
COMPUTING RATIONAL POINTS IN CONVEX SEMI-ALGEBRAIC
SETS AND SOS DECOMPOSITIONS

MOHAB SAFEY EL DIN∗ AND LIHONG ZHI †

Abstract. Let P = {h1, . . . , hs} ⊂ Z[Y1, . . . , Yk], D ≥ deg(hi) for 1 ≤ i ≤ s, σ bounding
the bit length of the coefficients of the hi’s, and Φ be a quantifier-free P-formula defining a convex
semi-algebraic set. We design an algorithm returning a rational point in S if and only if S ∩ Q 6= ∅.
It requires σO(1)DO(k3) bit operations. If a rational point is outputted its coordinates have bit

length dominated by σDO(k3). Using this result, we obtain a procedure deciding if a polynomial
f ∈ Z[X1, . . . , Xn] is a sum of squares of polynomials in Q[X1, . . . , Xn]. Denote by d the degree of

f , τ the maximum bit length of the coefficients in f , D =
`n+d

n

´
and k ≤ D(D + 1)−

`n+2d
n

´
. This

procedure requires τO(1)DO(k3) bit operations and the coefficients of the outputted polynomials have

bit length dominated by τDO(k3).
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1. Introduction.
Motivation and problem statement. Suppose f ∈ R[x1, . . . , xn], then f is a sum

of squares (SOS) in R[x1, . . . , xn] if and only if it can be written in the form

f = vT ·M · v, (1.1)

in which v is a column vector of monomials and M is a real positive semidefinite
matrix [19, Theorem 1] (see also [4]). The matrix M is also called a Gram matrix for
f . If M has rational entries, then f is a sum of squares in Q[x1, . . . , xn].

PROBLEM 1.1. (Sturmfels). If f ∈ Q[x1, . . . , xn] is a sum of squares in
R[x1, . . . , xn], then is f also a sum of squares in Q[x1, . . . , xn]?

It has been pointed out that if there is an invertible Gram matrix for f , then
there is a Gram matrix for f with rational entries [6, Theorem 1.2]. Furthermore,
if f ∈ Q[x1, . . . , xn] is a sum of m squares in K[x1, . . . , xn], where K is a totally
real number field with Galois closure L, then f is also a sum of 4m · 2[L:Q]+1

(
[L:Q]+1

2

)
squares in Q[x1, . . . , xn] [6, Theorem 1.4]. It is interesting to see that the number of
squares can be reduced to m (see [9]).

Although no example is known of a rational polynomial having only irrational
sum of squares, a complete answer to Question 1.1 is not known. This is the main
motivation for us to design an algorithm to check whether a rational polynomial having
a rational sum of squares decomposition and give the rational SOS representation if it
does exist. By reducing this problem to semidefinite programming, this can be done
by designing an algorithm checking if a convex semi-algebraic set contains rational
points (see [19]).

Main result. We propose an algorithm which decides if a convex semi-algebraic
set S ⊂ Rk contains rational points, i.e., points with coordinates in Qk. In the case
where S ∩Qk is non-empty, a rational point in S is computed.

The semi-algebraic set S is given as the solution set of a polynomial system of non-
strict inequalities with integer coefficients. Arithmetic operations, sign evaluations
and comparisons of two integers/rationals can be done in polynomial time of the
maximum bit length of the considered integers/rationals.
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We bound the number of bit operations that the algorithm performs with respect
to the number of polynomials, their degrees and the maximum bit length of their
input coefficients; we also give upper bounds on the bit length of the coordinates of
the outputted rational point if this situation occurs. More precisely, the main result
is as follows.

Theorem 1.1. Consider a set of polynomials P = {h1, . . . , hs} ⊂ Z[Y1, . . . , Yk],
and a quantifier-free P-formula Φ(Y1, . . . , Yk) and let D be an integer such that
deg(hi) ≤ D for 1 ≤ i ≤ s and σ the maximum bit length of the coefficients of
the hi’s. Let S ⊂ Rk be the convex semi-algebraic set defined by Φ. There exists an
algorithm which decides if S ∩Qk is non-empty within σO(1)(sD)O(k3) bit operations.
In case of non-emptiness, it returns an element of S ∩Qk whose coordinates have bit
length dominated by σDO(k3).

