .

Theorem 3.5. Let 𝑓 be a nonnegative, nonzero function on a finite abelian group 𝐺 and let ℎ be its square root defined by

ℎ(𝑥) =
√
𝑓 (𝑥), 𝑥 ∈𝐺.

Suppose that ℎ =
∑

𝜒∈𝐺 𝑎𝜒𝜒 is the Fourier expansion of ℎ and 𝑄0 is the matrix defined by

𝑄0(𝜒,𝜒 ′) = 𝑎𝜒𝑎𝜒 ′ . (11)

Then 𝑄0 is a solution of (9).

Proof. First we prove that 𝑄0 is a feasible solution of (9). By definition, we observe that 𝑄0 ⪰ 0 and rank(𝑄0) = 1. Since for each 
𝑥 ∈𝐺,

𝑓 (𝑥) =
⎛⎜⎜⎝
∑
𝜒∈𝐺

𝑎𝜒𝜒(𝑥)
⎞⎟⎟⎠
⎛⎜⎜⎝
∑
𝜒∈𝐺

𝑎𝜒𝜒(𝑥)
⎞⎟⎟⎠ =

∑
𝜒,𝜒 ′∈𝐺

𝑄0(𝜒,𝜒 ′)𝜒−1(𝑥)𝜒 ′(𝑥),

𝑄0 is a Gram matrix of 𝑓 of rank 1.

Next, we prove that 𝑄0 is an optimal solution of (9). To achieve this, we recall from Proposition 3.4 that (9) is equivalent to (10). 
Thus it suffices to prove that 𝑄0 an optimal solution of (10).

Claim. If �̃� is a feasible solution of (10) of rank bigger than one, then

�̃�(𝜒0, 𝜒0) ≤𝑄0(𝜒0, 𝜒0).

We assume for now that the claim holds true. The proof is completed by showing that 𝑄(𝜒0, 𝜒0) ≤ 𝑄0(𝜒0, 𝜒0) for any rank one 
Gram matrix �̂�. To see this, we write �̂� = 𝑢∗𝑢 and denote by 𝑔 the function corresponding to 𝑢. Then we have

�̂�(𝜒0, 𝜒0) =
1|𝐺|2 |||||

∑
𝑥∈𝐺

𝑔(𝑥)
|||||
2

≤
1|𝐺|2

(∑
𝑥∈𝐺

|𝑔(𝑥)|)2

= 1|𝐺|2
(∑
𝑥∈𝐺

ℎ(𝑥)

)2

=𝑄0(𝜒0, 𝜒0).

Here the penultimate equality follows from |𝑔|2 = 𝑓 = ℎ2.

It is left to prove the claim. We suppose that rank(�̃�) = 𝑟 ≥ 2. We recall that a spectral decomposition

�̃� =
𝑟∑
𝑖=1

𝑢∗𝑖 𝑢𝑖

leads to an SOS decomposition 𝑓 =
∑𝑟

𝑖=1
||𝑔𝑖||2, where 𝑔𝑖 is the function corresponding to 𝑢𝑖 defined by

𝑔𝑖 =
∑
𝜒∈𝐺

𝑢𝑖(𝜒)𝜒, 𝑖 = 1,… , 𝑟.

In particular, we have

1 ∑

6

𝑢𝑖(𝜒0) = ⟨𝑔𝑖, 𝜒0⟩ = |𝐺|
𝑥∈𝐺

𝑔𝑖(𝑥),
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�̃�(𝜒0, 𝜒0) =
𝑟∑
𝑖=1

|𝑢𝑖(𝜒0)|2 = 1|𝐺|2
𝑟∑
𝑖=1

|||||
∑
𝑥∈𝐺

𝑔𝑖(𝑥)
|||||
2

.

By the relation ℎ2 = 𝑓 =
∑𝑟

𝑖=1 |𝑔𝑖|2 and Cauchy-Schwartz inequality, we obtain

𝑟∑
𝑖=1

|||||
∑
𝑥∈𝐺

𝑔𝑖(𝑥)
|||||
2

=
𝑟∑
𝑖=1

∑
𝑥∈𝐺

|𝑔𝑖(𝑥)|2 + 𝑟∑
𝑖=1

∑
𝑥≠𝑦

𝑔𝑖(𝑥)𝑔𝑖(𝑦)

=

(∑
𝑥∈𝐺

ℎ(𝑥)2
)

+
∑
𝑥≠𝑦

𝑟∑
𝑖=1

𝑔𝑖(𝑥)𝑔𝑖(𝑦)

≤

(∑
𝑥∈𝐺

ℎ(𝑥)2
)

+
∑
𝑥≠𝑦

√√√√(
𝑟∑
𝑖=1

|𝑔𝑖(𝑥)|2)(
𝑟∑
𝑖=1

|𝑔𝑖(𝑦)|2)

=

(∑
𝑥∈𝐺

ℎ(𝑥)2
)

+
∑
𝑥≠𝑦

ℎ(𝑥)ℎ(𝑦)

=
|||||
∑
𝑥∈𝐺

ℎ(𝑥)
|||||
2

.

This implies that �̃�(𝜒0, 𝜒0) ≤𝑄0(𝜒0, 𝜒0) and completes the proof of the claim. □

An important consequence of Theorem 3.5 is that the optimization problem (9) can be solved in 𝑂 (|𝐺| log(|𝐺|)) time via the fast 
Fourier transform (FFT) and the inverse fast Fourier transform (iFFT). As an illustrative example, for xqfunction 𝑓 (𝑥) = 1 − cos( 2𝜋𝑥6 )
discussed in Example 3.1. By the Fourier transform, we have√

𝑓 =
(√

2
3 +

√
6
6

)
−
(√

2
12 +

√
6

12

)(
𝜒 + 𝜒−1)+(√

2
12 −

√
6

12

)(
𝜒2 + 𝜒−2)+(√

6
6 −

√
2
3

)
𝜒3.

According to Lemma 3.5, the rank one matrix 𝑄0 = 𝑢∗𝑢 is a solution to (9), where

𝑢 =
[ √

2
3 +

√
6
6 −

√
2

12 −
√
6

12

√
2

12 −
√
6

12

√
6
6 −

√
2
3

√
2

12 −
√
6

12 −
√
2

12 −
√
6

12

]
.

However, it is obvious that the matrix 𝑄0 is not sparse and actually this is also the case in general.

3.4. Square-root-based basis selection method for sparse FSOS

Although Theorem 3.5 already provides a solution 𝑄0 of (9), it is not sparse. To obtain a sparse solution of (9), we use the 
magnitude of the diagonal elements of 𝑄0 as a heuristic guidance: if the term 𝑄0(𝜒, 𝜒) is small, then we search for a Gram matrix �̃� such 
that �̃�(𝜒, 𝜒) = 0. Our heuristic guidance is inspired by the idea of truncation, which is widely used in scientific computing [12–14]

and numerical analysis [15,16]. However, the sparse matrix �̃� we search for is an exact Gram matrix of 𝑓 without error, it is indeed 
a sparse Gram matrix. We remark that although there is no guarantee on the existence of �̃�, Theorem 5.4 supplies a rationale for this 
heuristic guidance. Moreover, our numerical experiments in Section 4 illustrate both the effectiveness and efficiency of the heuristic 
guidance.

Suppose 𝑄 is a solution of (9). We observe that there exists a permutation 𝜎 ∈𝔖|𝐺| such that

𝑄(𝜒𝜎(1), 𝜒𝜎(1)) ≥𝑄(𝜒𝜎(2), 𝜒𝜎(2)) ≥𝑄(𝜒𝜎(3), 𝜒𝜎(3)) ≥⋯ ≥𝑄(𝜒𝜎(|𝐺|), 𝜒𝜎(|𝐺|)). (12)

Without loss of generality, we may simply assume 𝜒𝑘 = 𝜒𝜎(𝑘) in the sequel.

For each |𝐺| ≥ 𝑘 ≥ 1, we define

𝑘 = {𝑄 ∈ℂ𝐺×𝐺 ∶ 𝑄 is Gram matrix of 𝑓, with 𝑄(𝜒𝑖,𝜒𝑖) = 0 for all 𝑘 ≤ 𝑖 ≤ |𝐺|}. (13)

By definition, each 𝑄 ∈ 𝑘 is a Gram matrix of sparsity at most (𝑘 − 1). According to the heuristic guidance, we choose 𝑘 such that 
𝑘 is nonempty via binary search. The problem of checking the non-emptiness of the convex set 𝑘 can be solved via an SDP solver 
in polynomial time in 𝑘 for fixed accuracy.

