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Abstract. Given a polynomial system f with a multiple zero x whose
Jacobian matrix at x has corank one, we show how to compute the
multiplicity structure of x and the lower bound on the minimal distance
between the multiple zero x and other zeros of f . If x is only given with
limited accuracy, we give a numerical criterion to guarantee that f has
μ zeros (counting multiplicities) in a small ball around x. Moreover, we
also show how to compute verified and narrow error bounds such that a
slightly perturbed system is guaranteed to possess an isolated breadth-
one singular solution within computed error bounds. Finally, we present
modified Newton iterations and show that they converge quadratically
if x is close to an isolated exact singular solution of f . This is joint work
with Zhiwei Hao, Wenrong Jiang, Nan Li.

1 Introduction

Let If be an ideal generated by polynomials f = {f1, . . . , fn}, where fi ∈
C[X1, . . . , Xn]. An isolated zero of multiplicity μ for f is a point x ∈ C

n such that

1. f(x) = 0,
2. there exists a ball B(x, r) of radius r > 0 such that B(x, r) ∩ f−1(0) = {x},
3. μ = dim(C[X]/Qf,x),

where
B(x, r) := {y ∈ C

n : ‖y − x‖ < r},

and Qf,x is a primary component of the ideal If whose associate prime is

mx = (X1 − x1, . . . , Xn − xn).
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Let dα
x : C[X] → C denote the differential functional defined by

dα
x (g) =

1
α1! · · · αn!

· ∂|α|g
∂xα1

1 · · · ∂xαn
n

(x), ∀g ∈ C[X], (1)

where x ∈ C
n and α = [α1, . . . , αn] ∈ N

n. We have

dα
x

(
(X − x)β

)
=

{
1, if α = β,
0, otherwise. (2)

The local dual space of If at a given isolated singular solution x is a subspace
Df,x of Dx = spanC{dα

x} such that

Df,x = {Λ ∈ Dx | Λ(g) = 0, ∀g ∈ If}. (3)

When the evaluation point x is clear from the context, we write dα1
1 · · · dαn

n

instead of dα
x for simplicity.

Let D(k)
f,x be the subspace of Df,x with differential functionals of orders

bounded by k, we define

1. breadth κ = dim
(
D(1)

f,x \ D(0)
f,x

)
,

2. depth ρ = min
({

k | dim
(
D(k+1)

f,x \ D(k)
f,x

)
= 0

})
,

3. multiplicity μ = dim
(
D(ρ)

f,x

)
.

If x is an isolated singular solution of f , then 1 ≤ κ ≤ n and ρ < μ < ∞.
We recall α-theory below according to [1] and refer to [16,37–41,43] for more

details.
Let Df(x) denote the Jacobian matrix of f at x. Suppose Df(x) is invertible,

x is called a simple (regular) zero of f . The Newton’s iteration is defined by

Nf (x) = x − Df(x)−1f(x). (4)

Shub and Smale [37] defined

γ(f, x) = sup
k≥2

∥
∥
∥
∥Df(x)−1 · Dkf(x)

k!

∥
∥
∥
∥

1
k−1

, (5)

where Dkf denotes the k-th derivative of f which is a symmetric tensor whose
components are the partial derivatives of f of order k, ‖ · ‖ denotes the classical
operator norm.

According to [1, Theorem 1], if

‖z − x‖ ≤ 3 − √
7

2γ(f, x)
, (6)

then Newton’s iterations starting at z will converge quadratically to the simple
zero x.

If y is another zero of f , according to [1, Corollary 1], we have

‖y − x‖ ≥ 5 − √
17

4γ(f, x)
, (7)

which separates the simple zero x from other zeros of f .
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Furthermore, according to [1, Theorem 2], if only a system f and a point x
are given such that

α(f, x) ≤ 13 − 3
√

17
4

≈ 0.157671, (8)

where α(f, x) = β(f, x)γ(f, x) and

β(f, x) = ‖x − Nf (x)‖ = ‖Df(x)−1f(x)‖,

then Newton’s iterations starting at x will converge quadratically to a simple
zero ξ of f and

‖x − ξ‖ ≤ 2β(f, x).