We use a procedure due to [1] performing quantifier elimination over the reals in
order to deduce from Theorem 1.1 the following result.

Corollary 1.2. Let S ⊂ Rk be a convex set defined by

S = {Y ∈ Rk : (Q1X
[1] ∈ Rn1) · · · (QωX

[ω] ∈ Rnω ) P (Y,X [1], . . . , X [ω])}

with quantifiers Qi ∈ {∃,∀}, where X [i] is a set of ni variables, P is a Boolean function
of s atomic predicates

gi(Y,X [1], . . . , X [ω]) ∆i 0

where ∆i ∈ {>,<,=} (for i = 1, . . . , s) and the gi’s are polynomials of degree D
with integer coefficients of binary size at most σ. There exists an algorithm which
decides if S ∩ Qk is non-empty within σO(1)(sD)O(k3Πω

i=1ni) bit operations. In case
of non-emptiness, it returns an element of S ∩ Qk whose coordinates have bit length
dominated by σDO(k3Πω

i=1ni).
The proof of the above results is based on quantitative and algorithmic results

for computing sampling points in semi-algebraic sets and quantifier elimination over
the reals.

It is well-known that deciding if a given polynomial f ∈ Z[X1, . . . , Xn] of degree d
whose coefficients have bit length dominated by τ is a sum of squares of polynomials
in Q[X1, . . . , Xn] can be reduced to a linear matrix inequality which defines a convex
semi-algebraic set (see e.g. [19]). Applying Theorem 1.1, we show that there exists an
algorithm deciding if such an SOS decomposition exists over the rationals and that
the coefficients of the polynomials in the decomposition have bit length dominated by
τDO(k3) with D =

(
n+d

n

)
and k ≤ D(D+1)−

(
n+2d

n

)
. Moreover, such a decomposition

can be found within τO(1)DO(k3) bit operations.
Prior works. Khachiyan and Porkolab extended the well-known result of [14] on

the polynomial-time solvability of linear integer programming in fixed dimension to
semidefinite integer programming. The following proposition is given in [10, 11].

Proposition 1.3. Let S ⊂ Rk be a convex set defined as in Corollary 1.2. There
exists an algorithm for solving the problem min{Yk|Y = (Y1, . . . , Yk) ∈ S

⋂
Zk} in

time `O(1)(sD)O(k4)Πω
i=1O(ni). In case of non-empty, then the minimization problem

has an optimal solution whose bit length is dominated by `DO(k4)Πω
i=1O(ni).

Their algorithm was further improved by Heinz for the case of convex minimiza-
tion where the feasible region is described by quasiconvex polynomials [5].

Although we can apply Proposition 1.3 directly to certify that a given polynomial
with integer coefficients to be non-negative for all real values of the variables by
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computing a sum of squares in Z[x1, . . . , xn], the nonnegativity of a polynomial can
be certified if it can be written as a sum of squares of polynomials in Q[x1, . . . , xn].
Some hybrid symbolic-numeric algorithms have been given in [16, 17, 7, 8] which
turn a numerical sum of squares representation of a positive polynomial into an exact
rational identity. However, it is well known that there are plenty of polynomials
which are nonnegative but can not be written as sums of squares of polynomials, for
example, the famous Motzkin polynomial. This also impel us to study Khachiyan
and Porkolab’s approach. It turns out that by focusing on rational numbers instead
of integers, we can design an exact and cheaper algorithm which decide whether a
given polynomial can be written as an SOS over the rationals and give the rational
SOS decomposition if it exists.

Structure of the paper. Section 2 is devoted to recall the quantitative and algo-
rithmic results on computing sampling points in semi-algebraic sets and quantifier
elimination over the reals. Most of these results are proved in [1]. Section 3 is de-
voted to prove the correctness of the algorithm on which Theorem 1.1 and Corollary
1.2 rely. The complexity analysis is done in Section 4 and leads to the estimates
stated in Theorem 1.1. In Section 5, we apply Theorem 1.1 to prove the announced
bounds on the bit length of the rational coefficients of the decomposition into sums
of squares of a given polynomial with integer coefficients.