We end this subsection by the following proposition on the invariance of the square-root-based basis selection method under a 
group isomorphism.

Proposition 3.6. Let 𝐺1, 𝐺2 be isomorphic finite abelian groups and let 𝜙 ∶𝐺2 → 𝐺1 be an isomorphism. For any nonnegative function 𝑓
on 𝐺1 and 𝜒 ∈𝐺1, we have√ √
7

𝜒◦𝜙 ∈𝐺2,
̂
𝑓 (𝜒) = ̂

𝑓◦𝜙(𝜒◦𝜙).
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Moreover, 𝑓 and 𝑓◦𝜙 share the same matrix 𝑄0 given in (11).

Proof. It is clear that 𝜒◦𝜙 ∈𝐺2, and√̂
𝑓◦𝜙(𝜒◦𝜙) = 1|𝐺| ∑

𝑥∈𝐺2

√
𝑓◦𝜙(𝑥) ⋅ 𝜒◦𝜙(𝑥) = 1|𝐺| ∑

𝑥∈𝐺1

√
𝑓 (𝑥) ⋅ 𝜒(𝑥) =

√̂
𝑓 (𝜒).

The moreover part follows from the fact that 𝑄0 is determined by the square root of the function. □

As a comparison, we consider the following example. For any positive integer 𝑛, the group isomorphism ℤ2⋅3𝑛 ≃ ℤ2 ×ℤ3𝑛 leads 
to the following isomorphism of rings:

ℂ[𝑥, 𝑦]∕⟨1 − 𝑥3
𝑛
,1 − 𝑦2⟩ ≅ℂ[ ̂ℤ2 ×ℤ3𝑛 ] ≅ℂ[ℤ̂2⋅3𝑛 ] ≅ℂ[𝑥]∕⟨1 − 𝑥2⋅3

𝑛⟩.
This isomorphism indicates that from the perspective of polynomial optimization, checking the nonnegativity of function

𝑓 (𝑥) = 1 − 1
2
(𝜒(𝑥) + 𝜒−1(𝑥)), 𝑥 ∈ℤ2⋅3𝑛 ,

where 𝜒(𝑥) = exp (𝑥𝜋𝑖∕3𝑛) is equivalent to checking the nonnegativity of the optimal value of either one of the following two poly-

nomial optimization problems:

min
𝑥∈ℂ

1 − 1
2
𝑥− 1

2
𝑥2⋅3

𝑛−1

s.t. 𝑥2⋅3
𝑛 = 1

and

min
𝑥,𝑦∈ℂ

1 − 1
2
𝑥𝑦

3𝑛+1
2 − 1

2
𝑥𝑦

3𝑛−1
2

s.t. 𝑥2 = 𝑦3
𝑛 = 1.

Although these two problems are essentially same, the bases obtained by degree-based selection method are different. In fact, for any 
𝑛, the objective function of the former problem always admits a degree-one FSOS

1 − 1
2
𝑥− 1

2
𝑥2⋅3

𝑛−1 = 1
2
|1 − 𝑥|2 = 1

2
(1 − 𝑥)∗ (1 − 𝑥) ,

where 𝑥∗ = 𝑥−1 = 𝑥2⋅3
𝑛−1, whereas the objective function of the latter problem has no degree-one FSOS if 𝑛 > 1.

4. An algorithm for sparse FSOS and numerical experiments

In this section, we present Algorithm 1 to compute a sparse FSOS of a given nonnegative function on a finite abelian group, and 
then we test Algorithm 1 by different classes of numerical experiments. These experiments are done in Matlab R2016b with CVX 
package [17,18] and SDPT3 solver [19] on a desktop computer with Intel Core i9-10900X CPU (3.7 GHz). Codes for these examples 
can be found in https://github .com /jty -AMSS /FSOS. Our numerical examples indicate the following four features of Algorithm 1:

(i) For nonnegative functions with a given degree bound, the cardinality of sparse FSOS is much smaller than the theoretical upper 
bound for FSOS sparsity given in Theorem 2.5.

(ii) Algorithm 1 can deal with nonnegative functions whose minima are close to zero.

(iii) Algorithm 1 has quasi-linear complexity in the cardinality of the group. In particular, it can deal with nonnegative functions 
with sparse FSOS on groups of order up to 107.

(iv) Algorithm 1 works for arbitrary finite abelian groups. Due to the page limit, we only present examples for ℤ𝑁 and ℤ𝑁 ×ℤ𝑁 , 
but interested readers can find codes and examples for ℤ𝑁

2 on https://github .com /jty -AMSS /FSOS.

With all the preparations above, we are ready to present Algorithm 1 which computes a sparse FSOS of a nonnegative function 
on a finite abelian group. Below we supply some details of this algorithm.

In Step 1, we first perform an inverse Fast Fourier transform (iFFT) on 𝑓 , then compute the pointwise square root, and finally 
apply the Fast Fourier transform (FFT) to obtain the Fourier coefficients of 

√
𝑓 , which can be done in O(|𝐺| log(|𝐺|)) time.

In Step 2, we sort the absolute values of Fourier coefficients instead of the diagonal elements of 𝑄0 since 𝑄0(𝜒, 𝜒) = |𝑎𝜒 |2 holds 
for all 𝜒 ∈𝐺. This step can be completed in O(|𝐺| log(|𝐺|)) time.

In Step 3, since 𝑓 has no FSOS with sparsity less than
√
𝑠, we set the initial value of 𝑘 equal to ⌈√𝑠⌉.

In Steps 4 and step 5, checking whether 𝑆𝑘 is empty and the selection of 𝑄 can be done by any SDP solver. Moreover, Steps 4 
and 5 respectively require at most 1 +2 log(𝑘min∕

√
𝑠) and log(3𝑘min∕2) SDP computations, where each SDP problem is of size at most 

2𝑘min. In Theorem 5.4, we will show that it is reasonable to add a small perturbation 𝛿 to 𝑓 to obtain a sparse FSOS.
8

As a consequence, we obtain the following proposition about the complexity of Algorithm 1.

https://github.com/jty-AMSS/FSOS
https://github.com/jty-AMSS/FSOS
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Algorithm 1 Sparse FSOS of a nonnegative function on a finite abelian group.

Input nonnegative function 𝑓 , finite abelian group 𝐺, a small positive number 𝛿
Output sparse FSOS certificate of 𝑓 on 𝐺.

1: compute the Fourier coefficient of square root of 𝑓 , i.e. compute {𝑎𝜒}𝜒∈𝐺 such that 
√
𝑓 =

∑
𝜒∈𝐺 𝑎𝜒𝜒 .

2: Sort {𝑎𝜒} in descending order of their absolute values and get |𝑎𝜒1
| ≥ |𝑎𝜒2

| ≥⋯ ≥ |𝑎𝜒|𝐺| |.
3: set 𝑘 ∶= ⌈√𝑠⌉, where 𝑠 is the sparsity of 𝑓 .

4: Test whether 𝑆𝑘 in (13) is empty for 𝑓 + 𝛿. If it is empty, then let 𝑘 ∶= 2𝑘 and recalculate 𝑆𝑘 until it is not empty.

5: Find the minimum 𝑘min ∈ [1∕2𝑘, 𝑘] by the bisection method such that 𝑆𝑘min
is not empty, select 𝑄 ∈ 𝑆𝑘min

.

6: Compute Cholesky factorization 𝑄 =𝐻∗𝐻 , with the columns of 𝐻 indexed by {𝜒𝑗}𝑘min
𝑗=1 .

7: return 𝑓 =
∑𝑟

𝑖=1 | ∑𝑘min
𝑗=1 𝐻(𝑖, 𝜒𝑗 )𝜒𝑗 |2 .

Table 1

First experiment: bounded degree and bounded minimum.

group FSOS sparsity time (s) bounds [1]

ℤ10000 16.7 1.49 648

ℤ20000 18.6 2.42 720

ℤ30000 19 2.82 792

ℤ40000 17.8 3.03 792

ℤ50000 18.8 3.38 864

ℤ60000 19 3.89 864

Proposition 4.1. The total complexity of Algorithm 1 is at most

O
(|𝐺| log(|𝐺|) + log(𝑘min) SDP(2𝑘min)

)
.