It is a challenge to extend α-theory for polynomial systems with singular solu-
tions. When Df(x) is not invertible, many modifications of Newton’s iteration
to restore the quadratic convergence for singular solutions have been proposed
in [2,6–8,12–14,29–33,36,46]. Recently, some symbolic-numeric methods based
on deflated systems have also been proposed for refining approximate isolated
singular solutions to high accuracy [3–5,10,11,18–20,25]. For example, as shown
in [19], let r = rank(Df(x)), with probability one, there exists a unique vec-
tor λ = (λ1, λ2 . . . , λr+1)T such that (x, λ) is an isolated solution of a deflated
polynomial system, i.e.,

⎧
⎨

⎩

f(x) = 0,
Df(x)Bλ = 0,

hT λ = 1,
(9)

where B ∈ C
n×(r+1) is a random matrix, h ∈ C

r+1 is a random vector. If (x, λ)
is still a singular solution of (9), the deflation is repeated. Furthermore, they
proved that the number of deflations needed to derive a regular solution of an
augmented system is strictly less than the multiplicity of x. Dayton and Zeng
showed that the depth of Df,x is a tighter bound for the number of deflations [5].

In [44,45], we present a method based on the reduction to geometric invo-
lutive form to compute the primary component and a basis of the local dual
space of a polynomial system at an isolated singular solution. We also present
an algorithm based on correctly computed multiplicity structure such as index
and multiplicity at an approximate singular solution to restore the quadratic
convergence of Newton’s iterations.

In this paper, we introduce some recent contributions related to extend-
ing α-theory for polynomial systems with singular zeros satisfying f(x) = 0,
dim ker Df(x) = 1. It is also called breadth-one singular zero in [5] as

dim(D(k)
f,x \ D(k−1)

f,x ) = 1, k = 1 . . . , ρ, ρ = μ − 1. (10)

Therefore, the local dual space of If at x is

Df,x = spanC{Λ0, Λ1, . . . , Λμ−1},

where deg(Λk) = k and Λ0 = 1.
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As pointed out in [11], the breath one case is the least degenerate one and
therefore most likely to be of practical significance. Moreover, it is also the worst
case for the deflation method [5,19,29,30] since the deflation always terminates
at step μ − 1. Hence the size of the matrices grows extremely fast with the
multiplicity.

2 Local Dual Space

Let us introduce a morphism Φσ : Dx → Dx which is an anti-differentiation
operator defined by

Φσ(dα1
1 · · · dαn

n ) =
{

dα1
1 · · · dασ−1

σ · · · dαn
n , if ασ > 0,

0, otherwise.

Computing a closed basis of the local dual space is done essentially by matrix-
kernel computations based on the stability property of Df,x [26,28,42]:

∀Λ ∈ D(k)
f,x, Φσ(Λ) ∈ D(k−1)

f,x , σ = 1, . . . , n. (11)

Let D(k)
f,x be the subspace of Df,x with differential functionals of orders

bounded by k. Let Ψσ : Dx → Dx be a differential operator defined by

Ψσ(dα1
1 · · · dαn

n ) =
{

dασ+1
σ · · · dαn

n , if α1 = · · · = ασ−1 = 0,
0, otherwise.

We deal with multiple zeros satisfying f(x) = 0, dim ker Df(x) = 1. The
local dual space of If at a given isolated singular solution x is

Df,x = spanC{Λ0, Λ1, . . . , Λμ−1},

where deg(Λk) = k and Λ0 = 1.
As shown in [23, Theorem 3.4], suppose Λ1 = a1,1d1 + · · · + a1,ndn, without

loss of generality, we assume a1,1 = 1, ak,1 = 0, k = 2, . . . , n. Then for k =
2, . . . , μ − 1, we have

Λk = Δk + ak,2d2 + · · · + ak,ndn, (12)

where

Δk =
n∑

σ=1

Ψσ(a1,σΛk−1 + · · · + ak−1,σΛ1), (13)

and ak,2, . . . , ak,n are determined by solving the linear system obtained from
setting Λk(fi) = 0, i = 1, . . . , n:

⎛

⎜
⎝

d2(f1) · · · dn(f1)
...

. . .
...

d2(fn) · · · dn(fn)

⎞

⎟
⎠

⎛

⎜
⎝

ak,2

...
ak,n

⎞

⎟
⎠ = −

⎛

⎜
⎝

Δk(f1)
...