Acknowledgments. The authors thank an anonymous referee for his thoughtful
remarks and suggestions that help to improve the presentation of this paper. This
work is supported by the EXACTA grant of the National Science Foundation of China
(NSFC 60911130369) and the French National Research Agency (ANR-09-BLAN-
0371-01). The authors thank INRIA, KLMM and the Academy of Mathematics and
System Sciences for their support.

2. Preliminaries. The algorithm on which Theorem 1.1 relies and its complex-
ity analysis are based on algorithmic and quantitative results on computing sampling
points in semi-algebraic sets and quantifier elimination over the reals.

2.1. Computing points in semi-algebraic sets. Consider a set of polynomi-
als P = {h1, . . . , hJ} ⊂ Z[Y1, . . . , Yk], and a quantifier-free P-formula Φ(Y1, . . . , Yk),
i.e., a quantifier-free formula whose atoms are one of h = 0, h 6= 0, h > 0, h < 0 for
h ∈ P. Let D be an integer such that deg(hi) ≤ D for 1 ≤ i ≤ J and ` the maximum
bit length of the coefficients of the hi’s. We denote by S ⊂ Rk the semi-algebraic set
defined by Φ(Y1, . . . , Yk).

A function RealizableSignConditions computing a set of algebraic points having a
non-empty intersection with each connected component of semi-algebraic sets defined
by sign conditions satisfied by P is given in [1, Section 3] (see also [2, Chapter 5]).
From this, a function SamplingPoints computing a set of algebraic points having a non-
empty intersection with each connected component of S is obtained. These algebraic
points are encoded by

• a rational parametrization

G = 0, Y1 =
G1

G0
, . . . , Yk =

Gk

G0

where G,G0, . . . , Gk are polynomials in Z[T ] such that deg(gcd(G,G0)) = 0
and

for 1 ≤ i ≤ k, −1 ≤ deg(Gi) ≤ deg(G)− 1 and 0 ≤ deg(G0) ≤ deg(G)− 1;
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the rational parametrization is given by the list G = (G,G0, G1, . . . , Gk); the
degree of G is called degree of the rational parametrization and Z(G) ⊂ Ck

denotes the set of complex points encoded by G;
• and a list T of the Thom-encodings of the real roots ϑ of G such that

Φ
(

G1(ϑ)
G0(ϑ) , . . . ,

Gk(ϑ)
G0(ϑ)

)
is true.

The bit complexity of SamplingPoints is `Jk+1DO(k) and the output is such that
deg(G) = O(D)k and the bit length of the coefficients of G,G0, G1, . . . , Gk is domi-
nated by `DO(k).

Factorizing over Q a univariate polynomial h ∈ Q[T ] of degree δ with rational
coefficients of maximum bit length ` can be done in `O(1)δO(1) bit-operations (see
[13, 21, 20]). Given a root ϑ of h, the minimal polynomial of ϑ has coefficients of bit
length dominated by `+ O(δ) (see [15]).

Consider now a root ϑ of G and its minimal polynomial g. Since G and G0

are co-prime, one can compute G−1
0 mod g to obtain a rational parametrization

(g, g0, . . . , gk) with integer coefficients of bit length dominated by `DO(k) and

for 1 ≤ i ≤ k, −1 ≤ deg(gi) ≤ deg(g)− 1 and 0 ≤ deg(g0) ≤ deg(g)− 1

within a bit-complexity `O(1)DO(k). This implies the following result.
Proposition 2.1. There exists a function SemiAlgebraicSolve which takes as in-

put the system Φ(Y1, . . . , Yk) and computes a rational parametrization G = (G,G0, G1,
. . . , Gk) and a list T of Thom-encodings such that G is irreducible over Q, and T
contains the encodings of the real roots ϑ of G such that

(
G1(ϑ)
G0(ϑ) , . . . ,

Gk(ϑ)
G0(ϑ)

)
∈ S.

The bit length of the coefficients of G,G0, G1, . . . , Gk is dominated by `DO(k) and
deg(G) = O(D)k. Moreover, SemiAlgebraicSolve requires `O(1)Jk+1DO(k) bit opera-
tions.

