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ABSTRACT
This paper introduces a noncommutative version of the Nullstellen-

satz, motivated by the study of quantum nonlocal games. It has been

proved that a two-answer game with a perfect quantum strategy

also admits a perfect classical strategy. We generalize this result

to the infinite-dimensional case, showing that a two-answer game

which has a perfect commuting operator strategy also admits a

perfect classical strategy. And this result induces a special case of

noncommutative Nullstellensatz.
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1 INTRODUCTION
TheNullstellensatz and Positivstellensatz are among the core results

of classical algebraic geometry. Investigating their generalizations

in the noncommutative setting holds significant theoretical value

and has important applications in operator algebras and quantum

information. [6] firstly showed that all noncommutative positive

free polynomials are sums of squares, and [7] explored the positivity

of noncommutative polynomials and its implications for zero sets

in matrix spaces. [3] presented a directional Nullstellensatz version

of the noncommutative Nullstellensatz, and then [2] used this result

to characterize whether a general nonlocal game admits a perfect

commuting operator strategy.

Quantum nonlocal games play an important role in quantum

information theory. They are a class of games based on quantum

entanglement, where the players’ strategies and outcomes show
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significant differences between classical and quantum communi-

cation. Quantum nonlocal games were first introduced by [4], and

through the non-classicality of quantum entanglement, they demon-

strate the fundamental differences between quantum and classical

theories.

In this research area, the mathematical models of quantum non-

local games are often described using algebraic structures. These

structures typically involve complex relationships between genera-

tors, particularly in defining and proving related theoretical results,

where ideals, algebras, and representation theory often play key

roles.

This paper proposes a noncommutative Nullstellensatz, inspired

by the study of two-answer quantum nonlocal games. Specifically,

we construct an algebraic structure associated with these games to

explore its zero-point problem Jianting: ? and study the properties

of this structure from an algebraic perspective. The background of

this problem comes from a deep understanding of operator algebras

in quantum nonlocal games, and our goal is to use noncommuta-

tive algebraic techniques to reveal the deep connections between

quantum and classical strategies for nonlocal games.

2 PRELIMINARIES
2.1 Definitions
Let 𝑋,𝑌,𝐴, 𝐵 be finite sets, where 𝐴 = 𝐵 = {0, 1}, and C⟨{𝑒𝑥𝑎 , 𝑓

𝑦

𝑏
}⟩

be the free algebra generated by {𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
: (𝑥,𝑦, 𝑎, 𝑏) ∈ 𝑋×𝑌×𝐴×𝐵}.

Define the two sided ideal

I = ⟨(𝑒𝑥𝑎 )2 − 𝑒𝑥𝑎 , (𝑓
𝑦

𝑏
)2 − 𝑓

𝑦

𝑏
;∑︁

𝑎∈𝐴
𝑒𝑥𝑎 − 1,

∑︁
𝑏∈𝐵

𝑓
𝑦

𝑏
− 1;

𝑒𝑥𝑎 𝑓
𝑦

𝑏
− 𝑓

𝑦

𝑏
𝑒𝑥𝑎 | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵⟩

and letA = C⟨{𝑒𝑥𝑎 , 𝑓
𝑦

𝑏
}⟩/I. Note that through simple computation

we can see that 𝑒𝑥
0
𝑒𝑥
1
, ∀𝑥 ∈ 𝑋 and 𝑓

𝑦

0
𝑓
𝑦

1
, ∀𝑦 ∈ 𝑌 are in I. The

elements in I can be seen as the relations that the generators

satisfy.We can also equipA with the natural involution ”∗” induced
by (𝑒𝑥𝑎 )∗ = 𝑒𝑥𝑎 and (𝑓 𝑦

𝑏
)∗ = 𝑓

𝑦

𝑏
. Then A is a complex ∗−algebra.

