
J Syst Sci Complex

VerifyRealRoots: A Matlab Package for Computing

Verified Real Solutions of Polynomials Systems of

Equations and Inequalities∗

YANG Zhengfeng · ZHAO Hanrui · ZHI Lihong

DOI: 10.1007/s11424-023-1406-7

Received: 21 October 2021 / Revised: 26 December 2021

c©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2023

Abstract VerifyRealRoots is a Matlab package for computing and verifying real solutions of poly-

nomial systems of equations and inequalities. It calls Bertini or MMCRSolver for finding approximate

real solutions and then applies AINLSS to verify the existence of a regular solution of a polynomial

system or applies AINLSS2 (AIVISS) to verify the existence of a double solution (a singular solution of

an arbitrary multiplicity) of a slightly perturbed polynomial system.

Keywords Error bounds, polynomial system, real solutions, singular solutions, verification.

1 Introduction

VerifyRealRoots is a Matlab package for computing verified real solutions of polynomial sys-
tems of equations and inequalities. Let f1, · · · , fm, g1, · · · , gs be polynomials in R[x1, · · · , xn],
and S ⊂ Rn be the semi-algebraic set defined by f1, · · · , fm, g1, · · · , gs:

S = {(a1, · · · , an) ∈ Rn : fi(a1, · · · , an) = 0, gj(a1, · · · , an) > 0

for 1 ≤ i ≤ m, 1 ≤ j ≤ s}. (1)

VerifyRealRoots aims to find at least one verified real solution for the semi-algebraic set S using
hybrid symbolic and numeric methods.

YANG Zhengfeng · ZHAO Hanrui

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China.

Email: zfyang@sei.ecnu.edu.cn; hrzhao@stu.ecnu.edu.cn.

ZHI Lihong

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese

Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049,

China. Email: lzhi@mmrc.iss.ac.cn.
∗This research is supported by the National Key Research Project of China under Grant No. 2018YFA0306702,

and the National Natural Science Foundation of China under Grant Nos. 12171159, 12071467 and 61772203,

and Shanghai Trusted Industry Internet Software Collaborative Innovation Center.
�This paper was recommended for publication by Editor WU Wenyuan.

2 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

Let V ⊂ Cn be the algebraic variety defined by:

f1(x1, · · · , xn) = f2(x1, · · · , xn) = · · · = fm(x1, · · · , xn) = 0, (2)

and F (x) = [f1, · · · , fm]T. Suppose I = 〈f1, · · · , fm〉 is a radical ideal and V is equidimensional,
i.e., the irreducible components of V have same dimensions. Then a point x̂ ∈ V is called a
regular point of V if the rank of the Jacobian matrix Fx(x̂) satisfies

dimV = n − rank(Fx(x̂)). (3)

The set Vreg of regular points of V is called the regular locus of V . A point x̂ is called singular
at V if

rank(Fx(x̂)) < n − dimV. (4)

The set Vsing := V \Vreg is called the singular locus of V . If all points on V are regular,
then V is called smooth. If I = 〈f1, · · · , fm〉 is not a radical ideal, then a point x̂ ∈ V

is called a regular point of V if and only if the rank of the Jacobian matrix Gx(x̂) satisfies
dim V = n − rank(Gx(x̂)), where G(x) = [g1, · · · , gs]T is a polynomial basis of

√
I.

Computing sampling points of a semi-algebraic set S has many applications in robotics, com-
puter vision[1–4]. There are symbolic methods based on cylindrical algebraic decomposition[5]

and critical point methods[6–9]. There are several implementations of cylindrical algebraic
decomposition: QEPCAD[10], QEPCAD B[11], REDLOG[12], SyNRAC[13], DISCOVERER[14, 15],
RegularChains[16]. Algorithms proposed in [17–21] find at least one real point on each connected
component of a smooth real algebraic set. RAGlib[22] is a Maple package which provides prac-
tical algorithms based on critical point methods for solving polynomial systems of equations
and inequalities over the reals. There are also implementations based on homotopy methods
and Smale’s α-theorem[23–25]. Some hybrid algorithms based on homotopy continuation for
computing real solutions are proposed in [26, 27].

A Square Zero-Dimensional Polynomial System Suppose F (x) is a square and zero-
dimensional polynomial system, i.e., m = n. Standard verification methods for nonlinear square
systems are based on the following theorem[28–30].

Theorem 1.1 Let F (x) : R
n → R

n be a polynomial system, and x̃ ∈ R
n. Let IR be the

set of real intervals, IR
n and IR

n×n be the set of real interval vectors and real interval matrices,
respectively. Given X ∈ IR

n with 0 ∈ X and M ∈ IR
n×n satisfies ∇fi(x̃ + X) ⊆ Mi,:, for

i = 1, 2, · · · , n, where Mi,: is the i-th row of M . Denote by In the n × n identity matrix and
assume

− F−1
x (x̃)F (x̃) + (In − F−1

x (x̃)M)X ⊆ int(X), (5)

where Fx(x̃) is the Jacobian matrix of F (x) at x̃. Then there is a unique x̂ ∈ X with F (x̂) = 0.
Moreover, every matrix ˜M ∈ M is nonsingular. In particular, the Jacobian matrix Fx(x̂) is
nonsingular.

VERIFYREALROOTS: A PACKAGE FOR COMPUTING VERIFIED REAL SOLUTIONS 3

The non-singularity of the Jacobian matrix Fx(x̂) restricts the application of Theorem 1.1 to
regular solutions of a square polynomial system. If Fx(x̂) is singular and x̂ is an isolated singular
solution of F (x), in [31–33], by adding smoothing parameters properly to F (x), an extended
regular and square polynomial system is generated for computing verified error bounds, such
that a slightly perturbed polynomial system of F (x) is guaranteed to possess an isolated singular
solution within the computed bounds. Methods in [34, 35] can also be used to verify isolated
singular solutions.

There are two functions verifynlss and verifynlss2 in the INTLAB package implemented by
Rump in Matlab[36]. The procedure verifynlss can be used to verify the existence of a simple
root of a square and regular zero-dimensional polynomial system and verifynlss2 can be used
to verify the existence of a double root of a slightly perturbed polynomial system of F (x). If
the polynomial system F (x) has an isolated singular root with multiplicity larger than 2, then
the function viss designed in [31, 32] and implemented by Li and Zhi in Matlab can be applied
to obtain verified error bounds such that a slightly perturbed polynomial system of F (x) is
guaranteed to possess an isolated singular solution within the computed bounds.