Remark 2.2. Since G and G0 are co-prime, one can compute G0
−1 mod G in

polynomial time, and the binary length of its rational coefficients can be bounded via
subresultants, we can assume, without loss of generality, that the rational parametriza-
tion has a constant denominator:

Y =
1
q

(G1(ϑ), G2(ϑ), . . . , Gk(ϑ)) ∈ S, G(ϑ) = 0, (2.1)

where the bit length of q and the coefficients of G,G1, . . . , Gk are dominated by
`DO(k).

The above discussion leads also to the following result.
Proposition 2.3. Let G, T be the output of SemiAlgebraicSolve(Φ), δ be the

degree of G, and ` be the maximum bit length of the coefficients of the polynomials in
G∪P. There exists a function RationalZeroDimSolve which takes as input G and Φ and
returns a rational point y ∈ Z(G) if and only if y ∈ S ∩ Z(G) ∩Qk, else it returns an
empty list. The coordinates of these rational points have bit length dominated by `δO(1)

and computations are performed within O(k)O(J)`O(1)δO(1)
(
n+D

n

)O(1)
bit operations.

Remark 2.4. According to Proposition 2.1, the function SemiAlgebraicSolve com-
putes a rational parametrization G = (G,G0, G1, . . . , Gk) such that G is irreducible
over Q. Therefore a rational point y ∈ Z(G) if and only if deg(G) = 1. In order to
check whether y ∈ S, we only need to evaluate the formula Φ at y.

The following result is a restatement of [1, Theorem 4.1.2] and allows us to bound
the bit length of rational points in non-empty semi-algebraic sets defined by strict
polynomial inequalities.
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Proposition 2.5. Let S ′ ⊂ Rk be a semi-algebraic set defined by a quantifier-
free P-formula whose atoms are strict inequalities. Then S ′ contains a rational point
whose coordinates have bit length dominated by `DO(k).

The proof of the above result (see [1, Proof of Theorem 4.1.2 pp. 1032]) is based
on the routine RealizableSignConditions and the isolation of real roots of univariate
polynomials with rational coefficients (see e.g. [2, Chapter 10]). We denote by Ra-
tionalOpenSemiAlgebraicSolve a function taking as input the P-formula Φ and which
returns a rational point in S if and only if there exists a non-empty semi-algebraic
set S ′ defined by a quantifier-free P-formula whose atoms are strict inequalities such
that S ′ ⊂ S. The result below is not stated in [1] but is an immediate consequence
of this proof.

Corollary 2.6. Suppose that there exists a quantifier-free P-formula whose
atoms are strict inequalities defining a non-empty semi-algebraic set S ′ ⊂ S. There
exists an algorithm computing a rational point in S if and only if S 6= ∅. It requires
`O(1)Jk+1DO(k) bit operations and if a rational point is outputted, its coordinates have
bit length dominated by `DO(k).

2.2. Quantifier elimination over the reals. We consider now a first-order
formula F over the reals

(Q1X
[1] ∈ Rn1) · · · (QωX

[ω] ∈ Rnω ) P (Y,X [1], . . . , X [ω])

where
• Y = (Y1, . . . , Yk) is the vector of free variables;
• each Qi (i = 1, . . . , ω) is one of the quantifiers ∃ or ∀;
• P (Y,X [1], . . . , X [ω]) is a Boolean function of s atomic predicates

g(Y,X [1], . . . , X [ω]) ∆i 0

where ∆i ∈ {>,<,=} (for i = 1, . . . , s) and the gi’s are polynomials of degree
D with integer coefficients of binary size at most `.

The following result on quantifier elimination is a restatement of [1, Theorem
1.3.1].

Theorem 2.7. There exists a quantified-free formula Ψ

I∨
i=1

Ji∧
j=1

(hij ∆ij 0)

(where hij ∈ Z[Y1, . . . , Yk] and ∆ij ∈ {=, >}) which is equivalent to F and such that
• I ≤ s(k+1)Πω

i=1(ni+1)D(k+1)Πω
i=1O(ni),

• Ji ≤ sΠω
i=1(ni+1)DΠω

i=1O(ni),
• deg(hij) ≤ DΠω

i=1O(ni),
• the bit length of the coefficients of the hij’s is dominated by `D(k+1)Πω

i=1O(ni).
The above transformation requires `s(k+1)Πω

i=1(ni+1)D(k+1)Πω
i=1O(ni) bit operations.