Δk(fn)

⎞

⎟
⎠ . (14)



396 L. Zhi

Definition 1 [15]. For a polynomial function f : C
n → C

n, suppose f(x) =
0,dim kerDf(x) = 1. Then Df(x) has a normalized form if

Df(x) =
(

0 Df̂(x)
0 0

)
, (15)

Df̂(x) is the nonsingular Jacobian matrix of polynomials f̂ = {f1, . . . , fn−1}
with respect to variables X2, . . . , Xn.

If x is a multiple zero of multiplicity μ for f and Df(x) has the normalized
form (15), which is always possible to obtain by performing unitary transforma-
tions when dim kerDf(x) = 1, see [15, Sect. 2.3], then we have Δk(fn) = 0, for
k = 2, . . . , μ − 1, Δμ(fn) �= 0, and the linear system (14) for getting the values
of ak,2, . . . , ak,n can be simplified to:

⎛

⎜
⎝

d2(f1) · · · dn(f1)
...

. . .
...

d2(fn−1) · · · dn(fn−1)

⎞

⎟
⎠

⎛

⎜
⎝

ak,2

...
ak,n

⎞

⎟
⎠ = −

⎛

⎜
⎝

Δk(f1)
...

Δk(fn−1)

⎞

⎟
⎠ . (16)

3 Local Separation Bound and Cluster Location

In [9], Dedieu and Shub gave quantitative results for simple double zeros satis-
fying f(x) = 0 and

(A) dim ker Df(x) = 1,
(B) D2f(x)(v, v) /∈ imDf(x),

where ker Df(x) is spanned by a unit vector v ∈ C
n. They generalized the

definition of γ in (5) to

γ2(f, x) = max

(

1, sup
k≥2

∥
∥
∥
∥A(f, x, v)−1 · Dkf(x)

k!

∥
∥
∥
∥

1
k−1

)

, (17)

where
A(f, x, v) = Df(x). +

1
2
D2f(x)(v,Πv), (18)

is a linear operator which is invertible at the simple double zero x, and Πv

denotes the Hermitian projection onto the subspace [v] ⊂ C
n.

In [9, Theorem 1], Dedieu and Shub also presented a lower bound for sepa-
rating simple double zeros x from the other zeros y of f ,

‖y − x‖ ≥ d

2γ2(f, x)2
, (19)

where d ≈ 0.2976 is a positive real root of
√

1 − d2 − 2d
√

1 − d2 − d2 − d = 0. (20)
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In [9, Theorem 4], Dedieu and Shub showed that if the following criterion is
satisfied at a given point x and a given vector v

‖f(x)‖ + ‖Df(x)v‖ d

4γ2(f, x, v)2
<

d3

32γ4
2‖B(f, x, v)−1‖ , (21)

then f has two zeros in the ball of radius

d

4γ2(f, x)2
, (22)

around x. Let us set
B(f, x, v) = A(f, x, v) − L,

where L(v) = Df(x)v, L(w) = 0 for w ∈ v⊥, and

γ2(f, x) = max

(

1, sup
k≥2

∥
∥
∥
∥B(f, x, v)−1 · Dkf(x)

k!

∥
∥
∥
∥

1
k−1

)

. (23)

Based on the multiplicity structure of the singular zero x of f computed in
the last section, we generalize Dedieu and Shub’s results to multiple zeros with
arbitrary large multiplicity.

Let f : C
n → C

n, and x be a singular zero of f of multiplicity μ, where

Df(x) has the normalized form Df(x) =
(

0 Df̂(x)
0 0

)
, Df̂(x) is invertible and

Δk(fn) = 0, for k = 2, . . . , μ − 1, Δμ(fn) �= 0. (24)

Let y be another vector in C
n and y �= x. Recall that ϕ = dP (v, y − x),

v = (1, 0, . . . , 0)T and w = x − y = (ζ, η2, . . . , ηn)T , η = (η2, . . . , ηn)T , then we
have |ζ| = ‖w‖ sin ϕ, ‖η‖ = ‖w‖ cos ϕ. Let

A =

(√
2Df̂(x) 0

0 1√
2
Δμ(fn)

)

,

and γμ = max(γ̂μ, γμ,n), where

γ̂μ = γ̂μ(f, x) = max

⎛

⎝1, sup
k≥2

∥
∥
∥
∥
∥
Df̂(x)−1 Dkf̂(x)

k!