An Overdetermined Zero-Dimensional Polynomial System Suppose F (x) is an overde-
termined zero-dimensional polynomial system, i.e., m > n. A natural procedure for obtaining
a square polynomial system from F (x) is to pick up a full rank random matrix A ∈ Qn×m

and form a square polynomial system A · F (x). According to [4, Theorem 13.5.1], we have the
following theorem.

Theorem 1.2 There is a nonempty Zariski open subset A ∈ Cn×m such that for every
A ∈ A, a solution of F (x) is regular if and only if it is a nonsingular solution of the square
system A · F (x). Moreover, if F (x) is a zero-dimensional system, then A · F (x) is also a
zero-dimensional system.

According to Theorem 1.2, we can compute verified regular solutions of the square poly-
nomial system A · F (x) according to Theorem 1.1, and check whether the verified solution of
A ·F (x) is a solution of F (x) by computing the residual of F (x̂) as an additional test, see also
[25, Lemma 3.1]. If the residue F (x̂) is small, with high probability, the verified real solution
of A · F (x) is a real solution of F (x). Another interesting method based on hybrid symbolic-
numeric methods was given in [37], which computed an exact rational univariate representation
(RUR) of a component of the input system from approximate solutions for certifying that a
given point is near an exact solution of an overdetermined polynomial system.

A Positive-Dimensional Polynomial System Suppose F (x) is a positive-dimensional pol-
ynomial system. It is clear that an under-determined system F (x) is a positive-dimensional
system whose dimension is at least n − m ≥ 1. A square polynomial system and an overde-
termined system can also be positive-dimensional. In [38, 39], the authors transformed an
underdetermined system into a regular square system by choosing m independent variables and
setting n − m remaining variables to be anchors, then they used a Krawczyk-type interval op-

4 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

erator to verify the existence of the solutions of the transformed regular and square system. It
is very impressive that they can verify a solution of a polynomial system with more than 10000
variables and 20000 equations with degrees as high as 100. More general methods using linear
slices to reduce the underdetermined system to a square system were proposed in [4, 40, 41].
We notice that it is very important to choose independent variables and initial values for the
dependent variables or linear slices. Especially, we might have a big chance to miss the real
points because of the bad choice for values of some variables.

Consider the polynomial Vor2, which appears in a problem studying Voronoi Diagram of
three lines in R3[42]. Vor2 is a polynomial in five variables with degree 18. It has an infinite
number of real solutions. Let us set four variables as rational numbers chosen in the range
[− 3000

1000 , 3000
1000], e.g.,

x̂2 =
177
500

, x̂3 =
423
1000

, x̂4 =
209
1000

, x̂5 =
143
50

,

the univariate polynomial V (x1) =Vor2 (x1, x̂2, x̂3, x̂4, x̂5) ∈ Q[x1] has no real solutions.
In [43], we proposed several different strategies to construct a square and zero-dimensional

polynomial system for computing verified real solutions of positive-dimensional polynomial
systems. In this paper, we extend these methods to verify the existence of real solutions of
semi-algebraic sets defined by (1).

Structure of the Paper In Section 2, we introduce several known methods for computing
verified real solutions for positive-dimensional polynomial systems of equations and extend these
methods for verifying the existence of real solutions of semi-algebraic sets defined by (1). In
Section 3, we present two algorithms for computing verified real solutions, the first one is based
on low-rank moment matrix completion method and the second one is based on the critical point
method and the homotopy continuation method. In Section 4, we demonstrate the efficiency of
the algorithms for computing verified real solutions of a set of benchmark systems.

2 Brief Description of Two Methods

In this section, we briefly introduce two methods for verifying the existence of real solutions
of semi-algebraic systems.

The Low-Rank Moment Matrix Completion Method Numerical semidefinite program-
ming (SDP) has been used for characterizing and computing the real solutions of polynomial
systems[44–46]. As pointed out in [46], the great benefit of using SDP techniques is that it exploits
the real algebraic nature of the problem right from the beginning and avoids the computation
of complex components. For example, if V ∩ Rn is zero-dimensional, then the moment-matrix
algorithm in [46] can compute all real solutions of F (x) by solving a sequence of SDP problems.
If the polynomial system (1) has an infinite number of real solutions, then the algorithm in [46]
can not be used. Hence, in [45, 47], they replaced the constant object function by the trace
of the moment matrix and showed that their software GloptiPoly is very efficient for finding a

VERIFYREALROOTS: A PACKAGE FOR COMPUTING VERIFIED REAL SOLUTIONS 5

partial set of real solutions for a large set of polynomial systems (see [47, Table 6.3, 6.4]). Since
the trace of a semidefinite moment matrix is equal to its nuclear norm defined as the sum of
its singular values, the optimization problem can be transformed to the following nuclear norm
minimization problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min ‖Mt(y)‖∗
s.t. y0 = 1,

Mt(y) � 0,

Mt−di(fi y) = 0, i = 1, 2, · · · , m,

Mt−dj (gj y) � 0, j = 1, 2, · · · , s.

(6)

In [48], an algorithm MMCRSolver based on accelerated fixed point continuation method and
alternating direction method was presented to solve the minimization problem (6) for finding
real solutions of (1), even when the number of real solutions of (1) is infinite. Although the
method based on function values and gradient evaluations cannot yield as high accuracy as
interior point methods, much larger problems can be solved since no second-order information
needs to be computed and stored.

In [43], we proposed a method based on the low-rank moment matrix completion to verify
the existence of real solutions for positive-dimensional polynomial systems. Suppose x̃ is an
approximate real solution of (1) computed by MMCRSolver. If the rank of the Jacobian matrix
Fx(x̃) is less than n − d, then x̃ is a singular point on V . Stimulated by the deflation method
used in [49] for constructing extended regular polynomial systems, we compute a normalized null
vector v (|v|2 = 1) of Fx(x̃) and generate a new polynomial system ˜F (x) = F (x)∪{vT ·(x−x̃)}.
It is clear that x̃ is a real solution of

⎧

⎨

⎩

F (x) = 0,

vT · (x − x̃) = 0.
(7)

It is possible that x̃ is still a singular solution of ˜F , then we can perform the similar deflations
to the system ˜F (x) again.