In the sequel, we denote by QuantifierElimination a function that takes F as input
and returns a list [Ψ1, . . . ,ΨI ] where the Ψ′is are the conjunctions

Ji∧
j=1

(hij ∆ij 0).
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3. Algorithm and correctness.

3.1. Description of the algorithm. We use the following functions:
• Substitute which takes as input a variable Yr ∈ {Y1, . . . , Yk}, a polynomial
h ∈ Q[Y1, . . . , Yk] and a Boolean formula F and which returns a formula F̃
obtained by substituting Yr by h in F .

• RemoveDenominators which takes as input a formula F and returns a formula
F̃ obtained by multiplying the polynomials in F by the absolute value of the
least common multiple of the denominators of their coefficients.

• Open which takes as input a system Φ of equations and inequalities in Q[Y1,
. . . , Yk] and returns the inconsistent system 1 = 0 if Φ contains equations
h = 0 (where h is not identically 0) else it returns the system obtained by
substituting all non-strict inequalities by strict inequalities.

Consider a rational parametrization G = (G,G0, G1, . . . , Gk, Gk+1) ⊂ Z[T ]k+3

with δ = deg(G). For 0 ≤ i ≤ δ− 1, denote by ai ∈ Zk the vector of integers whose j-
th coordinate is the coefficient of T i in Gj . Similarly, for 0 ≤ i ≤ δ−1, bi denotes the
coefficient of T i in Gk+1. We use in the sequel a function GenerateVectors that takes
as input a rational parametrization G. This function returns the set list of couples
(ai,bi) for 0 ≤ i ≤ δ − 1.

As in the previous section, consider now a set of polynomials P = {h1, . . . , hs} ⊂
Z[Y1, . . . , Yk], and a quantifier-free P-formula Φ(Y1, . . . , Yk) and let D be an integer
such that deg(hi) ≤ D for 1 ≤ i ≤ s and σ the maximum bit length of the coefficients
of the hi’s. We denote by S ⊂ Rk the semi-algebraic set defined by Φ(Y1, . . . , Yk)
which is supposed to be convex.

The routine FindRationalPoints below takes as input the formula Φ(Y1, . . . , Yk)
defining S ⊂ Rk and a list of variables [Y1, . . . , Yk].

FindRationalPoints(Φ, [Y1, . . . , Yk]).
1. Let L = RationalOpenSemiAlgebraicSolve(Open(Φ))
2. If L is not empty then return L
3. Let G, T = SemiAlgebraicSolve(Φ)
4. If T is empty then return [ ]
5. Let L = RationalZeroDimSolve(G,Φ)
6. If L is not empty or k = 1 then return L
7. Else

(a) Let A1, . . . , Ak, B be free variables and Θ be the formula

∀Y ∈ Rk A2
1 + · · ·+A2

k > 0 ∧ (¬Φ ∨A1Y1 + · · ·+AkYk = B)

(b) Let [Ψ1, . . . ,ΨI ] = QuantifierElimination(Θ) and i = 1
(c) While i ≤ I do

i. G, T = SemiAlgebraicSolve(Ψi) and (G,G0, G1, . . . , Gk, Gk+1) = G
ii. If T is empty i = i+ 1 else break

(d) Let C = GenerateVectors(G,G0, G1, . . . , Gk, Gk+1)
(e) Let a = (a1, . . . , ak) 6= (0, . . . , 0) and b ∈ Z such that (a, b) ∈ C
(f) Let r = max(i, 1 ≤ i ≤ k and ai 6= 0)

(g) Let h = b−
Pr−1

j=1 aiYi

ar

(h) Let Φ′ = RemoveDenominators(Substitute(Yr, h,Φ))
(i) Let L = FindRationalPoints(Φ′, [Y1, . . . , Yr−1, Yr+1, . . . , Yk])
(j) If L is not empty

i. Let (q1, . . . , qr−1, qr+1, . . . , qk) be its element
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ii. Let qr = Evaluate({Yi = qi, 1 ≤ i ≤ k, j 6= r}, h)
iii. If Φ(q1, . . . , qr−1, qr, qr+1, . . . , qk) is true then return

[(q1, . . . , qr−1, qr, qr+1, . . . , qk)] else return [ ]
(k) Else return [ ]

Proposition 3.1. The algorithm FindRationalPoints returns a list containing a
rational point if and only if S ∩Qk is non-empty, else it returns an empty list.