Moreover, A is a group algebra. Let 𝐴𝑥 = 𝑒𝑥
0
− 𝑒𝑥

1
, 𝐵𝑦 = 𝑓

𝑦

0
− 𝑓

𝑦

1

for any 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , and we have

𝐴2

𝑥 = 𝐵2𝑦 = 1, 𝐴𝑥 = 𝐴∗
𝑥 , 𝐵𝑦 = 𝐵∗𝑦,

𝑒𝑥𝑎 =
1 + (−1)𝑎𝐴𝑥

2

, 𝑓
𝑦

𝑏
=

1 + (−1)𝑏𝐵𝑦
2

.

https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx


ISSAC 2025, July 28th–August 1st, 2025, Guanajuato, Mexico Tianshi Yu, –, and –

Define 𝐺 to be the group generated by all the elements 𝐴𝑥 , 𝑥 ∈ 𝑋

and 𝐵𝑦, 𝑦 ∈ 𝑌 , and equip the group algebra of 𝐺 with the natural

involution ∗ : 𝑔∗ = 𝑔−1 and (𝑔1𝑔2)∗ = 𝑔∗
2
𝑔∗
1
, ∀𝑔,𝑔1, 𝑔2 ∈ 𝐺 , then

we can see that A = C[𝐺].
We denote

SOSA := {
𝑛∑︁
𝑖=1

𝛼∗𝑖 𝛼𝑖 | 𝑛 ∈ N, 𝛼𝑖 ∈ A}.

It is well known that A is Archimedean, that is to say, for every

𝛼 ∈ A, there exists 𝜂 ∈ N such that 𝜂 − 𝛼∗𝛼 ∈ SOSA [2, Example

4.4].

2.2 Motivations
The motivation for studying the Nullstellensatz on this algebra

originates from quantum nonlocal games. If the reader is familiar

with this field, they can skip the content of this subsection.

A quantum nonlocal game can be discribed as a scoring function

𝜆 from the finite set 𝑋 ×𝑌 ×𝐴 × 𝐵 to {0, 1}, where the player Alice
has a question set 𝑋 and an answer set 𝐴, while the player Bob

has a question set 𝑌 and an answer set 𝐵. The players cannot com-

municate during the game, but they can make some arrangements

before they play the game. The players are said to win the game

when 𝜆(𝑥,𝑦, 𝑎, 𝑏) = 1, and they lose otherwise. A (deterministic)

classical strategy involves two mappings 𝑢 : 𝑋 → 𝐴 and 𝑣 : 𝑌 → 𝐵,

when Alice receives a question 𝑥 ∈ 𝑋 she responds with 𝑢 (𝑥), and
similarly, Bob responds with 𝑣 (𝑦) when he receives 𝑦 ∈ 𝑌 . If the

players share a quantum state 𝜙 on a (perhaps infinite dimensional)

Hilbert space H , and for every question pair (𝑥,𝑦) ∈ 𝑋 × 𝑌 Al-

ice and Bob perform commuting projection-valued measurements

{𝐸𝑥𝑎 ∈ B(H) : ∑𝑎∈𝐴 𝐸𝑥𝑎 = id} and {𝐹 𝑦
𝑏

∈ B(H) : ∑𝑏∈𝐵 𝐹
𝑦

𝑏
= id}

respectively to determine their answers, then the game is said to

have a commuting operator strategy. Furthermore, if we restrict

the quantum state 𝜙 to be a tensor 𝜙1 ⊗ 𝜙2, where 𝜙1 and 𝜙2 are

in finite dimensional Hilbert space H1 and H2 respectively, then

we get a (finite dimensional) quantum strategy. We call a strategy

perfect if the players can always win the game using this strategy.

Nonlocal games have been extensively studied in quantum infor-

mation theory due to their profound implications for understanding

quantum entanglement, quantum complexity theory, and the foun-

dations of quantum mechanics. In 2020 Ji et al [8] used nonlocal

games to prove that "MIP*=RE", which implies the famous Connes’

embedding conjecture is not true.

It is easy to prove that if a nonlocal game has a perfect classical

strategy, then it must have a perfect quantum strategy, and a perfect

quantum strategy must be a perfect commuting operator strategy.

However, the converse does not hold. For example, the famous

Magic Square game admits a perfect quantum strategy but has

no perfect classical strategy [5]. But if we additionally require

𝐴 = 𝐵 = {0, 1}, then a game with answer set equals to 𝐴 × 𝐵

that admits a perfect quantum strategy also have a perfect classical

strategy [5, Theorem 3]. Our contribution is to extend this proof to

the infinite-dimensional case and, in combination with [2], derive

a form of Nullstellensatz.