∥
∥
∥
∥
∥

1
k−1

⎞

⎠ , (25)

where Dkf̂(x) for k ≥ 2 denote the partial derivatives of f̂ of order k with
respect to X1,X2, . . . , Xn evaluated at x, and

γμ,n = γμ,n(f, x) =

(

1, sup
k≥2

∥
∥
∥
∥

1
Δμ(fn)

· Dkfn(x)
k!

∥
∥
∥
∥

1
k−1

)

, (26)
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Definition 2 [15, Defintion 3]. We define d = min(d1, d2, d3), where

d1 =

√
1

c2μ−1,1 + 1
, d2 =

√
1

μ − 1
,

and d3 is the smallest positive real root of the polynomial

p(d) = (1 − d2)
μ
2 −

∑

i+j=μ,j>0

ci,jd(1 − d2)
i
2 dj−1 (27)

− d

⎛

⎝
∑

1≤i≤μ−2

ti,0 +
∑

1≤i+j≤μ−2,j>0

ti,j(1 − d2)
i
2 dj + 1

⎞

⎠ ,

where ci,j and ti,j can be obtained by the method given in [15, Case 2].

Theorem 1 [15, Theorem 5]. Let x be a multiple zero of f of multiplicity μ,
dim ker Df(x) = 1, and y be another zero of f , then

‖y − x‖ ≥ d

2γμ
μ

.

Remark 1. For μ = 2, we have [15, Sect. 3.3]

p(d) = 1 − 2d2 − 2d
√

1 − d2 − d. (28)

The smallest positive real root of p(d) is

d ≈ 0.2865.

For μ = 3, we have [15, Lemma 3]

p(d) = (1 − 2d − 8d2)
√

1 − d2 − 9d − d2 + 6d3. (29)

The smallest positive root of p(d) is

d ≈ 0.08507.

Theorem 2 [15, Theorem 8]. Given f : Cn → C
n, x ∈ C

n, such that Df̂(x) is
invertible, and Δμ(fn) �= 0. Let

H1 =

(
∂f̂(x)
∂X1

0
∂fn(x)
∂X1

∂fn(x)

∂X̂

)

,

Hk =

⎛

⎜
⎝

(
0 0

Δk(fn) 0

)
0n × · · · × n︸ ︷︷ ︸

k

×(n − 1)

⎞

⎟
⎠ , 2 ≤ k ≤ μ − 1,
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and polynomials

g(X) = f(X) − f(x) −
∑

1≤k≤μ−1

Hk(X − x)k.

Let γμ = γμ(g, x), if

‖f(x)‖ +
∑

1≤k≤μ−1

‖Hk‖
(

d

4γμ
μ

)k

<
dμ+1

2 (4γμ
μ)μ ‖A−1‖ , (30)

then f has μ zeros (counting multiplicities) in the ball of radius d
4γμ

μ
around x.

4 Verified Error Bound

Let IR be the set of real intervals, and let IR
n and IR

n×n be the set of real
interval vectors and real interval matrices, respectively. Standard verification
methods for nonlinear systems are based on the following theorem.

Theorem 1 [17,27,34]. Let f : Rn → R
n be a system of nonlinear equations.

Suppose x ∈ R
n, X ∈ IR

n with 0 ∈ X and R ∈ R
n×n are given. Let M ∈ IR

n×n

be given such that

{Dfi(y) : y ∈ x + X} ⊆ Mi,:, i = 1, . . . , n. (31)

Denote by In the n × n identity matrix and assume

− Rf(x) + (In − RM)X ⊆ int(X). (32)

Then there is a unique x̃ ∈ x + X satisfying f(x̃) = 0. Moreover, every matrix
M̃ ∈ M is nonsingular. In particular, the Jacobian matrix Df(x̃) is nonsingular.

Theorem 1 is restricted to verifying the existence of a simple solution of a
square and regular system. Notice that Theorem 1 is valid over complex numbers
with the necessary modifications. In [35], by introducing a smoothing parameter,
Rump and Graillat developed a verification method for computing verified and
narrow error bounds, such that a slightly perturbed system is proved to possess
a double root within computed error bounds.