The next paragraph is devoted to prove this proposition.
Remark 3.2. Let S ⊂ Rk be a convex set defined by

S = {Y ∈ Rk : Rk(Q1X
[1] ∈ Rn1) · · · (QωX

[ω] ∈ Rnω ) P (Y,X [1], . . . , X [ω])}

with quantifiers Qi ∈ {∃,∀}, where X [i] is a set of ni variables, P is a Boolean function
of s atomic predicates

g(Y,X [1], . . . , X [ω]) ∆i 0

where ∆i ∈ {>,<,=} (for i = 1, . . . , s).
Denote by Θ the quantified formula defining S and by [Ψ1, . . . ,ΨI ] the output of

QuantifierElimination(Θ). Running FindRationalPoints on the Ψi’s allows to decide the
existence of rational points in S. This proves a part of Corollary 1.2.

3.2. Proof of correctness. A semi-algebraic set A can be partitioned in cells
which are homeomorphic to Ri for some i ∈ N. The maximum of those i is the
dimension of the semi-algebraic set under consideration. Following [3, Definition 2.8.1
and Proposition 2.8.2 pp.50], the dimension of A coincides with the Krull dimension of
the ideal associated to the smallest algebraic variety containing A. As a by-product,
the dimension of A coincides with the dimension of the smallest real algebraic set
containing A, that we denote by Var(A) in the sequel. By convention, the dimension
of the empty set is −1.

We reuse the notations introduced in the description of FindRationalPoints and
S ⊂ Rk denotes the semi-algebraic set defined by the formula Φ given as input. The
proof is done by induction on k. We will first investigate the case k = 1: in this
case, dim(S) is either 1, −1 or 0. In all these cases, we will prove that Steps (1-6)
return a rational point in S if and only if S ∩ Qk 6= ∅. In the case where k > 1, we
will use the fact that S is convex to prove that it is contained in an affine subspace.
An equation defining a hyperplane containing this affine subspace is obtained in Step
(7b). This equation may have algebraic coefficients but we will be able to use it in
order to reduce the search of a rational point in S ⊂ Rk to the search of a rational
point in a semi-algebraic set lying in Rk−1.

Preliminaries. We start with some lemmas.
Lemma 3.3. Let A ⊂ Rk be a semi-algebraic set defined by a quantifier-free

P-formula. If dim(A) = k there exists y ∈ A such that for all h ∈ P \ {0} h(y) 6= 0.
Proof. Suppose that for all y ∈ A, there exists h ∈ P such that h(y) = 0. Then,

A is contained in the union H of the hypersurfaces defined by h = 0 for h ∈ P.
Consequently, dim(A) ≤ dim(H) < k, which contradicts dim(A) = k.

Lemma 3.4. Suppose that 0 ≤ dim(S) < k. There exists (a1, . . . , ak) ∈ Rk and
b ∈ R such that (a1, . . . , ak) 6= (0, . . . , 0) and

∀(y1, . . . , yk) ∈ Rk (y1, . . . , yk) ∈ S =⇒ a1y1 + · · ·+ akyk = b. (3.1)
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Proof. It is sufficient to prove that Var(S) is an affine subspace of Rk of dimension
less than k: in this case, there exists a real affine hyperplane H ( Rk (defined by∑k

i=1 aiYi = b for (a1, . . . , ak) ∈ Rk \(0, . . . , 0) and b ∈ R) such that S ⊂ Var(S) ⊂ H.
Since S is convex, if dim(S) = 0 then S is a single point; thus the conclusion

follows immediately.
We suppose now that dim(S) > 0; hence S is not empty and contains infinitely

many points. Consider y0 ∈ S. Given y ∈ Rk \ {y0}, we denote by Ly0,y ⊂ Rk the
real line containing y and y0 and by Hy0,y ⊂ Rk the real affine hyperplane which is
orthogonal to Ly0,y and which contains y0.