If the approximate solution x̃ is not a singular point on the variety V ∩Rn, i.e., the rank of
the Jacobian matrix Fx(x̃) is n−d, then we choose a normalized random vector λ and construct
a new polynomial system ˜F (x) = F (x)∪ {Fx(x)λ−Fx(x̃)λ}. It is clear that x̃ is a solution of

⎧

⎨

⎩

F (x) = 0,

Fx(x)λ − Fx(x̃)λ = 0.
(8)

Suppose F (x) or its extended polynomial system ˜F (x) is zero-dimensional. The procedure
verifynlss can be used to compute the real root inclusion of X for F (x) or ˜F (x) if x is the
approximate simple root of F (x) or ˜F (x); verifynlss2 or viss can be used to obtain the real root
inclusion of a slightly perturbed polynomial system of F (x) or ˜F (x).

6 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

The verification algorithm based on using the null vector of Fx(x̃) or a random vector to
construct new polynomial systems can be more efficient since it avoids the computations of
minors or the introduction of new variables. However, since we only use local information
about the approximate real root x̃ of F (x) in order to construct the new extended system,
it is limited to verify the existence of a real root x̂ in the neighborhood of x̃. For some
interesting applications, it is enough to verify the existence of one real solution, e.g., for deciding
reachability of the infimum of a multivariate polynomial[50], if we can verify the existence of
one real solution for f − f∗, then we prove that f∗ is a minimum which can be attained.

Suppose X is the real root inclusion of F (x) or its slightly perturbed polynomial system.
The remaining task is to verify whether X satisfies all inequalities in (1). We call the procedure
eval in the C-XSC libraries for determining whether gi(X) > 0 is true for i = 1, 2, · · · , s. After
the above steps, we obtain the real root inclusion X for verifying the existence of the real
solution satisfying (1).

The Critical Point Method Considering the case the ideal I generated by f1(x), · · · , fm(x)
is radical and V is of dimension dand contains a regular point in Rn. We can compute a regular
real sample point on V by computing its critical points of a distance function to a generic point
restricted to V . This method was proposed in [17, 20, 51], see also [19, 52, 53] for some recent
results when F (x) has real singular solutions.

For an arbitrary point u = (u1, · · · , un) ∈ Rn, let g = 1
2 (x1 − u1)2 + 1

2 (x2 − u2)2 + · · · +
1
2 (xn − un)2 and

Jg(F) =

⎡

⎢

⎢

⎢

⎣

∂f1
∂x1

· · · ∂fm

∂x1

∂g
∂x1

...
. . .

...
...

∂f1
∂xn

· · · ∂fm

∂xn

∂g
∂xn

⎤

⎥

⎥

⎥

⎦

. (9)

We define the algebraic set:

C(V, u) = {x̂ ∈ V, rank(Jg(F (x̂)) ≤ n − d}. (10)

Let Δu,d(F) be the set of all the minors of order n− d + 1 in the matrix Jg(F) such that their
last column contains the entries in the last column of Jg(F).

According to [17, Theorem 2.3], for almost all u, the dimension of the algebraic variety
C(V, u) of Δu,d(F) ∪ F (x) will be strict less than the dimension of V . Therefore, inductively,
we will obtain a zero-dimensional polynomial system which can be used to verify the existence of
regular real solutions on V . As stated in [17], the main bottleneck for the critical points method
is the computation of Δu,d since the number of elements in Δu,d is equal to

(

m
n−d

) (

n
n−d+1

)

and
the polynomials in Δu,d are usually dense and have large coefficients. An alternative way to
avoid the computation of the minors is to introduce extra variables λ0, λ1, · · · , λn−d and pick up
randomly n−d real numbers a0, a1, · · · , an−d and polynomials in F (x) such as f1, f2, · · · , fn−d,
and replace the minors in Δu,d by polynomials defined below

pi = λ0
∂g

∂xi
+ λ1

∂f1

∂xi
+ · · · + λn−d

∂fn−d

∂xi
, for 1 ≤ i ≤ n,

VERIFYREALROOTS: A PACKAGE FOR COMPUTING VERIFIED REAL SOLUTIONS 7

pn+1 = a0λ0 + a1λ1 + . . . + an−dλn−d − 1.

This is the way used in [54, Theorem 5] to generate solution paths leading to real solutions on
V using the homotopy continuation method.

If V is compact and smooth, and the variables x1, x2, · · · , xn are in a generic position with
respect to f1, f2, · · · , fm, then as shown in [18, Theorem 10], one can change the distance
function g to a coordinate function g = xi, 1 ≤ i ≤ n such that the dimension of the real
variety of Δu,d(F) ∪ F (x) will be zero and contains at least one real point on each connected
component of V ∩Rn. Moreover, in [21], they extended the result in [18] to deal with the case
where V ∩ Rn is non-compact.

If the ideal I generated by polynomials in F (x) is not radical, it is difficult to verify the exact
existence of real points on singular locus Vsing which might have the same dimension as V , see
[43, Example 3]. According to [6, 20], one can add one or more infinitesimal deformations to
polynomials in F (x) and work over a non-archimedean real closed extension of the ground field.
The computation could be quite expensive. Therefore, instead of proving the exact existence of
real roots on the variety defined by a non-radical ideal, one can perturb the system by a tiny real
number and show the existence of real roots of this slightly perturbed polynomial system[20, 54].
Notice here, the perturbed system is smooth, C(V, u) is a zero-dimensional variety. However,
it contains approximate singular solutions. Hence, it is necessary to apply the algorithm viss to
verify the existence of real singular solutions of a slightly perturbed system. Moreover, since
computations in Matlab have limited precisions, with or without tiny perturbations, we may
get similar results.

There are many ways to extend the critical point method and the homotopy continuation
method to compute approximate real solutions of semi-algebraic systems. Here we choose
to introduce slack variables and transform the semi-algebraic system into the corresponding
polynomial system. The system (1) can be written as the following polynomial equations with
slack variables y1, y2, · · · , ys:

̂F (x, y) :

⎧

⎨

⎩

f1(x) = f2(x) = · · · = fm(x) = 0,

g1(x) − y2
1 = g2(x) − y2

2 = · · · = gs(x) − y2
s = 0,

(11)

here y1, y2, · · · , ys are required to be nonzero.
We can apply the algorithm verifyrealroopc described in [43] for computing the verified

solutions on each connected component on the algebraic variety defined by ̂F (x, y). If our
goal is to compute at least one verified real solution for ˜F (x, y), then instead of computing all
minors of the Jacobian matrix, we can use the most possible canonical projections, i.e., fixing
as many variables as possible to construct the zero-dimensional polynomial system. It is clear
that X is also the real root inclusion of the original polynomial system F (x). Similarly, the
function eval is called to verify whether X satisfies all inequalities in (1).