In [23], by adding a univariate polynomial in one selected variable with some
smoothing parameters to one selected equation of the original system, we gen-
eralized the algorithm in [35] to compute guaranteed error bounds such that
a slightly perturbed system is proved to have a breadth-one isolated singular
solution within computed error bounds.

For a polynomial function f : C
n → C

n, where fi ∈ C[X1, . . . , Xn], and
suppose x is a zero of f of multiplicity μ and satisfying dim kerDf(x) = 1.
Suppose the i-th column of Df(x) can be written as a linear combination of the
other n − 1 columns, then we choose xi as the variable. Similarly, suppose the
j-th row of Df(x) can be written as a linear combination of the other n − 1
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linearly independent rows, then we add the perturbed univariate polynomial in
xi to fj . Finally, we permute

x1 ↔ xi and f1 ↔ fj

to construct a deflated system below.
We introduce μ − 1 smoothing parameters b0, b1, . . . , bμ−2 and construct a

deflated system G(X, b, a) with μn variables and μn equations:

G(X, b, a) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

F1(X, b) = f(X) −
(∑μ−2

ν=0
bνxν

1
ν!

)
e1

F2(X, b, a1)
F3(X, b, a1, a2)

...
Fμ(X, b, a1, . . . , aμ−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (33)

where e1 = (1, 0, . . . , 0)T , b = (b0, b1, . . . , bμ−2), a = (a1, a2, . . . , aμ−1), a1 =
(1, a1,2, . . . , a1,n)T , ak = (0, ak,2, . . . , ak,n)T for 1 < k ≤ μ, and

Fk(X, b, a1, . . . , ak−1) = Lk−1(F1), (34)

where Lk are differentiation operators corresponding to Λk defined by (12).

Theorem 2 [23, Theorem 4.3]. Suppose G(x, b̃, ã) = 0. If the Jacobian matrix
of the deflated polynomial system G(X, b, a) at (x, b̃, ã) is nonsingular, then x
is an isolated root of the perturbed polynomial system F (X) = F1(X, b̃) with
multiplicity μ and the corank of DF (x) is one.

Theorem 3 [23, Theorem 4.5]. Suppose Theorem 1 is applicable to G(X, b, a)
in (33) and yields inclusions for x, b̃ and ã such that G(x, b̃, ã) = 0. Then x is
an isolated breadth-one root of F (X) = F1(X, b̃) with multiplicity μ.

5 Modified Newton Iterations

In [22], we presented a symbolic-numeric method to refine an approximate iso-
lated singular solution x̃ = (x1, . . . , xn) of a polynomial system f = {f1, . . . , fn}
when the Jacobian matrix of f evaluated at x̃ has corank one approximately.
Our approach is based on the regularized Newton iteration and the computa-
tion of differential conditions satisfied at the approximate singular solution. The
size of matrices involved in our algorithm is bounded by n × n. The algorithm
converges quadratically if x̃ is close to the isolated exact singular solution of f .

Theorem 4 [22, Theorem 3.16]. If the Jacobian matrix of f evaluated at x has
corank one and the approximate singular solution x̃ of f satisfying

‖x̃ − x‖ = ε � 1,

where the positive number ε is small enough such that there are no other solutions
of f nearby, then the refined singular solution x̃ returned by Algorithm 1 satisfies

‖Nf (x̃) − x‖ = O(ε2).
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Algorithm 1. Modified Newton’s Iterations for Breadth-one Multiple Zero
Input:

f : a polynomial system;
x̃: an approximate singular zero of f ;
μ: the multiplicity

Output:
Nf (x̃): a refined solution after one iteration;

1: solve the regularized least squares problem

(Df(x̃)∗Df(x̃) + σnIn)ỹ = Df(x̃)∗b,

where b = −f(x̃), In is the n × n identity matrix and σn is the smallest singular
value of Df(x̃);

2: compute the singular value decomposition of Df(x̃ + ỹ) = U · Σ · V ∗, let

g(X) = f(W · X), W = (vn, v1, . . . , vn−1),

and set z̃ ← W ∗(x̃ + ỹ);
3: construct Δµ and a closed approximate basis of the local dual space

Dg,z̃ = Span(Λ0, Λ1, . . . , Λµ−1),

by Algorithm MultiplicityStructureBreadthOneNumeric in [21];
4: solve the linear system

[
Δµ(g),

∂g(z̃)

∂z2
, . . . ,

∂g(z̃)

∂zn

]
δ = −Λµ−1(g)

5: update the zero of g

z̃1 ← z̃1 +
δ1
μ

, z̃i ← z̃i, 2 ≤ i ≤ n

and
Nf (x̃) ← W · z̃.