3 MAIN RESULT
Theorem 3.1. Let A be the complex ∗−algebra defined above. Let

Λ ⊆ 𝑋 ×𝑌 ×𝐴 × 𝐵 andN = {𝑒𝑥𝑎 𝑓 𝑎𝑏 | (𝑥,𝑦, 𝑎, 𝑏) ∈ Λ}, and L(N) be
the left ideal generated by N . Then

− 1 ∉ SOSA +L(N) + L(N)∗ ⇐⇒
there exists a ∗−representation 𝜌 : A → C such that 𝜌 (N) = {0}.

Proof. (⇐=) is easy. Otherwise if we sssume that this direction

does not hold, i.e −1 ∈ SOS+L(N) + L(N)∗ and there exists such

a ∗−representation 𝜌 that 𝜌 (N) = {0}, then we have

−1 = 𝜌 (−1) ∈ 𝜌 (SOSA ) ⩾ 0,

which is a contradiction!

(=⇒) Suppose we have −1 ∉ SOS+L(N) + L(N)∗, we need

to construct a one-dimensional representation 𝜌 which satisfies

the condition. Our approach is as follows: first, construct an ap-

propriate (possibly infinite-dimensional) representation, and then

use this representation to construct the desired one-dimensional

representation.

At the beginning, using the Nullstellensatz given by Watts, Hel-

ton andKlep [2, Theorem 4.3]we know there exists a ∗−representation
𝜎 : A → B(𝐻 ) and a vector 𝜓 ∈ H such that 𝜎 (L(N)) = {0}.
Moreover, we can get that H is a separable Hilbert space. For com-

pleteness we briefly write its proof. By the Hahn-Banach theorem

[1, Theorem III.1.7] there exists a functional 𝑓 : A → C which

separate −1 and SOSA + L(N) + L(N)∗, i.e
𝑓 (−1) ⩽ 0, 𝑓 (SOSA + L(N) + L(N)∗) ⊆ R⩾0

.

Since A is a group algebra, we know SOSA is Archimedean, and

thus the separation is strict, i.e. we can suppose 𝑓 (−1) = −1.
Since L(N) is a subspace of A, we can get that 𝑓 (SOSA +

L(N) + L(N)∗) ⩾ 0 means 𝑓 (L(N)) = {0} and 𝑓 (SOSA ) ⊆
R⩾0

. Thus for every self-adjoint 𝑔 = 𝑔∗ ∈ A, we can take the

decomposition 𝑔 = 𝑔1 − 𝑔2, where 𝑔1 = ( 𝑔+1
2
)∗ ( 𝑔+1

2
) and 𝑔2 =

1

4
𝑔∗𝑔 + 1

4
are in SOSA [9, Example 1]. By Archimedeanity we know

there exists a 𝜂 ∈ N such that 𝜂 − 𝑔1 ∈ SOSA , so 𝜂 − 𝑔 ∈ SOSA ,

and 𝑓 (𝜂 − 𝑔) ∈ R⩾0
, i.e 𝑓 (𝑔) ∈ R. Then, for every ℎ ∈ A, using

ℎ =
ℎ + ℎ∗

2

+ i

ℎ − ℎ∗

2i

we can get 𝑓 (ℎ∗) = 𝑓 (ℎ)∗.
Now perform the GNS construction. Define the sesquilinear form

on A
⟨𝛼 | 𝛽⟩ = 𝑓 (𝛽∗𝛼)

and 𝑀 = {𝛼 ∈ A : 𝑓 (𝛼∗𝛼) = 0}. By Cauchy-Schwarz inequality

we know𝑀 is a left ideal ofA. Form the quotient space 𝐻 := 𝐻/𝑀 ,

and equip it with the inner product ⟨· | ·⟩. Then we can complete it

to the Hilbert spaceH .

It should be noted that we can requireH to be a separable Hilbert

space. This is because A has only a finite number of generators,

which allows us to generate a countable dense subset of A using

these generators with rational coefficients. By transferring this to

the quotient space, we achieve the separability ofH .