Here SDP(𝑘) denotes the complexity of solving the SDP problem of size 𝑘 × 𝑘.

According to [20], SDP(𝑘) = O(𝑘6) for fixed accuracy, thus the total complexity is quasi-linear in the order of 𝐺 and polynomial 
in 𝑘min. Moreover, if the FSOS sparsity 𝑘min = O(|𝐺|1∕6), then the complexity of Algorithm 1 applying to 𝑓 is O(|𝐺| log(|𝐺|)).
4.1. Experiments on ℤ𝑁

We present numerical results on randomly generated functions on groups of the form ℤ𝑁 .

4.1.1. The first experiment on ℤ𝑁
In the first experiment, we randomly pick 10 functions ℎ𝑖, 𝑖 = 1, … , 10, satisfying

(i) deg(ℎ𝑖) ≤ 24.

(ii) 0 <min𝑥∈𝐺 ℎ𝑖(𝑥) < 1.

(iii) Re(ℎ̂𝑖(𝜒)), Im(ℎ̂𝑖(𝜒)) ∈ [−10, 10] for all 𝜒 ∈ ℤ̂𝑁 .

For each 1 ≤ 𝑖 ≤ 10, we apply Algorithm 1 to ℎ𝑖 separately. We record results in Table 1 in which the second column shows the 
average cardinality of the sparsity of FSOS found by Algorithm 1 for ℎ𝑖, the third column is the average time cost of Algorithm 1

and the last column is the theoretical upper bound 3𝑑 log2(𝑁∕𝑑) for the FSOS sparsity given by Theorem 2.5. Since the theoretical 
bound given by Theorem 2.5 (last column) is for arbitrary nonnegative functions, it is much larger than our computed FSOS sparsity 
(second column).

4.1.2. The second experiment on ℤ𝑁
In the second experiment, we randomly pick 10 functions ℎ𝑖, 𝑖 = 1, … , 10 satisfying

(i) | supp(ℎ𝑖)| ≤ 25.

(ii) 0 <min𝑥∈𝐺(ℎ𝑖(𝑥)) < 1.

(iii) Re(ℎ̂𝑖(𝜒)), Im(ℎ̂𝑖(𝜒)) ∈ [−1, 1] for all 𝜒 ≠ 𝜒0.

For 1 ≤ 𝑖 ≤ 10, we execute Algorithm 1 separately for each ℎ𝑖 and record the sparsity and running time, the results are summarized 
in Table 2. Here the second column shows the average sparsity of FSOS certificates found by Algorithm 1, the third column is the 
average time cost of Algorithm 1. Notice that in the first experiment, we impose a degree bound to compare the computed FSOS 
sparsity and its theoretical upper bound. In this experiment, we impose a bound on the cardinality of the support of ℎ𝑖 to test the 
9

performance of Algorithm 1 on nonnegative functions whose minimum values are close to zero.
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Table 2

Second experiment: bounded support and bounded minimum.

group FSOS sparsity time (s)

ℤ10000 110.4 224.3

ℤ20000 144.4 1074.6

ℤ30000 168.2 2273.7

ℤ40000 204.8 3869.0

ℤ50000 195.8 3314.3

ℤ60000 219.7 4594.6

Table 3

Third experiment: bounded FSOS support.

group FSOS sparsity time (s)

ℤ500 ×ℤ500 51.4 24.3

ℤ1000 ×ℤ1000 50.8 63.3

ℤ1500 ×ℤ1500 49.2 123.3

ℤ2000 ×ℤ2000 49.6 208.4

ℤ2500 ×ℤ2500 50.6 318.6

ℤ3000 ×ℤ3000 50.2 457.6

ℤ3500 ×ℤ3500 49.2 632.8

ℤ4000 ×ℤ4000 49.8 831.7

ℤ4500 ×ℤ4500 48.2 1066.0

ℤ5000 ×ℤ5000 50.6 1325.1

Fig. 1. Time complexity.

4.2. Experiment on ℤ𝑁 ×ℤ𝑁

We carry out an experiment on groups of the form ℤ𝑁 ×ℤ𝑁 .

In this experiment, we randomly choose a subset 𝑇 ⊆ ̂ℤ𝑁 ×ℤ𝑁 with |𝑇 | = 10 and randomly choose 10 real-valued functions 𝑔𝑗 , 
𝑗 = 1, … , 10 on ℤ𝑁 ×ℤ𝑁 satisfying:

(i) supp(𝑔𝑗 ) ⊆ 𝑇 .

(ii) Re(𝑔𝑗 (𝜒)), Im(𝑔𝑗 (𝜒)) ∈ [−10, 10] for each 𝜒 ∈ 𝑇 .

We apply Algorithm 1 to find a sparse FSOS certificate of 𝑓 =
∑10

𝑗=1 |𝑔𝑗 |2. For each value of 𝑁 , we repeat the experiment 10 times, 
and record the sparsity and the running time. In Table 3, we record numerical results for different values of 𝑁 . The second column 
shows the mean sparsity of FSOS certificates found by Algorithm 1. The third column is the mean time cost for each example. In 
Fig. 1, we plot the running time cost of Algorithm 1 versus the group size 𝑁2. It is notable that:

(i) The FSOS certificate found by Algorithm 1 always has cardinality around 50. This is because the FSOS sparsity of 𝑓 is at most 
10, which can be seen from its construction.

(ii) Algorithm 1 can work for groups of size up to 2.5 ⋅ 107.
10

(iii) Fig. 1 roughly fits 𝑁 log(𝑁) since in these examples, the factor 𝑘 appeared in Proposition 4.1 can be regarded as a constant.



Applied and Computational Harmonic Analysis 73 (2024) 101686J. Yang, K. Ye and L. Zhi

5. Bounds on FSOS sparsities

In this section we focus on bounding the FSOS sparsity of a nonnegative function. In Subsection 5.1, we prove that for functions with 
dominating constant terms, their FSOS sparsities are bounded by their Fourier sparsities. In Subsection 5.2, we prove that a suitable 
perturbation of the given function admits an FSOS supported on the Fourier support of the original function. As a consequence, we 
obtain an error analysis of step 4 in Algorithm 1 which provides a rationale for the square-root-based basis selection method we 
proposed in Subsection 3.4.

5.1. FSOS sparsities of functions with dominating constant terms

Let 𝑓 be a real-valued function on 𝐺. We observe that for any 𝜒 ∈𝐺, we have

𝑓 (𝜒−1) = 𝑓 (𝜒). (14)

Indeed, we recall that 𝑓 (𝜒) and 𝑓 (𝜒−1) can be computed by

𝑓 (𝜒) = 1|𝐺| ∑
𝑥∈𝐺

𝜒(𝑥)𝑓 (𝑥), 𝑓 (𝜒−1) = 1|𝐺| ∑
𝑥∈𝐺

𝜒−1(𝑥)𝑓 (𝑥). (15)

Since 𝐺 is abelian, we have 𝜒−1 = 𝜒 . This together with (15) and the assumption that 𝑓 is real-valued implies (14). In the following 
we bound the FSOS sparsity of a nonnegative function with dominating constant term.

Proposition 5.1. Let 𝐺 be a finite abelian group and let 𝑆 be a symmetric subset of 𝐺, 𝑓 =
∑

𝜒∈𝑆 𝑓 (𝜒)𝜒 be a real-valued function on 𝐺
such that 𝑓 (𝜒0) ≥

∑
𝜒≠𝜒0

|𝑓 (𝜒)|, then the FSOS sparsity of 𝑓 is at most |𝑆|.
Proof. It is sufficient to prove that 𝑓 has a Gram matrix whose number of nonzero rows is at most |𝑆|. Let 𝑆 = {𝜒0, 𝜒1, ..., 𝜒𝑘}. Here 
𝜒0 is the trivial character. We define 𝑄 ∈ ℂ𝐺×𝐺 by:

𝑄(𝜒,𝜒 ′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑓 (𝜒0) −
1
2
∑

𝜒≠𝜒0
|𝑓 (𝜒)|, if 𝜒 = 𝜒 ′ = 𝜒0,

1
2𝑓 (𝜒

′), if 𝜒 = 𝜒0 ≠ 𝜒 ′,
1
2𝑓 (𝜒

−1), if 𝜒 ′ = 𝜒0 ≠ 𝜒,
1
2 |𝑓 (𝜒)|, if 𝜒 = 𝜒 ′ ≠ 𝜒0,

0, otherwise.