The proof of Theorem 4 in [22] is based on studying zeros of deflated sys-
tems. It is difficult to quantify the quadratical convergence of Algorithm 1. In
[15], we present a new algorithm for refining an approximate singular zero whose
Jacobian matrix has corank one. The main idea is to perform the unitary trans-
formations to both variables and equations defined at the approximate singular
solutions, then define the modified Newton’s iteration which are very similar to
Step 4 in Algorithm 1.

Theorem 3. Given an approximate zero z of a polynomial system f associated
to a multiple zero ξ of multiplicity μ and satisfying f(ξ) = 0, dim ker Df(ξ) = 1.
Suppose

γ̂μ(f, z)‖z − ξ‖ <
1
2
,
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Algorithm 2. Modified Newton’s Iteration for Breadth-one Multiple Zeros
Input:

f : a polynomial system;
z: an approximate singular zero of f;
μ: the multiplicity;

Output:
Nf (z): a refined solution after one iteration;

1: compute the singular value decomposition

Df(z) = U ·
(

Σn−1 0
0 σn

)
· V ∗, W† = (vn, v1, . . . , vn−1);

2: perform the unitary transformations to equations and variables

f(X) ← U∗ · f(W† · X), z ← W ∗
† z;

3: update the last n − 1 elements of the approximate zero

N1(f̂ , ẑ) ← ẑ − Df̂(z)−1f̂(z), y = (y1, ŷ) ← (z1, N1(f̂ , ẑ));

4: compute the singular value decomposition

Df(y) = U ·
(

Σn−1 0
0 σn

)
· V ∗, W‡ = (vn, v1, . . . , vn−1);

5: perform the unitary transformations to equations and variables:

g(X) ← U∗ · f(W‡ · X), w = (w1, ŵ) ← W ∗
‡ y;

6: update the first element of the approximate zero

N2(gn, w) ← w1 − 1

μ
Δµ(gn)−1Δµ−1(gn), x = (x1, x̂) ← (N2(gn, w), ŵ);

7: update the zero of f
Nf (z) ← W† · W‡ · x.

where γ̂μ(f, z) is defined by (25), then the refined singular solution Nf (z)
returned by Algorithm 2 satisfies

‖Nf (z) − ξ‖ = O(‖z − ξ‖2). (35)

In [15, Theorem 12], we give a quantified quadratic convergence proof of the
Algorithm 2 for simple triple zeros. There is no significant obstacle to extend
the proof to multiple zeros of higher multiplicities. However, the computation
will become more complicated.

Theorem 4 [15, Theorem 12]. Given an approximate zero z of a system f
associated to a simple triple zero ξ of multiplicity 3 and satisfying f(ξ) = 0,
dim ker Df(ξ) = 1. Let u = max{γ3(f, ξ)3‖ξ − z‖, Lγ3(f, ξ)2‖ξ − z‖}, where L
is the Lipschitz constant of the function Df(X).



Computing Multiple Zeros of Polynomial Systems: Case of Breadth One 403

(1) If u < u3 ≈ 0.0137,
then the output of Algorithm 2 satisfies:

‖Nf (z) − ξ‖ < ‖z − ξ‖ .

(2) If u < u′
3 ≈ 0.0098 then after k times of iteration we have

∥
∥Nk

f (z) − ξ
∥
∥ <

(
1
2

)2k−1

‖z − ξ‖ .

6 Conclusion

The Maple code of algorithms mentioned in the paper and test results are avail-
able http://www.mmrc.iss.ac.cn/∼lzhi/Research/hybrid.

Although the algorithms and proofs of quadratic convergence given in the
paper are for polynomial systems with exact multiple zeros, examples are given
to demonstrate that our algorithms are also applicable to analytic systems and
polynomial systems with a cluster of simple roots.
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