Define the quotient map 𝜙 : A → H , 𝛼 ↦→ 𝛼 + 𝑀 , the cyclic

vector𝜓 := 𝜙 (1) = 1 +𝑀 , and the left regular representation

𝜎 : A → B(H), 𝛼 ↦→ (𝑝 +𝑀 ↦→ 𝛼𝑝 +𝑀) .
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By Archimedeanity, it is easy to verify that 𝜎 (𝛼) is bounded for

every 𝛼 ∈ A, and thus 𝜎 is a ∗−representation.
Now we prove 𝜎 (L(N))𝜓 = {0}. Since 𝑓 (L(N)) = {0} and

L(N)∗L(N) ⊆ L(N), we know that L(N) ⊆ 𝑀 . Therefore, for

any 𝛽 ∈ L(𝑁 ) ⊆ 𝑀 , we have

𝜎 (𝛽)𝜓 = 𝜎 (𝛽) (1 +𝑀) = 𝛽 +𝑀 ∈ 𝑀, i.e 𝜎 (𝛽)𝜓 = 0 ∈ H

as desired.

Now we construct the one-dimensional representation 𝜌 . Since∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓 = 1

for every fixed pair (𝑥,𝑦), we know that there exist (𝑥,𝑦, 𝑎, 𝑏) ∈
𝑋 × 𝑌 ×𝐴 × 𝐵 such that𝜓∗𝜎 (𝑒𝑥𝑎 𝑓

𝑦

𝑏
)𝜓 ≠ 0. Let

Π = {(𝑥,𝑦, 𝑎, 𝑏) ∈ 𝑋 × 𝑌 ×𝐴 × 𝐵 : 𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓 ≠ 0},

and we have Π ⊆ 𝑋 × 𝑌 × 𝐴 × 𝐵 \ Λ since 𝜎 (L(N))𝜓 = {0} and
thus𝜓∗𝜎 (𝑒𝑥𝑎 𝑓

𝑦

𝑏
)𝜓 = 0 for any (𝑥,𝑦, 𝑎, 𝑏) ∈ Λ.

Using the generators 𝐴𝑥 and 𝐵𝑦 we can rewrite:

𝜓∗𝜎 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
)𝜓 =

1

4

+ 1

4

(−1)𝑎𝜓∗𝜎 (𝐴𝑥 )𝜓

+ 1

4

(−1)𝑏𝜓∗𝜎 (𝐵𝑦)𝜓

+ 1

4

(−1)𝑎+𝑏𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 .

(3.1)

SinceH is separable, we can choose an orthogonal basis ofH
named

{𝜓1,𝜓2, . . . . . .},
where𝜓1 = 𝜓 . Define

𝑘 : 𝑋 → N
𝑥 ↦→ min{ 𝑗 ∈ N : 𝜓∗

𝑗 𝜎 (𝐴𝑥 )𝜓 ≠ 0};
𝑙 : 𝑌 → N

𝑦 ↦→ min{ 𝑗 ∈ N : 𝜓∗
𝑗 𝜎 (𝐵𝑦)𝜓 ≠ 0}.

Note that for every 𝑥 ∈ 𝑋 , 𝑘 (𝑥) is well defined because𝜓 ≠ 0 and

𝜎 (𝐴𝑥 )2 = 1, thus there must exist a 𝑗 ∈ N such that𝜓∗
𝑗
𝜎 (𝐴𝑥 )𝜓 ≠ 0

(otherwise 𝜎 (𝐴𝑥 )𝜓 = 0 a contradiction!). Similarly for the case of

𝑙 (𝑦).
Let

𝑢 : 𝑋 → 𝐴

𝑥 ↦→
{
0, 0 ⩽ arg𝜓𝑘 (𝑥 )𝜎 (𝐴𝑥 )𝜓 < 𝜋 ;

1, 𝜋 ⩽ arg𝜓𝑘 (𝑥 )𝜎 (𝐴𝑥 )𝜓 < 2𝜋,
;

𝑣 : 𝑌 → 𝐵

𝑦 ↦→
{
0, 0 ⩽ arg𝜓𝑙 (𝑦)𝜎 (𝐵𝑦)𝜓 < 𝜋 ;

1, 𝜋 ⩽ arg𝜓𝑙 (𝑦)𝜎 (𝐵𝑦)𝜓 < 2𝜋,
.