Obviously nonzero elements of 𝑄 are on rows and columns labeled by characters in 𝑆 . It is straightforward to verify by definition 
that 𝑄 is a Gram matrix of 𝑓 . Moreover, 𝑄 is an arrowhead matrix, i.e., nonzero elements of 𝑄 either lie in the diagonal or in the 
first row or first column.

It is left to prove 𝑄 ⪰ 0. It is sufficient to verify the nonnegativity of each principal minor of 𝑄. Since 𝑄 is an arrowhead matrix, a 
principal submatrix of 𝑄 not involving elements in the first row and column is a diagonal matrix. Thus it is straightforward to verify 
that the determinant of such a principal submatrix is nonnegative.

If a principal submatrix of 𝑄 contains the first row and column of 𝑄, then we may compute its determinant directly. Indeed, the 
determinant of 𝑄(𝑆, 𝑆) is

det(𝑄(𝑆,𝑆)) =

(
𝑄(𝜒0, 𝜒0) −

∑
𝜒≠𝜒0∈𝑆

𝑄(𝜒0, 𝜒)𝑄(𝜒,𝜒0)
𝑄(𝜒,𝜒)

) ∏
𝜒≠𝜒0∈𝑆

𝑄(𝜒,𝜒),

where 𝑄(𝑆, 𝑆) denotes the principal submatrix of 𝑄 obtained by selecting rows and columns labeled by characters in 𝑆 ⊆ 𝐺. For 
each 𝜒 ∈𝐺 we have

𝑄(𝜒0, 𝜒) =
1
2
𝑓 (𝜒) = 1

2
𝑓 (𝜒−1) =𝑄(𝜒,𝜒0).

Here the second equality follows from (14). Since 𝑓 has a dominating constant term, we have

𝑄(𝜒0, 𝜒0) −
∑

𝜒≠𝜒0∈𝑆

𝑄(𝜒0, 𝜒)𝑄(𝜒,𝜒0)
𝑄(𝜒,𝜒)

= 𝑓 (𝜒0) −
∑
𝜒≠𝜒0

|𝑓 (𝜒)| ≥ 0.

The nonnegativity of other principal minors of 𝑄 can be proved similarly and this completes the proof. □

Remark 5.2. We recall that Theorem 2.5 supplies an upper bound 3𝑑 log2(𝑁∕𝑑) for a nonnegative function 𝑓 on ℤ𝑁 , where 𝑑 is the 
degree of 𝑓 . But according to Proposition 5.1, a degree 𝑑 nonnegative function with dominating 𝑓 (𝜒) on ℤ𝑁 has FSOS sparsity at 
11

most (2𝑑 + 1), which is much smaller than 3𝑑 log2(𝑁∕𝑑) for large 𝑁 .
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5.2. FSOS support of a perturbation

Let 𝐺 be a finite abelian group and let 𝑓 be a function on 𝐺. We define the 𝓁1 norm of 𝑓 as

‖𝑓‖𝓁1 ∶= ∑
𝜒∈𝐺

|𝑓 (𝜒)|. (16)

We begin with the following lemma, which can be regard as an improvement of Lemma 1 in [21] with finite abelian group 
constraints.

Lemma 5.3. Let 𝐺 be a finite abelian group and let 𝑓 be a real-valued function on 𝐺. If 𝑆 is a subset of 𝐺 such that

supp(𝑓 ) ⊆ 𝑆 ⋅𝑆−1 ∶=
{
𝜒 ′𝜒−1 ∶ 𝜒,𝜒 ′ ∈ 𝑆

}
,

then 𝑓 + ‖𝑓‖𝓁1 admits an FSOS with support 𝑆 .

Proof. It is clear that 𝑆 ⋅ 𝑆−1 is a symmetric set. Let 𝑆0 be the set of symmetric elements in 𝑆 ⋅𝑆−1,

𝑆0 ∶=
{
𝜒 ∈ 𝑆 ⋅ 𝑆−1 ∶ 𝜒−1 = 𝜒

}
,

then we can decompose the set 𝑆 ⋅𝑆−1∖𝑆0 ∶=
{
𝜒 ∈ 𝑆 ⋅ 𝑆−1 ∶ 𝜒 ∉ 𝑆0

}
into two disjoint sets:

𝑆 ⋅𝑆−1∖𝑆0 = 𝑆1 ∪𝑆−1, 𝑆−1 = 𝑆−1
1 =

{
𝜒−1 ∶ 𝜒 ∈ 𝑆1

}
,

and there are no mutually inverse elements in the set 𝑆1. Since 𝑓 is a real-valued function, (14) implies that 𝑓 (𝜒−1) = 𝑓 (𝜒) for any 
𝜒 ∈𝐺. Hence 𝑓 can be expressed in the following form:

𝑓 =
∑
𝜒∈𝑆1

𝑓 (𝜒)𝜒 +
∑
𝜒∈𝑆1

𝑓 (𝜒)𝜒−1 +
∑
𝜒∈𝑆0

𝑓 (𝜒)𝜒,

and

‖𝑓‖𝓁1 = 2
∑
𝜒∈𝑆1

|𝑓 (𝜒)|+ ∑
𝜒∈𝑆0

|𝑓 (𝜒)|.
Since 𝑆1 and 𝑆0 are subsets of 𝑆 ⋅𝑆−1, we have that for any 𝜒 ∈ 𝑆0 ∪𝑆1, there exists 𝜒 ′, 𝜒 ′′ ∈ 𝑆 such that 𝜒 = 𝜒 ′′𝜒 ′−1. Then we 

have

‖𝑓‖𝓁1 + 𝑓 =
∑
𝜒∈𝑆1

(
2|𝑓 (𝜒)|+ 𝑓 (𝜒)𝜒 + 𝑓 (𝜒)𝜒−1

)
+

∑
𝜒∈𝑆0

(|𝑓 (𝜒)|+ 𝑓 (𝜒)𝜒
)
.

We show below that ‖𝑓‖𝓁1 + 𝑓 has an FSOS with support 𝑆 :

• For 𝜒 = 𝜒 ′′ ⋅ 𝜒 ′−1 ∈ 𝑆1, 2|𝑓 (𝜒)| + 𝑓 (𝜒)𝜒 + 𝑓 (𝜒)𝜒−1 = |𝑓 (𝜒)| ||||𝜒 ′ + 𝑓 (𝜒)|𝑓 (𝜒)|𝜒 ′′||||2.

• For 𝜒 = 𝜒 ′′ ⋅ 𝜒 ′−1 ∈ 𝑆0, since 𝑓 = 𝑓 , 𝑓 (𝜒) = 𝑓 (𝜒) ∈ℝ, we have

|𝑓 (𝜒)|+ 𝑓 (𝜒)𝜒 =
|𝑓 (𝜒)|

2
|1 + 𝜒|2 = |𝑓 (𝜒)|

2

|||||𝜒 ′′ +
𝑓 (𝜒)|𝑓 (𝜒)|𝜒 ′

|||||
2

. □

Based on Lemma 5.3, we present the following theorem to show that a perturbation of 𝑓 has an FSOS supported in a given support.

Theorem 5.4. Let 𝐺 be a finite abelian group and let 𝑓 ≠ 0 be a nonnegative function on 𝐺. Assume that 𝑆 is a subset of 𝐺 such that 
supp(𝑓 ) ⊆ 𝑆 and 𝑆 = 𝑆−1. We define ℎ by

ℎ̂(𝜒) =

{√̂
𝑓 (𝜒), if 𝜒 ∈ 𝑆,

0, if 𝜒 ∉ 𝑆.
(17)

Then 𝑓 +𝑀 has an FSOS supported in 𝑆 for

𝑀 ∶= 2‖√̂𝑓 − ℎ̂‖𝓁1 ⋅ ‖ℎ̂‖𝓁1 + ‖√̂𝑓 − ℎ̂‖2
𝓁1
. (18)

Before we proceed to the proof of the theorem, we remark that Theorem 5.4 actually provides a rationale of the square-root-based √

12

basis selection method proposed in Subsection 3.4. Indeed, we can regard the function ℎ in Theorem 5.4 as the truncation of 𝑓
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by 𝑆 . Suppose 𝑆 consists of characters with large coefficients in the Fourier expansion of 
√
𝑓 . Then 

√
𝑓 − ℎ only contains terms of √

𝑓 with small coefficients. Thus ‖√̂𝑓 − ℎ̂‖𝓁1 and 𝑀 defined in (18) are small. As a consequence, Theorem 5.4 implies that a small 
perturbation 𝑓 +𝑀 admits an FSOS supported in 𝑆 .