3 Algorithms and Implementations

VerifyRealRoots is a Matlab package for computing at least one verified real root inclusion of

8 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

a polynomial system of equations and inequalities. It is based on Bertini and C-XSC libraries.
Bertini[55] solver is employed to compute approximate real solutions based on the homotopy
continuation method, i.e., Line 14 in Algorithm 2. The procedure AINLSS in C-XSC is used to
verify the existence of a square and regular zero-dimensional polynomial system. Following the
methods provided in [33] and [31, 56], we also implement two procedures in the C-XSC library:
AINLSS2 is used to verify the existence of a double root of a slightly perturbed polynomial
system; AIVISS can be applied to verify the existence of an isolated singular root, with the
multiplicity larger than 2, of a slightly perturbed polynomial system. We refer to the user
manual for a detailed description of the options and an example to illustrate how to call the
Matlab function VerifyRealRoots.

Remark 3.1 There are polynomial systems with infinite number of real solutions, e.g.,
Example 1 in the User’s manual has four variables constrained by two equations and two
inequalities and the Kissing [2, 2] has four variables constrained by two equations and one
inequality. In order to speed up the computations, we add some additional constraints (some
are chosen randomly) which may cause different outputs when you run the algorithm for finding
real sample points of these polynomial systems. It should also be pointed out that our algorithm
may fail to find sample points due to poorly chosen initial points, step sizes, tolerances, or
relaxation orders. You may choose different options listed in Table 2 of the User’s manual for
solving your problems.

Remark 3.2 We would like to point out that unlike symbolic methods[17, 20, 21, 51], our
algorithms can not be used to verify the nonexistence of real solutions in S, i.e., the failure of
our algorithms do not mean there exist no real solutions in S.

Remark 3.3 The extended polynomial system ˜F (x) generated in Line 17 of Algorithm 1
is not guaranteed to be of zero dimension. If ˜F (x) is still of positive dimension and the
verification step in Lines 20–24 fails to get the verified real root inclusion for ai, then we add
more polynomials vanishing at ai to ˜F (x).

Remark 3.4 In Algorithm 1 and Algorithm 2, if F (x) is underdetermined, i.e., m < n,
our first choice of the random matrix A will always have the block structure

[

Im 0
0 Asub

]

, where
Asub is chosen randomly. In this case, we do not need to compute the residue. The verified
solution of ˜F will also be a verified one of F (x).

4 Experiments

In this section, we demonstrate on several examples that VerifyRealRoots can yield the
verified real solutions of polynomial systems with equalities and inequalities. The installation
instructions and user guide of VerifyRealRoots can be found at: http://159.226.47.210:

8080/. The numerical experiments below were carried out on Intel(R) Core(TM) at 2.3GHz
with Matlab (R2018a) under Mac OS X .

4.1 Kissing Number Problem

The kissing number problems seek the maximal number of unit n-dimensional spheres such
that they can simultaneously touch the unit sphere in n-dimensional Euclidean space without

http://159.226.47.210:8080/
http://159.226.47.210:8080/

VERIFYREALROOTS: A PACKAGE FOR COMPUTING VERIFIED REAL SOLUTIONS 9

Algorithm 1 Computing verified real solutions based on low-rank moment matrix completion
method
Input: A polynomial system S : {f1(x) = 0, f2(x) = 0, · · · , fm(x) = 0, g1(x) ≥ 0, g2(x) ≥
0, · · · , gs ≥ 0}, a given small tolerance ε ∈ R>0.
Output: The set L consisting of the verified inclusions of real solutions.

1: Set F (x) = [f1, · · · , fm], G(x) = [g1, · · · , gs], and L = {}.
2: Apply MMCRSolver to obtain approximate real solutions of S, and denote the solution set

as M = {a1, · · · , ak}, where ai ∈ Rn, i = 1, 2, · · · , k

3: if F (x) = { } then
4: for i = 1 to k do
5: Set the degenerated inclusion X = [ai, ai]
6: Compute the evaluation of G(x) at X

7: Let ρ = min{g1(X), · · · , g�(X)}
8: if ρ ≥ 0 then
9: Set L = L ∪ X ;

10: else
11: for i = 1 to k do
12: if Fx(ai) is singular then
13: Compute normalized null vectors of Fx(ai), denoted by v1, · · · , vt

14: ˜F (x) = F (x) ∪ {

vT
j · (x − ai), j = 1, 2, · · · , t

}

15: else
16: Choose random normalized vectors λ1, · · · , λt

17: ˜F (x) = F (x) ∪ {Fx(x)λj − Fx(ai)λj , j = 1, 2, · · · , t}
18: Choose a random matrix A = Qn×(m+t), update ˜F to be A · ˜F

19: if ˜Fx(ai) is regular then
20: Call AINLSS to obtain the real root inclusion X of ˜F (x), set b = 0
21: else
22: Call AINLSS2 or AIVISS to obtain the error bound b and the root inclusion X

23: Compute the residue τ = F (X)
24: if τ < ε and b < ε then
25: Compute the evaluation of G(x) at X , and let ρ = min{g1(X), · · · , gs(X)}
26: if ρ ≥ 0 then
27: Set L = L ∪ X .
28: return L

pairwise overlapping. The kissing numbers in dimensions one, two, three, four, eight, and
twenty-four have been found, which are 2, 6, 12, 24, 240 and 196560, respectively. Gabriele Nebe
and Neil Sloane maintained a table of the highest kissing numbers presently known http://

www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/kiss.html. In [57], they presented a
method based on SDP for computing upper bounds for kissing numbers.

http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/kiss.html
http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/kiss.html

10 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

Algorithm 2 Computing verified real solutions via the critical point method and the homotopy
continuation
Input: A polynomial system S : {f1(x) = 0, f2(x) = 0, · · · , fm(x) = 0, g1(x) ≥ 0, g2(x) ≥
0, · · · , gs ≥ 0}, a given small tolerance ε ∈ R>0.
Output: The set L consisting of the verified inclusions of real solutions.