We have the following claim:

Claim 1. For every (𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)) ∈ 𝑋 × 𝑌 × 𝐴 × 𝐵, we have
(𝑥,𝑦,𝑢 (𝑥), 𝑣 (𝑦)) ∈ Π. That is to say,𝜓∗𝜎 (𝑒𝑥

𝑢 (𝑥 ) 𝑓
𝑦

𝑣 (𝑦) )𝜓 ≠ 0.

We’ll leave the proof of Claim 1 to the end. Using this claim we

can construct the one-dimensional ∗−representation 𝜌 as follows:

for every 𝑥 ∈ 𝑋 ,

𝜌 (𝑒𝑥
𝑢 (𝑥 ) ) = 1, 𝜌 (𝑒𝑥

1−𝑢 (𝑥 ) ) = 0;

and for every 𝑦 ∈ 𝑌 ,

𝜌 (𝑓 𝑦
𝑣 (𝑦) ) = 1, 𝜌 (𝑓 𝑦

1−𝑣 (𝑦) ) = 0.

Then, by linearity and homogeneity, we extend 𝜌 to the entireA. It

is obvious that 𝜌 (𝑒𝑥𝑎 ) and 𝜌 (𝑓 𝑦
𝑏
) satisfy all the relations of A, thus

𝜌 is indeed a ∗−representation. Since

𝜌 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
) = 1 ⇐⇒ (𝑎 = 𝑢 (𝑥)) ∧ (𝑏 = 𝑙 (𝑦))

we have 𝜌 (𝑒𝑥𝑎 𝑓
𝑦

𝑏
) = 1 =⇒ (𝑥,𝑦, 𝑎, 𝑏) ∈ Π. Since Π ∩ Λ = ∅, this

means that for every (𝑥,𝑦, 𝑎, 𝑏) ∈ Λ, i.e 𝑒𝑥𝑎 𝑓
𝑦

𝑏
∈ N , 𝜌 (𝑒𝑥𝑎 𝑓

𝑦

𝑏
) = 0

holds, which completes the proof.

Finally we prove Claim 1.

Proof of Claim 1. We take 𝑎 = 𝑢 (𝑥) and 𝑏 = 𝑣 (𝑦) in equation

(3.1), and then

𝜓∗𝜎 (𝑒𝑥
𝑢 (𝑥 ) 𝑓

𝑦

𝑣 (𝑦) )𝜓 =
1

4

+ 1

4

(−1)𝑢 (𝑥 )𝜓∗𝜎 (𝐴𝑥 )𝜓

+ 1

4

(−1)𝑣 (𝑦)𝜓∗𝜎 (𝐵𝑦)𝜓

+ 1

4

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 .

(3.2)

Notice that 𝜎 (𝐴𝑥 ) and 𝜎 (𝐵𝑦) are commutative self-adjoint opera-

tors, so 𝜓∗𝜎 (𝐴𝑥 )𝜓, 𝜓∗𝜎 (𝐵𝑦)𝜓 and 𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 are all real num-

bers.

If𝜓∗𝜎 (𝐴𝑥 )𝜓 ≠ 0, since𝜓1 = 𝜓 we know 𝑘 (𝑥) = 1 and

(−1)𝑢 (𝑥 )𝜓∗𝜎 (𝐴𝑥 )𝜓 > 0

because of the construction of 𝑢. Similarly, if 𝜓∗𝜎 (𝐵𝑦)𝜓 ≠ 0, we

have

(−1)𝑣 (𝑦)𝜓∗𝜎 (𝐵𝑦)𝜓 > 0.

Therefore, either𝜓∗𝜎 (𝐴𝑥 )𝜓 or𝜓∗𝜎 (𝐵𝑦)𝜓 is nonzero, we have

1

4

(−1)𝑢 (𝑥 )𝜓∗𝜎 (𝐴𝑥 )𝜓 + 1

4

(−1)𝑣 (𝑦)𝜓∗𝜎 (𝐵𝑦)𝜓 > 0,

and since

1

4

+ 1

4

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 ⩾ 0, we have

𝜓∗𝜎 (𝑒𝑥
𝑢 (𝑥 ) 𝑓

𝑦

𝑣 (𝑦) )𝜓 > 0.

Then we only need to consider the case

𝜓∗𝜎 (𝐴𝑥 )𝜓 = 𝜓∗𝜎 (𝐵𝑦)𝜓 = 0.