Proof. Define 𝑔 ∶= 𝑓 − |ℎ|2, since supp(𝑓 ) ⊆ 𝑆 , 𝑓 ≠ 0, 𝑓 (𝜒0) =
1|𝐺| ∑𝑥∈𝐺 𝑓 (𝑥) > 0. Hence we have

𝜒0 ∈ 𝑆, supp(𝑓 ) ⊆ 𝑆 ⊆ 𝑆 ⋅𝑆.

Moreover, we have

supp(ℎ2) ⊆ 𝑆 ⋅ 𝑆 ∶= {𝜒 ⋅ 𝜒 ′ ∶ 𝜒,𝜒 ′ ∈ 𝑆} = 𝑆 ⋅𝑆−1.

Since 𝑆−1 = 𝑆 and 
√
𝑓 is real-valued, we have ℎ̂(𝜒) = ℎ̂(𝜒−1) holds for all 𝜒 ∈ 𝐺, thus ℎ is also a real-valued function and |ℎ|2 = ℎ2. We denote 𝑆′ ∶=𝐺 ⧵ 𝑆 . According to (17), we have

𝑔 ∶= 𝑓 − |ℎ|2 =( ∑
𝜒 ′∈𝑆′

√̂
𝑓 (𝜒 ′)𝜒 ′

)2

+ 2 ⋅

(∑
𝜒∈𝑆

∑
𝜒 ′∈𝑆′

√̂
𝑓 (𝜒)

√̂
𝑓 (𝜒 ′)𝜒𝜒 ′

)
.

We have

‖𝑔‖𝓁1 ≤
( ∑
𝜒 ′∈𝑆′

||||√̂𝑓 (𝜒 ′)
||||
)2

+ 2

(∑
𝜒∈𝑆

∑
𝜒 ′∈𝑆′

||||√̂𝑓 (𝜒)
√̂
𝑓 (𝜒 ′)

||||
)
. (19)

Let

𝑀 ∶= 2‖√̂𝑓 − ℎ̂‖𝓁1 ⋅ ‖ℎ̂‖𝓁1 + ‖√̂𝑓 − ℎ̂‖2
𝓁1

= 2

(∑
𝜒∈𝑆

∑
𝜒 ′∈𝑆′

||||√̂𝑓 (𝜒)
√̂
𝑓 (𝜒 ′)

||||
)

+

( ∑
𝜒 ′∈𝑆′

||||√̂𝑓 (𝜒 ′)
||||
)2

. (20)

By (19) and (20), we have

‖𝑔‖𝓁1 ≤𝑀.

By Lemma 5.3, 𝑀 + 𝑔 has an FSOS with support 𝑆 . Hence 𝑓 +𝑀 = |ℎ|2 + (𝑀 + 𝑔) has an FSOS with support 𝑆 . □

The following corollary shows that for a given 𝑠 and function 𝑓 , an appropriate perturbation of 𝑓 admits an FSOS of sparsity at 
most 𝑠.

Corollary 5.5. Let 𝐺 be a finite abelian group and let 𝑓 ≠ 0 be a nonnegative function on 𝐺. Then for any positive integer 𝑠 > 1 + | supp(𝑓 )|, 
𝑓 +𝑀𝑠′ admits an FSOS with sparsity at most 𝑠, where 𝑠′ = 𝑠 − 1 − | supp(𝑓 )| and

𝑀𝑠′ ∶= ‖√̂𝑓‖2
𝓁1

(
3 − 4 𝑠′|𝐺| + 𝑠′ 2|𝐺|2

)
.

Proof. Since 
√
𝑓 is nonnegative, |√̂𝑓 (𝜒)| = |√̂𝑓 (𝜒−1)| for all 𝜒 ∈ 𝐺. Without loss of generality, we can arrange 𝐺 in descending 

order of their absolute values in 
√̂
𝑓 , with any two mutually inverse elements always adjacent i.e. |√̂𝑓 (𝜒1)| ≥ |√̂𝑓 (𝜒2)| ≥ ⋯ ≥|√̂𝑓 (𝜒|𝐺|)|, and for any integer 𝑖 > 0, 𝜒−1

𝑖 must be one of the three characters 𝜒𝑖−1 , 𝜒𝑖 or 𝜒𝑖+1. Then for any integer 𝑘 > 0, the sum 
of the first 𝑘 largest coefficients satisfies

𝑘∑
𝑖=1

|√̂𝑓 (𝜒𝑖)| ≥ 𝑘
‖√̂𝑓‖𝓁1|𝐺| .

In this case, either the set {𝜒1, 𝜒2, ⋯ 𝜒𝑠} is symmetric, or the set {𝜒1, 𝜒2, ⋯ 𝜒𝑠, 𝜒𝑠+1} is symmetric. Let 𝑆′ be the symmetric set among 
these two sets, 𝑆 = supp(𝑓 ) ∪ 𝑆′, and let ℎ be the truncation of 

√
𝑓 at set 𝑆 defined in (17). Then we have

‖√̂𝑓 − ℎ̂‖𝓁1 ≤ ‖√̂𝑓‖𝓁1 − 𝑠′
‖√̂𝑓‖𝓁1|𝐺| .

According to (20), we have

𝑀 ≤ 2
⎛⎜⎜‖√̂𝑓‖2

𝓁1
− 𝑠′

‖√̂𝑓‖2
𝓁1|𝐺|

⎞⎟⎟+ ⎛⎜⎜‖√̂𝑓‖𝓁1 − 𝑠′
‖√̂𝑓‖𝓁1|𝐺| ⎞⎟⎟

2

= ‖√̂𝑓‖2
𝓁1

(
3 − 4 𝑠′|𝐺| + 𝑠′ 2

2

)
=𝑀𝑠′ .
13

⎜⎝ ⎟⎠ ⎝ ⎠ |𝐺|
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By Theorem 5.4. we can conclude that 𝑓 +𝑀𝑠′ admits an FSOS with sparsity at most 𝑠. □

We can estimate ‖√̂𝑓‖𝓁1 for 0 ≤ 𝑓 ≤ 1. The Fourier coefficient 𝑓 (𝜒0) equals to 
∑

𝜒∈𝐺 |√̂𝑓 (𝜒)|2 as

𝑓 (𝜒0) =
1|𝐺| ∑

𝑥∈𝐺
𝑓 (𝑥).

Hence, we have 0 ≤
∑

𝜒∈𝐺 |√̂𝑓 (𝜒)|2 ≤ 1 and ‖√̂𝑓‖𝓁1 =∑
𝜒∈𝐺 |√̂𝑓 (𝜒)| ≤√|𝐺|.

We remark that Theorem 5.4 and Corollary 5.5 only depend on the coefficients of 
√
𝑓 and the cardinality of 𝐺, regardless of the 

degree of 𝑓 and the structure of 𝐺. Therefore, this result can be regarded as a complement to results in [22] for functions with high 
degree.

6. Applications of FSOS

We conclude this paper by a discussion on applications of FSOS in combinatorial optimization problems and sum of Hermitian 
squares of polynomials on tori.

6.1. Combinatorial optimization

Combinatorial optimization is a very natural resource of applications of FSOS [23–28].