1: Set F (x) = [f1, · · · , fm], G(x) = [g1, · · · , gs], and L = {};
2: Introduce slack variables y1, · · · , ys, and let z = [x1, · · · , xn, y1, · · · , ys]T;
3: Construct the new polynomial system H(z) = [f1, · · · , fm, g1 − y2

1 , · · · , gs − y2
s];

4: if m < n then
5: Apply the critical point method to construct a zero-dimensional system ˜H(z);
6: else
7: Set ˜H(z) = H(z);

8: Let u be the number of polynomials in ˜H(z);
9: if u > n + s then

10: Choose a random matrix A ∈ Q(n+s)×u;
11: else
12: Set A = In+s;

13: Update ˜H(z) to be A · ˜H(z);
14: Apply Bertini to obtain approximate real solutions of ˜H(z), and denote the solution set as

M = {a1, · · · , ak}, where ai ∈ Rn+s, i = 1, 2, · · · , k;
15: if F (x) = { } then
16: for i = 1 to k do
17: Let ai,1 be the subvector of aicorresponding to x, i.e., ai,1 = ai(1 : n);
18: Set the degenerated inclusion X = [ai,1, ai,1];
19: Compute the evaluation of G(x) at Xi;
20: Let ρ = min{g1(X), · · · , g�(X)};
21: if ρ ≥ 0 then
22: Set L = L ∪ X ;

23: else
24: for i = 1 to k do
25: if ˜Hz(ai) is regular then
26: Call AINLSS to obtain the real root inclusion Z of ˜H(z), set b = 0;
27: else
28: Call AINLSS2 or AIVISS to obtain the error bound b and the root inclusion Z;

29: Let X be the sub-inclusion of Z corresponding to x;
30: Compute the residue τ = F (X);
31: if τ < ε and b < ε then
32: Set L = L ∪ X .
33: return L

VERIFYREALROOTS: A PACKAGE FOR COMPUTING VERIFIED REAL SOLUTIONS 11

The kissing number problems can be transformed as verifying the existence of real roots of
the semi-algebraic systems. Now let us consider the 2-dimensional case. We show that there
exist 6 unit circles which can touch the given unit circle without pairwise overlapping. Suppose
the touching points are Ti, 1 ≤ i ≤ 6, whose coordinates are (xi, yi), respectively.

Observing Figure 1, the touching points must be on the circle, and the distance between
any two different touching points is at least one, i.e.,

⎧

⎨

⎩

x2
i + y2

i = 1, 1 ≤ i ≤ 6,

(xi − xj)2 + (yi − yj)2 ≥ 1, 1 ≤ i < j ≤ 6.
(12)

It is noticed that the above semi-algebraic system (12) has 12 variables, 6 equations and 15
inequalities. After 1898 seconds computation, our algorithm can yield 13 verified real solutions
of the system (12). Let (x1,i, x2,i, · · · , xn,i)T be the coordinates of the touching points. Sup-
pose k unit hyperspheres in n-dimensions can touch the given unit hypersphere without any
intersection, which means that each distance between two arbitrary touching points is ≥ 1.
Therefore, the general case of the kissing number problem kissing[n,k] is equivalent to verifying
the existence of real roots of the following semi-algebraic system:

⎧

⎨

⎩

x2
1,i + x2

2,i + · · · + x2
n,i = 1, 1 ≤ i ≤ k,

(x1,u − x1,v)2 + (x2,u − x2,v)2 + · · · + (xn,u − xn,v)2 ≥ 1, 1 ≤ u < v ≤ k.
(13)

The semi-algebraic system (13) has n · k variables, k equations and k · (k − 1)/2 inequalities. It
is noticed that all polynomials in (13) are quadratic.

≤ , (

T1

T2

T3

T6

T5

T4

Figure 1 Kissing [2, 6]: 6 Unit 2-dimensional spheres

Comparison RAGlib[22] is a Maple package providing useful functionalities for the study of
real solutions of polynomial systems of equations and inequalities. HasRealSolutions command
in RAGlib is used to compute the sampling points in each connected component of their real
solution set. Algorithm 1 and HasRealSolutions have been applied to solve the kissing number
problems with different n and k. We report their performances in Table 1. Here var denotes the
number of the variables of polynomials; � eq denotes the number of the equations; � ineq denotes
the number of the inequalities; sol denotes the number of the verified solutions; time(s) is given
in seconds for computing verified real solutions. Since the homotopy method in Algorithm 2
is not designed for solving polynomial systems with inequalities, we do not recommend it for
solving kissing number problem.

12 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

Table 1 Algorithm performance on kissing number problems

Ex var �eq �ineq
VerifyRealRoots HasRealSolutions

time(s) sol time(s) sol

kissing [2, 1] 2 1 0 1.935 2 0.088 2

kissing [2, 2] 4 2 1 6.130 6 0.161 4

kissing [2, 3] 6 3 3 11.520 8 0.263 2

kissing [2, 4] 8 4 6 21.982 4 13.729 1

kissing [2, 5] 10 5 10 117.345 19 — —

kissing [2, 6] 12 6 15 1898.403 13 — —

kissing [3, 1] 3 1 0 0.630 4 0.129 2

kissing [3, 2] 6 2 1 4.250 10 0.298 4

kissing [3, 3] 9 3 3 15.640 16 25.695 4

kissing [3, 4] 12 4 6 30.307 2 — —

kissing [3, 5] 15 5 10 482.830 6 — —

kissing [4, 1] 4 1 0 2.160 4 0.227 2

kissing [4, 2] 8 2 1 7.840 7 0.484 2

kissing [4, 3] 12 3 3 252.71 8 1194.98 2

kissing [4, 4] 16 4 6 100.52 10 — —

kissing [4, 5] 20 5 10 1011.590 36 — —

kissing [5, 1] 5 1 0 1.820 4 0.556 2

kissing [5, 2] 10 2 1 9.391 8 1.103 4

kissing [5, 3] 15 3 3 297.130 26 — —

kissing [5, 4] 20 4 6 644.370 34 — —

kissing [6, 1] 6 1 0 4.332 4 0.446 2

kissing [6, 2] 12 2 1 9.682 11 0.812 2

kissing [6, 3] 18 3 3 445.390 25 — —

kissing [6, 4] 24 4 6 1401.440 34 — —

kissing [7, 1] 7 1 0 3.310 7 0.802 2

kissing [7, 2] 14 2 1 24.023 18 1.186 2

kissing [7, 3] 21 3 3 684.789 29 — —

kissing [8, 1] 8 1 0 0.885 2 1.603 2

kissing [8, 2] 16 2 1 15.354 15 1.800 2

kissing [8, 3] 24 3 3 1559.370 37 — —

4.2 Satellite Trajectory Control

The objective of the satellite trajectory control is to keep a satellite in orbit. Illustrated
in [58, 59], it can be transformed as the problem of computing dynamic output feedback laws of