We need to prove that

1

4

+ 1

4

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 > 0 in this

case. Assume the contrary happens, i.e

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 = −1.

By Parseval’s identity we can get that

id =

∞∑︁
𝑖=1

𝜓𝑖𝜓
∗
𝑖 .
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Then

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓

=

∞∑︁
𝑖=1

(−1)𝑢 (𝑥 )𝜓∗𝜎 (𝐴𝑥 )𝜓𝑖 · (−1)𝑣 (𝑦)𝜓∗
𝑖 𝜎 (𝐵𝑦)𝜓 .

(3.3)

We can observe that the right hand side of (3.3) is the inner product

of two infinite-dimensional unit vectors

((−1)𝑢 (𝑥 )𝜓∗
1
𝜎 (𝐴𝑥 )𝜓, (−1)𝑢 (𝑥 )𝜓∗

2
𝜎 (𝐴𝑥 )𝜓, . . . . . .)

and

((−1)𝑣 (𝑦)𝜓∗
1
𝜎 (𝐵𝑦)𝜓, (−1)𝑣 (𝑦)𝜓∗

2
𝜎 (𝐵𝑦)𝜓, . . . . . .).

By Cauchy-Schwarz’s inequality we know that

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 = −1

if and only if

(−1)𝑢 (𝑥 )𝜓∗
𝑗 𝜎 (𝐴𝑥 )𝜓 = −(−1)𝑣 (𝑦)𝜓∗

𝑗 𝜎 (𝐵𝑦)𝜓 (3.4)

holds for every 𝑗 ∈ N. However, (3.4) must fail to hold for 𝑗 =

min{𝑘 (𝑥), 𝑙 (𝑦)}, because if 𝑘 (𝑥) ≠ 𝑙 (𝑦) it obvious fails; otherwise
we find arg

(
(−1)𝑢 (𝑥 )𝜓∗

𝑗
𝜎 (𝐴𝑥 )𝜓

)
and arg

(
(−1)𝑣 (𝑦)𝜓∗

𝑗
𝜎 (𝐵𝑦)𝜓

)
are

both in the range [0, 𝜋), which is contradict to (3.4) again!

Therefore, when 𝜓∗𝜎 (𝐴𝑥 )𝜓 = 𝜓∗𝜎 (𝐵𝑦)𝜓 = 0 we have proved

that

1

4

+ 1

4

(−1)𝑢 (𝑥 )+𝑣 (𝑦)𝜓∗𝜎 (𝐴𝑥𝐵𝑦)𝜓 > 0. That is to say,

𝜓∗𝜎 (𝑒𝑥
𝑢 (𝑥 ) 𝑓

𝑦

𝑣 (𝑦) )𝜓 > 0

always holds, which proves the claim. □

□

4 SOME DISCUSSIONS
Here are some remarks and discussions about this result.

(1) It’s easy to see that A is the universal game algebra defined

in [2] for a two-answer nonlocal game, and the set N can

be viewed as the invalid deteermining set of the game. Then

our result shows that for a two answer nonlocal game, if

it has a perfect commuting operator strategy, it must has a

perfect classical strategy, which generlizes the result of [5,

Theorem 3].

(2) Our proof is not contained in [2, Section 5], because the

elements in the setN cannot necessarily be expressed in the

form of 𝛽𝑔 − 1, 𝛽 ∈ C, 𝑔 ∈ 𝐺 , thus a two-answer game is not

necessarily a torically determined game.

(3) If 𝐴 or 𝐵 has three or more elements, it is well known that

this result will fail to hold, because there exists a nonlocal

game which has a perfect commuting-operator strategy but

no perfect classical strategies. From another perspective,

equation (3.1) no longer holds in this case, which prevents

us from reaching a similar conclusion.

(4) The condition "there exists a ∗−representation 𝜌 : A → C
such that 𝜌 (N) = {0} does not imply that 1 is in the two

sided ideal generated by N . This is because A is a noncom-

mutative algebra and the Hilbert Nullstellensatz does not

hold on it.

(5) The algebra A is finite generated, and the set N is also a

finite set. Howerver, the proof of our theorem uses infinite-

dimensional space. Therefore, we are interested in whether

there exists a purely algebraic proof of this theorem, without

using infinite-dimension.
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