6.1.1. Certificate problem for MAX-SAT

It has been proved in [29] that FSOS supply short certificates for MAX-SAT, MIN-SAT and UNSAT problems. In addition, MAX-

2SAT and MAX-3SAT problems can be solved by optimizing polynomials on ℤ𝑛
2 = {−1, 1}𝑛. In order to reduce the size of the related 

SDP problems, some choices of monomial bases are proposed [30]. These monomial bases perform well on some benchmark problems 
but poorly on others. As an example, we consider the weighted MAX-2SAT problem corresponding to the function 𝑔 ∶ℤ10

2 →ℤ:

𝑔 = 50450 + 234𝑥3 − 1386𝑥2 − 1389𝑥1 + 502𝑥4 + 3056𝑥5 − 4692𝑥6 − 2142𝑥7 − 1312𝑥8
−4645𝑥9 + 3787𝑥10 − 3399𝑥1𝑥2 − 1140𝑥1𝑥3 − 282𝑥2𝑥3 − 2413𝑥1𝑥5 − 884𝑥2𝑥4
−2212𝑥1𝑥6 + 3457𝑥2𝑥5 + 4462𝑥3𝑥4 − 2002𝑥5𝑥10 + 2057𝑥3𝑥9 + 4097𝑥1𝑥7 + 1707𝑥2𝑥6
+3419𝑥1𝑥8 − 4102𝑥2𝑥7 − 976𝑥3𝑥6 − 2403𝑥4𝑥5 − 1245𝑥1𝑥9 − 3786𝑥2𝑥8 − 1122𝑥6𝑥7
+1014𝑥3𝑥7 + 3139𝑥4𝑥6 + 483𝑥1𝑥10 + 4417𝑥2𝑥9 − 854𝑥3𝑥8 − 2037𝑥5𝑥6 − 1678𝑥2𝑥10
+667𝑥6𝑥8 − 491𝑥1𝑥4 − 981𝑥4𝑥8 + 4848𝑥5𝑥7 + 4085𝑥3𝑥10 + 1129𝑥4𝑥9 − 4936𝑥5𝑥8
−2628𝑥4𝑥10 + 2787𝑥5𝑥9 − 936𝑥3𝑥5 + 640𝑥6𝑥9 + 1874𝑥7𝑥8 − 707𝑥6𝑥10 + 778𝑥7𝑥9
+3813𝑥7𝑥10 − 2764𝑥8𝑥9 + 3038𝑥8𝑥10 + 2170𝑥9𝑥10 + 6𝑥4𝑥7.

The monomial basis suggested by [30] consists of all monomials of degree at most 2, i.e.

𝑀𝑎𝑝 = {1} ∪ {𝑥𝑖 ∶ 𝑖 = 1,… ,10} ∪ {𝑥𝑖𝑥𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 10}.

It can be checked that there exists no SOS supported in 𝑀𝑎𝑝. However, our algorithm produces an FSOS of 𝑔 of sparsity 52 < |𝑀𝑎𝑝| =
56. More examples can be found in [31,32].

6.1.2. The pigeon-hole principle

In the following, we consider a more remarkable application in combinatorial optimization: the proof complexity of the pigeon-

hole principle. First of all, we recall that the pigeon-hole principle says that 𝑛 + 1 pigeons cannot be placed into 𝑛 holes unless a hole 
contains more than one pigeon. For each positive integer 𝑛, we define a conjunctive normal form (CNF) formula in (𝑛 + 1)𝑛 variables 
{𝑝𝑖𝑗}

𝑛+1,𝑛
𝑖=1,𝑗=1:

PHP𝑛+1𝑛 ∶=
𝑛+1⋀
𝑖=1

(
𝑝𝑖1 ∨⋯ ∨ 𝑝𝑖𝑛

)
∧

⋀
1≤𝑖<𝑘≤𝑛+1,1≤𝑗≤𝑛

(
¬𝑝𝑖𝑗 ∨ ¬𝑝𝑘𝑗

)
.

Then the pigeon-hole principle is equivalent to the statement that PHP𝑛+1𝑛 is unsatisfiable for all 𝑛 ∈ ℕ. The standard technique to 
prove the unsatisfiability of a CNF formula is the resolution refutation [33,4]. According to the theorem that follows, proving the 
pigeon-hole principle by resolution refutation is difficult.
14

Theorem 6.1. [4, Theorem 16, Corollary 18] For sufficiently large 𝑛, any resolution refutation of PHP𝑛+1𝑛 requires 2𝑛∕20 inference steps.
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It turns out that, however, we are able to prove the pigeon-hole principle by an FSOS certificate of sparsity 𝑂(𝑛2). To this end, we 
define:

𝑝𝑛 ∶ℤ𝑛+1
𝑛 ↦ℂ, 𝑝𝑛(𝑥1,… , 𝑥𝑛+1) =

∑
1≤𝑖<𝑗≤𝑛+1

Eqv(𝑥𝑖, 𝑥𝑗 ),

where

Eqv ∶ℤ2
𝑛 ↦ℂ, Eqv(𝑥, 𝑦) =

{
1 if 𝑥 = 𝑦,

0 otherwise.

Proposition 6.2. For each 𝑛 ∈ℕ, the unsatisfiability of PHP𝑛+1𝑛 is equivalent to the positivity of 𝑝𝑛. Moreover, 𝑝𝑛 admits an FSOS of sparsity 
at most 𝑂(𝑛2).

Proof. Let 𝜒𝑘(𝑥) = exp
(
2𝜋𝑖𝑘𝑥
𝑛

)
and let NOR be the function defined on ℤ𝑛:

NOR(𝑥) =

{
1 if 𝑥 = 0,
0 otherwise.

By the inner product ⟨𝜒𝑘, NOR⟩ =∑
𝑥∈ℤ𝑛

NOR(𝑥)𝜒𝑘(𝑥) = 𝜒𝑘(0) = 1, we can conclude that NOR = 1
𝑛

∑𝑛
𝑘=1 𝜒𝑘. It is easy to verify that 

Eqv(𝑥, 𝑦) =NOR(𝑥 − 𝑦) = 1
𝑛

∑𝑛
𝑘=1 𝜒𝑘(𝑥)𝜒𝑛−𝑘(𝑦), thus

𝑝𝑛 =
𝑛+ 1
2

+ 1
𝑛

𝑛−1∑
𝑘=1

∑
1≤𝑖<𝑗≤𝑛+1

𝜒𝑘(𝑥𝑖)𝜒𝑛−𝑘(𝑥𝑗 ).

By the fact that||||||
𝑛+1∑
𝑖=1

𝜒𝑘(𝑥𝑖)
||||||
2

= 𝑛+ 1 +
∑

1≤𝑖≠𝑗≤𝑛+1
𝜒𝑘(𝑥𝑖)𝜒𝑛−𝑘(𝑥𝑗 ),

we have

𝑝𝑛 =
𝑛+ 1
2𝑛

+
𝑛−1∑
𝑘=1

1
2𝑛

||||||
𝑛+1∑
𝑖=1

𝜒𝑘(𝑥𝑖)
||||||
2

.

This implies 𝑝𝑛 >
1
2 > 0 for all 𝑛 ∈ ℕ, with an FSOS certificate of sparsity 𝑂(𝑛2). □

6.2. Sum of Hermitian squares (SOHS) of polynomials on 𝕋 𝑛

As a counterpart of SOS for non-negative polynomials over ℂ, SOHS has also been extensively studied in polynomial optimization 
and mathematical physics [34–36]. As an interesting application of sparse FSOS, we show below that one can construct an SOHS of 
𝑓 ≥ 0 on 𝕋 𝑛 from an FSOS of 𝑓◦𝜏 :

Γ𝑁 ×⋯ × Γ𝑁
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑛 copies

𝜏
←←←←→ 𝕋 𝑛 ∶= 𝕊1 ×⋯ × 𝕊1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑛 copies

𝑓
←←←←←←←→ℝ+, (21)

Here 𝑁 is a positive integer, Γ𝑁 = {exp (2𝜋𝑖𝑘∕𝑁)}𝑁−1
𝑘=0 ≃ ℤ𝑁 , and 𝜏 is the natural inclusion map. It is obvious that an SOHS of 𝑓

provides an FSOS of 𝑓◦𝜏 . On the other hand, if 𝑁 is chosen sufficiently large, then one can construct an SOHS of 𝑓 from an FSOS of 
𝑓◦𝜏 by simply replacing 𝜒𝑘 by 𝑧𝑘 and 𝜒𝑁−𝑘 by 𝑧𝑘 for 𝑘 <𝑁∕2.

Example 6.3. In order to compute an SOHS of 𝑓 (𝑧) = 1 − (𝑧 + 𝑧)∕2 on 𝕊1, we choose 𝑁 = 6, and compute an FSOS of 𝑓◦𝜏 on Γ6:

𝑓◦𝜏 = 1 − 1
2
𝜒1 −

1
2
𝜒5 =

1
2
||1 − 𝜒1||2 .

Replacing 𝜒1 by 𝑧, we obtain an SOHS of 𝑓 on 𝕊1:

𝑓 (𝑧) = 1
2
(1 − 𝑧)(1 − 𝑧).