VERIFYREALROOTS: A PACKAGE FOR COMPUTING VERIFIED REAL SOLUTIONS 13

the linear control system. Pole placement method is used to find laws to feed the output to the
input so that the closed-loop system has given eigenvalues (poles). In [58, 59], the state vector
is x = [r, ṙ, θ, θ̇], and the input is [ur, ut], where r and θ are the deviations form the reference
orbit and the reference attitude, ur and ut are the radial and tangential thrusters, respectively.
The linearized state-space equations are defined by the following matrices:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

3ω2
0 0 0 2ω0r0

0 0 0 1

0 −2
ω0

r0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
1
v

0

0 0

0
1

v r0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (14)

where r0, ω0, v are the radius of the orbit, the angular velocity, and the mass of the satellite
respectively. They pick C = [0 0 1 0

0 0 0 1] such that the satellite is completely controllable.
The above matrices define the following linear system

⎧

⎨

⎩

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t).
(15)

Meanwhile, the control law can also be represented as a linear system
⎧

⎨

⎩

ż(t) = Fx(t) + Ly(t),

u(t) = Hz(t) + My(t),
(16)

where

F =
[

f
]

, L =
[

l1 l2

]

, H =

⎡

⎣

h1

h2

⎤

⎦ and M =

⎡

⎣

m1,1 m1,2

m2,1 m2,2

⎤

⎦ .

According to (15) and (16), we can get the associated closed-loop system:
⎡

⎣

ẋ(t)

ż(t)

⎤

⎦ =

⎡

⎣

A − BMC −BH

LC F

⎤

⎦

⎡

⎣

x(t)

z(t)

⎤

⎦ . (17)

Our problem is to compute the real matrices F, L, H, M when the system matrices A, B, C

and the eigenvalues (poles) λi’s of the system (17) are given. We compute the characteristic
polynomial p(λ) of the system (17),

p(λ) = λ5vr0 + λ3vr0ω
2
0 − λ4vr0f − λ2vr0ω

2
0f − 2λω0h1l1

+ λ2h2l1 − 3ω2
0h2l1 − 2λ2ω0h1l2 + λ3h2l2 − 3λω2

0h2l2

− 2λ2ω0m1,1 + 2λω0fm1,1 − 2λ3ω0m1,2 + 2λ2ω0fm1,2 + λ3m2,1

− 3λω2
0m2,1 − λ2fm2,1 + 3ω2

0fm2,1 + λ4m2,2 − 3λ2ω2
0m2,2

− λ3fm2,2 + 3λω2
0fm2,2.

14 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

Following [58, 59], we may choose the eigenvalues as

λ1 =
−2 + i√

5
, λ2 =

−2 − i√
5

, λ3 = −5, λ4 = −7, λ5 = −3,

and the parameters
v = 0.74564, ω0 = 0.345354, r0 = 1.2342.

Substituting the eigenvalues λi’s to p(λ), we can get the positive-dimensional polynomial system

p(λ1) = p(λ2) = · · · = p(λ5) = 0,

with 9 variables: f, l1, l2, h1, h2, m1,1, m1,2, m2,1, m2,2. In practice, people are only interested
in the real feedback laws, i.e., the real solutions of the positive-dimensional polynomial system.
Hence, the problem of satellite trajectory control by the pole placement can be reformulated
as computing real solutions of the positive-dimensional polynomial systems. By using of our
algorithm, we can find one verified real solution:

f h1 h2 l1 l2

−18.07 ± 2 × 10−13 −6.88 ± 8 × 10−12 −21.14 ± 3 × 10−12 15.58 ± 1 × 10−11 −3.839 ± 4 × 10−13

and

m1,1 m1,2 m2,1 m2,2

−14.96 ± 1 × 10−12 −40.28 ± 6 × 10−12 3.283 ± 1 × 10−11 −1.184 ± 6 × 10−13
.

The total CPU time is around 612 seconds.

4.3 Some Benchmark Examples

Polynomial systems with equalities. We apply Algorithm 1 and Algorithm 2 for com-
puting verified real solutions of polynomial systems, and report their performances in Table 2.
All examples are taken from the homepage of Jan Verschelde http://www.math.uic.edu/~jan.

Table 2 Algorithm performance on polynomial systems

Ex var �eq deg
VerifyRealRoots (M) VerifyRealRoots (H)

time(s) sol time(s) sol

butcher 5 2 3 1.020 1 0.2000 2

birkhoff 4 1 10 3.000 1 0.4800 6

cohn2 4 4 5 4.050 1 16.040 1

adjmin22e4 6 2 2 1.010 1 0.970 1

comb3000 10 10 3 4.203 1 0.470 4

noon4 4 4 3 9.060 1 0.2000 2

hairer1 8 6 2 5.070 1 1.370 2

lanconelli 8 3 3 2.890 1 1.783 2

raksanyi 8 4 2 6.970 1 1.600 2

bronestein2 4 3 3 33.100 1 6.130 2

i1 10 10 3 3.400 1 9.830 6

http://www.math.uic.edu/~jan

VERIFYREALROOTS: A PACKAGE FOR COMPUTING VERIFIED REAL SOLUTIONS 15

Comparison alphaCertified is a C library based on α-theory for verifying the real solu-
tions of polynomial equations[25]. Meanwhile, VerifyRealRoots is a Matlab package based on
the Krawczyk-type interval operator for verifying the existence of real solutions of polynomial
systems. In Table 3, we exhibit the performances of VerifyRealRoots and alphaCertified on some
benchmark examples from the literature. Example stewgou40 in Table 3 is the polynomial
system yielded from the Stewart-Gough platform[60]. The polynomial system stewgou40 and
its 40 approximate real solutions are downloaded from the link http://www.math.tamu.edu/

~sottile/research/stories/alphaCertified/Stewart/index.html given in [25]. The re-
maining examples are taken from Verschelde’s test suite http://www.math.uic.edu/~jan/,
and the associated input approximate real solutions yielded from Bertini solver. By using the
same approximate solutions, we call VerifyRealRoots and alphaCertified to get the verified real
solutions. Remark that for each problem we ran alphaCertified by using the default setting
to compute the verified solutions. Here var and deg denote the number of the variables and
the highest degree of polynomials, approx-sol denote the number of approximate real solutions
yielded from Bertini solver. The columns VerifyRealRoots and alphaCertified contain the tim-
ing and the number of the verified real solutions by calling VerifyRealRoots and alphaCertified

respectively.