Let 𝐼 be the ideal generated by 𝑥𝑖𝑥𝑖 − 1, 𝑖 = 1, 2, … , 𝑛. Let 𝜌 be a natural homomorphism.
15

𝜌 ∶ℂ[𝑥1, 𝑥1,… , 𝑥𝑛, 𝑥𝑛]↦ℂ[𝑥1, 𝑥1,… , 𝑥𝑛, 𝑥𝑛]∕𝐼.
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Given a polynomial 𝑓 ∈ ℂ[𝑥1, 𝑥1, 𝑥2, 𝑥2, … , 𝑥𝑛, 𝑥𝑛], if we have an SOHS representation 𝜌(𝑓 ) =
∑𝑚

𝑖=1 ℎ𝑖ℎ𝑖 for some ℎ𝑖 ∈ ℂ[𝑥1, 𝑥1, … ,
𝑥𝑛, 𝑥𝑛]∕𝐼, 1 ≤ 𝑖 ≤ 𝑚, then we have 𝑓 =

∑𝑚
𝑖=1 ℎ𝑖ℎ𝑖 + 𝑔 for some 𝑔 ∈ 𝐼 and ℎ𝑖 ∈ ℂ[𝑥1, 𝑥1, … , 𝑥𝑛, 𝑥𝑛]. Since 𝑔(𝑥) = 0 for all 𝑥 ∈ 𝕋 𝑛, we 

obtain

𝑓 (𝑥) =
𝑚∑
𝑖=1

||ℎ𝑖(𝑥)||2 , 𝑥 ∈ 𝕋 𝑛.

Therefore, the nonnegativity of 𝑓 on 𝕋 𝑛 can be certified by an SOHS of 𝜌(𝑓 ). For convenience, we denote both 𝑓 and 𝜌(𝑓 ) simply by 
𝑓 in the rest of this section, when there is no risk of confusion.

Given a polynomial

𝑓 =
∑

𝛼,𝛽∈ℕ𝑛
𝑎𝛼,𝛽

𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖 𝑥

𝛽𝑖
𝑖 ∈ℂ[𝑥1, 𝑥1,⋯ , 𝑥𝑛, 𝑥𝑛]∕𝐼,

we define deg𝑥𝑖 (𝑓 ) ∶= max𝑛
𝑖=1{𝛼𝑖 + 𝛽𝑖} for each 𝑖 = 1, … , 𝑛. Moreover, the restriction 𝑓 |𝐺 of 𝑓 to 𝐺 =ℤ𝑘1

×ℤ𝑘2
×⋯ ×ℤ𝑘𝑛

is defined 
by

𝑓 |𝐺(𝑥1, 𝑥2,⋯ , 𝑥𝑛) =
∑

𝛼,𝛽∈ℕ𝑛
𝑎𝛼,𝛽

𝑛∏
𝑖=1

𝜒𝛼𝑖−𝛽𝑖 (𝑥𝑖) =
∑

𝛼,𝛽∈ℕ𝑛
𝑎𝛼,𝛽

𝑛∏
𝑖=1

exp
(
2𝑖𝜋(𝛼𝑖 − 𝛽𝑖)𝑥𝑖

𝑘𝑖

)
. (22)

For each positive integer 𝑘, we denote by [𝑘] the set {0, 1, 2, ⋯ , 𝑘 − 1}. We recall that a function 𝑔 on 𝐺 = ℤ𝑘1
×ℤ𝑘2

×⋯ ×ℤ𝑘𝑛
can be written as

𝑔(𝑥1, 𝑥2,⋯ , 𝑥𝑛) =
∑

𝛼∈[𝑘1]×[𝑘2]×⋯×[𝑘𝑛]
𝑎𝛼

𝑛∏
𝑖=1

𝜒𝛼𝑖 (𝑥𝑖) =
∑

𝛼∈[𝑘1]×[𝑘2]×⋯×[𝑘𝑛]
𝑎𝛼

𝑛∏
𝑖=1

exp
(
2𝑖𝜋𝛼𝑖𝑥𝑖
𝑘𝑖

)
.

We define the lift of 𝑔 to 𝕋 𝑛 by

𝐿(𝑔) =
∑

𝛼∈[𝑘1]×[𝑘2]×⋯×[𝑘𝑛]
𝑎𝛼

𝑛∏
𝑖=1

𝑥
𝓁𝑘𝑖 (𝛼𝑖)
𝑖 ∈ℂ[𝑥1, 𝑥1,⋯ , 𝑥𝑛, 𝑥𝑛]∕𝐼. (23)

Here 𝑥−𝑗𝑖 = 𝑥𝑗𝑖 in ℂ[𝑥1, 𝑥1, ⋯ , 𝑥𝑛, 𝑥𝑛]∕𝐼 and for each positive integer 𝑘, 𝑚𝑘 is the map

𝓁𝑘(𝑗) =

{
𝑗, if 0 ≤ 𝑗 < 𝑘

2 ,

𝑗 − 𝑘, if
𝑘
2 ≤ 𝑗 < 𝑘.

(24)

It is clear that the lift of 𝑔 is a linear map satisfying 𝐿(𝑔) =𝐿(𝑔). The following theorem provides conditions to ensure that the lift of 
an FSOS is an SOHS.

Theorem 6.4. Let 𝑓 ∈ ℂ[𝑥1, 𝑥1, ⋯ , 𝑥𝑛, 𝑥𝑛] be a polynomial defined on 𝕋 𝑛 and let 𝑆 be a subset of 𝐺. We denote by 𝑓 |𝐺 the restriction of 
𝑓 on the group 𝐺 =ℤ𝑘1

×ℤ𝑘2
×⋯ ×ℤ𝑘𝑛

. Assume the following conditions are satisfied:

(a) For all 𝑖 = 1, 2, ..., 𝑛, 𝑘𝑖 > 4 deg𝑥𝑖 (𝑓 );
(b) 𝑓 |𝐺 =

∑𝑚
𝑖=1 |ℎ𝑖|2 is an FSOS on the group 𝐺, with 

⋃
𝑖∈𝐼 supp(ℎ𝑖) ⊆ 𝑆 ;

(c) For all 𝜒𝛼 ∈ 𝑆 , and all 𝑖 = 1, 2, ..., 𝑛, we have 0 ≤ 𝛼𝑖 < 𝑘𝑖∕4 or 3𝑘𝑖∕4 < 𝛼𝑖 ≤ 𝑘𝑖 holds.

Then we can lift polynomials ℎ1, … , ℎ𝑚 to give an SOHS of 𝑓 on 𝕋 𝑛.

Proof. According to (22) and (23), 𝑓 |𝐺 is obtained from 𝑓 by substituting 𝑥𝛼𝑖𝑖 (resp. 𝑥𝛽𝑖𝑖 ) by 𝜒𝛼𝑖 (resp. 𝜒−𝛽𝑖 ), while 𝐿(𝑔) is obtained 

from 𝑔 by replacing 𝜒𝛼𝑖 (𝑥𝑖) by 𝑥
𝓁𝑘𝑖 (𝛼𝑖)
𝑖 . A direct calculation together with (24) implies that 𝑓 =𝐿(𝑓 |𝐺) if (a) holds.

For functions ℎ, 𝑔 ∶𝐺↦ℂ supported on 𝑆 , we have

𝐿(ℎ𝑔) =𝐿
⎛⎜⎜⎝

∑
𝜒𝛼,𝜒𝛽∈𝑆

ℎ̂(𝛼)𝑔(𝛽)𝜒𝛼𝜒𝛽
⎞⎟⎟⎠ =

∑
𝜒𝛼,𝜒𝛽∈𝑆

ℎ̂(𝛼)𝑔(𝛽)
𝑛∏
𝑖=1

𝑥
𝓁𝑘𝑖 (𝛼𝑖)+𝓁𝑘𝑖 (𝛽𝑖)
𝑖 , (25)

where 𝓁𝑘𝑖 ∶ℤ𝑘𝑖
→ℤ is the map defined in (24). If (c) holds, then we have

𝓁𝑖(𝛼𝑖) + 𝓁𝑖(𝛽𝑖) = 𝓁𝑖(𝛼𝑖 + 𝛽𝑖), (26)

𝐿(ℎ𝑔) =𝐿(ℎ)𝐿(𝑔). (27)
16

In fact, since 𝛼𝑖, 𝛽𝑖 are elements in ℤ𝑘𝑖
, (c) leads to three cases below.
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• If 0 ≤ 𝛼𝑖, 𝛽𝑖 < 𝑘𝑖∕4, then 0 ≤ 𝛼𝑖 + 𝛽𝑖 < 𝑘𝑖∕2.

• If 0 ≤ 𝛼𝑖 < 𝑘𝑖∕4 and 3𝑘𝑖∕4 < 𝛽𝑖 ≤ 𝑘𝑖, then 3𝑘𝑖∕4 < 𝛼𝑖 + 𝛽𝑖 ≤ 𝑘𝑖 or 0 ≤ 𝛼𝑖 + 𝛽𝑖 ≤ 𝑘𝑖∕4.

• If 3𝑘𝑖∕4 < 𝛼𝑖, 𝛽𝑖 ≤ 𝑘𝑖, then 𝑘𝑖∕2 < 𝛼𝑖 + 𝛽𝑖 ≤ 𝑘𝑖.

Thus, (26) follows immediately from (24). Furthermore, it is clear that (27) is a direct consequence of (25) and (26). Therefore, we 
obtain

𝑓 =𝐿(𝑓 |𝐺) =𝐿

(
𝑚∑
𝑖=1

ℎ𝑖ℎ𝑖

)
=

𝑚∑
𝑖=1

𝐿
(
ℎ𝑖
)
𝐿
(
ℎ𝑖

)
=

𝑚∑
𝑖=1

𝐿
(
ℎ𝑖
)
𝐿
(
ℎ𝑖
)
. □

Remark 6.5. As an important application of SOHS of polynomials on 𝕋 𝑛, one can apply it to verify that a polynomial 𝑓 (𝑥1, … , 𝑥𝑛) is 
nonnegative on a hypercube: we can first map the hypercube to [−2, 2]𝑛, then we properly choose an abelian group 𝐺 to construct an 
SOHS of 𝑓 (𝑧1 + 𝑧1, … , 𝑧𝑛 + 𝑧𝑛) on 𝕋 𝑛. Comparing with known methods (based on computing SOS over constraints), this new method 
may provide us a simpler certificate of nonnegativity of polynomials on intervals.

We show below that a sparse FSOS on finite abelian groups can be used to certify the nonnegativity of the Motzkin polynomial in 
[−2, 2] × [−2, 2].

Example 6.6 (Nonnegativity of the Motzkin polynomial in a square). Let 𝑀(𝑥, 𝑦) = 𝑥4𝑦2 + 𝑥2𝑦4 − 3𝑥2𝑦2 + 1 be the Motzkin polynomial. 
It is well-known that 𝑀 has no SOS over reals [37,38]. However, we can compute an SOS of 𝑀(𝑥, 𝑦) subject to constraints 4 −𝑥2 ≥ 0
and 4 − 𝑦2 ≥ 0. The SOS of 𝑀 on [−2, 2] × [−2, 2] computed by TSSOS [39]1 has sparsity 9:

𝑀(𝑥, 𝑦) =
3∑
𝑗=1

𝑣𝑗𝑄𝑗𝑣
𝖳
𝑗 + (4 − 𝑥2)𝑣1𝑄4𝑣

𝖳
1 + (4 − 𝑦2)𝑣1𝑄5𝑣

𝖳
1,

where 𝑣1 = [1, 𝑥2, 𝑦2], 𝑣2 = [𝑥, 𝑥3, 𝑥𝑦2], 𝑣3 = [𝑦, 𝑥2𝑦, 𝑦3] and

𝑄1 =
⎡⎢⎢⎣
0.114 −0.057 −0.057
−0.057 0.0425 0.014
−0.057 0.014 0.043

⎤⎥⎥⎦ ,𝑄2 =
⎡⎢⎢⎣
1.111 −0.277 −0.834
−0.277 0.074 0.203
−0.834 0.203 0.630

⎤⎥⎥⎦ ,
𝑄3 =

⎡⎢⎢⎣
1.111 −0.834 −0.277
−0.834 0.630 0.203
−0.277 0.203 0.074

⎤⎥⎥⎦ ,𝑄4 =
⎡⎢⎢⎣
0.111 −0.087 −0.024
−0.087 0.074 0.013
−0.024 0.013 0.011

⎤⎥⎥⎦ ,
𝑄5 =

⎡⎢⎢⎣
0.111 −0.024 −0.087
−0.024 0.011 0.013
−0.087 0.013 0.074

⎤⎥⎥⎦ .
For a better demonstration, elements in 𝑄1, … , 𝑄5 are rounded to three decimal places. Our new method works as follows: First, we 
substitute of 𝑥, 𝑦 by 𝑥 = 𝑧1 + 𝑧1, 𝑦 = 𝑧2 + 𝑧2 and consider

𝑓 (𝑧1, 𝑧2) ∶=𝑀(𝑧1 + 𝑧1, 𝑧2 + 𝑧2), 𝑧1, 𝑧2 ∈ 𝕊1.

Then we take 𝑁 = 8 and compute a sparse FSOS of the function 𝑓◦𝜏 on Γ8 × Γ8 by Algorithm 1, which can be lifted further to give 
an SOHS of 𝑓 on 𝕋 2:

𝑓 (𝑧1, 𝑧2) =
|||𝑧21𝑧22 + 𝑧21 + 𝑧22 + 𝑧21𝑧

2
2 + 2𝑧21 + 𝑧22 + 2|||2 .

In particular, we obtain a rank one SOHS of 𝑀(𝑧1 +𝑧1, 𝑧2 +𝑧2) for 𝑧1, 𝑧2 ∈ 𝕊1 of sparsity 7. This provides a proof for the nonnegativity 
of 𝑀(𝑥, 𝑦) on [−2, 2] × [−2, 2] since 𝑀(𝑥, 𝑦) is equal to

|exp(2(𝜃 +𝜓)𝑖) + exp(−2𝜃𝑖) + exp(−2𝜓𝑖) + exp(2(𝜃 −𝜓)𝑖) + 2exp(2𝜃𝑖) + exp(2𝜓𝑖) + 2|2 ,
where 𝜃 = arccos(𝑥∕2), 𝜓 = arccos(𝑦∕2) for 𝑥, 𝑦 ∈ [−2, 2].

It is proved in [40] that there are nonnegative quadratic functions on ℤ𝑛
2 with no FSOS of degree less than 𝑛∕2. We present below 

a similar example for ℤ𝑛.

Example 6.7 (A function on ℤ𝑛 with no low degree FSOS). For any integer 𝑛 ≥ 5, we consider the function

𝑔 ∶ℤ𝑛 →ℂ, 𝑥↦ 2cos
(𝜋
𝑛

)
− exp

(𝜋𝑖
𝑛

)
𝜒1(𝑥) − exp

(
−𝜋𝑖
𝑛

)
𝜒−1(𝑥).
17

1 We thank Jie Wang for his help.
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It is straightforward to verify that 𝑔 is nonnegative on ℤ𝑛. We claim that 𝑔 has no FSOS supported on{
𝜒⌊− 𝑛

4 ⌋, 𝜒⌊− 𝑛
4 ⌋+1,… , 𝜒⌊ 𝑛4 ⌋−1, 𝜒⌊ 𝑛4 ⌋

}
, (28)

where 𝜒𝑘(𝑥) = exp (2𝑖𝜋𝑘𝑥∕𝑛) and 𝜒−𝑘 ∶= 𝜒𝑛−𝑘. Indeed, according to Theorem 6.4, an FSOS of 𝑔 satisfying (28) can be lifted to an 
SOHS of 𝐿(𝑔) = 2 cos (𝜋∕𝑛) − exp (𝜋𝑖∕𝑛)𝑥 − exp(−𝜋𝑖∕𝑛)𝑥. However, this contradicts to the fact that

𝐿(𝑔)
(
exp

(
−𝜋𝑖
𝑛

))
= 2cos

(𝜋
𝑛

)
− 2 < 0

when 𝑛 ≥ 5.

This also implies that for each integer 𝑛 ≥ 5, the polynomial optimization problem

min
𝑥∈ℂ

2cos
(𝜋
𝑛

)
− exp

(𝜋𝑖
𝑛

)
𝑥− exp

(
−𝜋𝑖
𝑛

)
𝑥

s.t. 𝑥𝑛 = 1

has no SOS certificate of degree less than 𝑛∕4.
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