Table 3 Comparison with alphaCertified on zero-dimensional polynomial systems

Ex var deg approx-sol
VerifyRealRoots alphaCertified

time(s) sol time(s) sol

stewgou40 9 4 40 3.625 40 2.613 40

cohn3 4 6 23 0.484 7 0.518 2

d1 12 3 16 0.344 16 0.639 16

geneig 6 3 10 0.219 10 0.437 10

katsura5 6 2 12 0.109 11 0.352 12

kin1 12 3 16 0.359 16 0.664 16

rbpl 6 3 5 0.219 4 0.497 4

geddes2 5 6 7 0.281 7 0.364 2

hairer2 9 4 7 0.203 7 0.489 6

assur44 8 3 10 0.406 10 0.624 10

chandra6 6 2 31 0.344 31 0.712 31

cyclic9 9 9 234 18.203 234 37.34 216

cyclic10 10 10 680 80.797 680 675.092 627

filter9 9 5 134 2.797 128 5.472 128

game5two 5 4 10 0.266 10 0.486 10

game6two 6 5 36 2.813 35 2.014 34

game7two 7 6 111 27.453 100 37.253 100

katsura6 7 2 32 0.422 24 0.712 32

katsura7 8 2 44 0.953 42 1.107 44

katsura8 9 2 84 2.234 72 2.417 84

pole27sys 14 2 442 219.625 442 188.989 419

rps10 10 4 126 55.078 126 38.566 122

tangents2 6 2 24 0.359 24 0.651 24

utbikker 4 3 12 0.156 7 0.437 10

http://www.math.tamu.edu/~sottile/research/ stories/alphaCertified/Stewart/index.html
http://www.math.tamu.edu/~sottile/research/ stories/alphaCertified/Stewart/index.html
http://www.math.uic.edu/~jan/

16 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

References

[1] Canny J, The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, USA, 1988.

[2] Fløystad G, Kileel J, Ottaviani G, The Chow form of the essential variety in computer vision,

Journal of Symbolic Computation, 2017, 86: 97–119.

[3] Petitjean S, Algebraic geometry and computer vision: Polynomial systems, real and complex

roots, J. Math. Imaging Vis., 1999, 10(3): 191–220.

[4] Sommese A J and Wampler C W, The Numerical Solution of Systems of Polynomials — Arising

in Engineering and Science, World Scientific, 2005, I-XXII: 1–401.

[5] Collins G E, Quantifier elimination for real closed fields by cylindrical algebraic decomposition,

Lecture Notes in Computer Science, 1975, 33: 134–183.

[6] Basu S, Pollack R, and Roy M F, On the combinatorial and algebraic complexity of quantifier

elimination, Journal of ACM, 1996, 43(6): 1002–1045.

[7] Basu S, Pollack R, and Roy M F, Quantifier Elimination and Cylindrical Algebraic Decomposition,

Springer Vienna, Vienna, Chapter A new algorithm to find a point in every cell defined by a family

of polynomials, 1998, 341–350.

[8] Heintz J, Roy M F, and Solernó P, On the theoretical and practical complexity of the existential

theory of reals, The Computer Journal, 1993, 36(5): 427–431.

[9] Renegar J, On the computational complexity and geometry of the first-order theory of the reals.

Part I: Introduction, Preliminaries, The geometry of semi-algebraic sets, The decision problem

for the existential theory of the reals, Journal of Symbolic Computation, 1992, 13(3): 255–299.

[10] Collins G E and Hong H, Partial cylindrical algebraic decomposition for quantifier elimination,

Journal of Symbolic Computation, 1991, 12(3): 299–328.

[11] Brown C W, QEPCAD B: A program for computing with semi-algebraic sets using CADs,

SIGSAM Bull., 2003, 37(4): 97–108.

[12] Seidl A and Sturm T, A generic projection operator for partial cylindrical algebraic decomposi-

tion, Proceedings of the 28th International Symposium on Symbolic and Algebraic Computation,

2003, 240–247.

[13] Yanami H and Anai H, The maple package SyNRAC and its application to robust control design,

Future Generation Computer Systems, 2007, 23(5): 721–726.

[14] Xia B, DISCOVERER: A tool for solving semi-algebraic systems, ACM Commun. Comput. Al-

gebra, 2007, 41(3): 102–103.

[15] Xia B and Yang L, An algorithm for isolating the real solutions of semi-algebraic systems, Journal

of Symbolic Computation, 2002, 34(5): 461–477.

[16] Chen C and Maza M M, Quantifier elimination by cylindrical algebraic decomposition based on

regular chains, Journal of Symbolic Computation, 2016, 75: 74–93.

[17] Aubry P, Rouillier F, and Safey El Din M, Real solving for positive dimensional systems, Journal

of Symbolic Computation, 2002, 34(6): 543–560.

[18] Bank B, Giusti M, Heintz J, et al., Polar varieties and efficient real elimination, Mathematische

Zeitschrift, 2001, 238(1): 115–144.

[19] Bank B, Giusti M, Heintz J, et al., On the geometry of polar varieties, Applicable Algebra in

Engineering, Communication and Computing, 2010, 21(1): 33–83.

VERIFYREALROOTS: A PACKAGE FOR COMPUTING VERIFIED REAL SOLUTIONS 17

[20] Rouillier F, Roy M F, and Safey El Din M, Finding at least one point in each connected component

of a real algebraic set defined by a single equation, Journal of Complexity, 2000, 16(4): 716–750.

[21] Safey El Din M and Schost É, Polar varieties and computation of one point in each connected

component of a smooth real algebraic set, Proceedings of the 28th International Symposium on

Symbolic and Algebraic Computation, 2003, 224–231.

[22] Safey El Din M, Raglib (Real Algebraic Geometry Library), Maple Package, 2007.

[23] Beltrán C and Leykin A, Certified numerical homotopy tracking, Experimental Mathematics,

2012, 21: 69–83.

[24] Beltrán C and Leykin A, Robust certified numerical homotopy tracking, Foundations of Compu-

tational Mathematics, 2013, 13(2): 253–295.

[25] Hauenstein J D and Sottile F, Algorithm 921: AlphaCertified: Certifying solutions to polynomial

systems, ACM Trans. Math. Softw., 2012, 38(4): 28:1–28:20.

[26] Shen F, Wu W, and Xia B, Real root isolation of polynomial equations based on hybrid compu-

tation, Computer Mathematics: 9th Asian Symposium (ASCM 2009), 2014, 375–396.

[27] Wang Y and Xia B, A Hybrid procedure for finding real points on a real algebraic set, Journal

of Systems Science and Complexity, 2019, 32(1): 185–204.

[28] Krawczyk R, Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken, Comput-

ing, 1969, 4(3): 187–201.

[29] Moore R E, A test for existence of solutions to nonlinear systems, SIAM Journal on Numerical

Analysis, 1977, 14(4): 611–615.

[30] Rump S M, Solving algebraic problems with high accuracy, Proc. of the Symposium on a New

Approach to Scientific Computation, 1983, 51–120.

[31] Li N and Zhi L, Verified error bounds for isolated singular solutions of polynomial systems: Case

of breadth one, Theoretical Computer Science, 2013, 479: 163–173.

[32] Li N and Zhi L, Verified error bounds for isolated singular solutions of polynomial systems, SIAM

Journal on Numerical Analysis, 2014, 52(4): 1623–1640.

[33] Rump S M and Graillat S, Verified error bounds for multiple roots of systems of nonlinear

equations, Numerical Algorithms, 2010, 54(3): 359–377.

[34] Hauenstein J D, Mourrain B, and Szanto A, Certifying isolated singular points and their mul-

tiplicity structure, Proceedings of the 2015 ACM on International Symposium on Symbolic and

Algebraic Computation, 2015, 213–220.

[35] Mantzaflaris A and Mourrain B, Deflation and certified isolation of singular zeros of polynomial

systems, Proceedings of the 36th International Symposium on Symbolic and Algebraic Computa-

tion, 2011, 249–256.

[36] Rump S M, INTLAB - INTerval LABoratory, Developments in Reliable Computing, Springer,

Dordrecht, 1999, 77–104.

[37] Akoglu T A, Hauenstein J D, and Szanto A, Certifying solutions to overdetermined and singular

polynomial systems over Q, Journal of Symbolic Computation, 2018, 84: 147–171.

[38] Chen X, Frommer A, and Lang B, computational existence proofs for spherical T -designs, Numer.

Math., 2011, 117(2): 289–305.

[39] Chen X and Womersley R S, Existence of solutions to systems of underdetermined equations and

spherical designs, SIAM J. NUMER. ANAL., 2006, 44(6): 2326–2341.

[40] Sommese A J and Verschelde J, Numerical homotopies to compute generic points on positive

dimensional algebraic sets, Journal of Complexity, 2000, 16(3): 572–602.

18 YANG ZHENGFENG · ZHAO HANRUI · ZHI LIHONG

[41] Sommese A J, Verschelde J, and Wampler C W, Numerical algebraic geometry, The Mathematics

of Numerical Analysis (Park City, UT, 1995), 1996, 749–763.

[42] Everett H, Lazard D, Lazard S, et al., The voronoi diagram of three lines, Proceedings of the

Twenty-Third Annual Symposium on Computational Geometry, 2007, 255–264.

[43] Yang Z, Zhi Li, and Zhu Y, Verified error bounds for real solutions of positive-dimensional

polynomial systems, Proceedings of the 38th International Symposium on Symbolic and Algebraic

Computation, 2013, 371–378.

[44] Graziano C, Garulli A, Tesi A, et al., Characterizing the solution set of polynomial systems in

terms of homogeneous forms: An LMI approach, International Journal of Robust and Nonlinear

Control, 2003, 13(13): 1239–1257.

[45] Henrion D and Lasserre J B, Detecting global optimality and extracting solutions in GloptiPoly,

Positive Polynomials in Control, 2005, 312: 293–310.

[46] Lasserre J B, Laurent M, and Rostalski P, Semidefinite characterization and computation of zero-

dimensional real radical ideals, Foundations of Computational Mathematics, 2008, 8: 607–647.

[47] Lasserre J B, Moments, Positive Polynomials and Their Applications, Imperial College Press,

London, 2009.

[48] Ma Y and Zhi L, Computing real solutions of polynomial systems via low-rank moment matrix

completion, Proceedings of the 37th International Symposium on Symbolic and Algebraic Compu-

tation, 2012, 249–256.

[49] Leykin A, Verschelde J, and Zhao A, Newton’s method with deflation for isolated singularities of

polynomial systems, Theoretical Computer Science, 2006, 359(1): 111–122.

[50] Greuet A and Safey El Din M, Deciding reachability of the infimum of a multivariate polynomial,

Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, 2011,

131–138.

[51] Rouillier F, Efficient algorithms based on critical points method, Algorithmic and Quantitative

Real Algebraic Geometry, American Mathematical Society, Providenc, 2003, 123–138.

[52] Bank B, Giusti M, Heintz J, et al., Algorithms of intrinsic complexity for point searching in com-

pact real singular hypersurfaces, Foundations of Computational Mathematics, 2012, 12: 75–122.

[53] Mork H C and Piene R, Polars of real singular plane curves, Algorithm in Algebraic Geometry,

Springer, New York, 2008, 99–115.

[54] Hauenstein J D, Numerically computing real points on algebraic sets, Acta Applicandae Mathe-

maticae, 2013, 125(1): 105–119.

[55] Bates D J, Hauenstein J D, Sommese A J, et al., Bertini: Software for Numerical Algebraic

Geometry, http://www.nd.edu/~sommese/bertini, 2018.

[56] Li N and Zhi L, Computing isolated singular solutions of polynomial systems: Case of breadth

one, SIAM Journal on Numerical Analysis, 2012, 50(1): 354–372.

[57] Bachoc C and Vallentin F, New upper bounds for kissing numbers from semidefinite programming,

Journal of the American Mathematical Society, 2008, 21(3): 909–924.

[58] Palancz B, Application of Dixon resultant to satellite trajectory control by pole placement, Jour-

nal of Symbolic Computation, 2013, 50: 79–99.

[59] Verschelde J and Wang Y, Computing dynamic output feedback laws, IEEE Trans. Automatic

Control, 2004, 49(8): 1393–1397.

[60] Dietmater P, The Stewart-Gough platform of general geometry can have 40 real postures, Ad-

vances in Robot Kinematics: Analysis and Control, 1998, 1–10.

http://www.nd.edu/~sommese/bertini

	Introduction
	Brief Description of Two Methods
	Algorithms and Implementations
	Experiments
	Kissing Number Problem
	Satellite Trajectory Control
	Some Benchmark Examples