Since S is convex, for all y ∈ S \ {y0}, S ∩ Ly,y0 6= ∅. We consider the set Uy0 =⋂
y∈S\{y0}Hy0,y; note that Uy0 is an affine subspace since it is the intersection of affine

subspaces. Suppose that the orthogonal of Uy0 is Var(S). Then, since dim(S) < k,
the orthogonal of Uy0 is an affine subspace of Rk of dimension less than k containing
S which implies the claimed result.

Thus, it remains to prove that the orthogonal of Uy0 is Var(S). We first prove that
S is contained in the orthogonal of Uy0 which implies that Var(S) is contained in the
orthogonal of Uy0 . By definition of Uy0 , for all u ∈ Uy0 and all y ∈ S \ {y0}, the inner
product of −→y0u and −→y0y is zero. We prove now that the orthogonal of Uy0 is contained
in Var(S). By definition, the orthogonal of Uy0 is the set of lines Ly,y0 for y ∈ S\{y0}.
Thus, it is sufficient to prove that for all y ∈ S \ {y0}, Ly,y0 is contained in Var(S).
For all y ∈ S \ {y0}, S ∩ Ly,y0 6= ∅ because S is convex. Moreover, Var(S ∩ Ly,y0) is
Ly,y0 . Since S ∩ Ly,y0 ⊂ S, Ly,y0 is contained in Var(S). Our assertion follows.

Correctness when k = 1. We prove that in this case Steps (1-6) return a
rational point in S if and only if S ∩Qk 6= ∅ else an empty list is returned.

If k = 1, the dimension of S is either 1, −1 or 0.
1. Suppose that S has dimension 1. From Lemma 3.3, there exists a non-empty

semi-algebraic set S ′ ⊂ S defined by a quantifier-free P-formula whose atoms
are strict inequalities. Thus S ′ contains a rational point. From Corollary 2.6,
such a rational point in S is outputted at Step (1).

2. Suppose that S has dimension −1, i.e., S is empty. From Proposition 2.1,
the list of Thom-encodings outputted at Step (3) is empty and the empty list
is returned at Step (4).

3. Suppose that S has dimension 0. Since S is convex, this implies that S is a
single point contained in Z(G). From Proposition 2.3, this point is outputted
at Step (5) if and only if it is a rational point; else the empty list is outputted.

The case k > 1. Our induction assumption is that, given a quantifier-free P ′-
formula Φ′ (with P ′ ⊂ Z[Y1, . . . , Yk−1]) defining a convex semi-algebraic set S ′ ⊂
Rk−1, FindRationalPoints returns a list containing a rational point if and only if S ′ ∩
Qk−1 is non-empty, else it returns an empty list.

Suppose first that dim(S) = k. Then, by Lemma 3.3, S ∩Qk is not empty and a
rational point is outputted at Step (2) by Corollary 2.6.

Suppose now that dim(S) < k. Then, the interior of S is empty and Corollary 2.6
implies that the list L computed at Step (1) is empty. If S is empty then, according
to Proposition 2.1, an empty list is returned at Step (4). Suppose now that S is not
empty and that no rational point is outputted at Step (6). Hence, we enter at Step
(7). Note that the formula Θ (Step (7a)) defines the semi-algebraic set A ⊂ Rk × R
such that (a1, . . . , ak, b) ∈ A if and only if (a1, . . . , ak) 6= (0, . . . , 0) and

∀(y1, . . . , yk) ∈ Rk (y1, . . . , yk) ∈ S =⇒ a1y1 + · · ·+ akyk = b.
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Thus, the quantifier-free formula
∨I

i=1 Ψi (Step (7b)) defines A. Remark that by
Lemma 3.4, A is not empty. Hence, the loop at Step (7c) ends by finding a ratio-
nal parametrization G = (G,G0, G1, . . . , Gk, Gk+1) (computed at Step (7ci)) which
encodes some points in A.

From the specification of SemiAlgebraicSolve, G is irreducible over Q. Let a =
(a1, . . . , ak) ∈ Rk and b ∈ R such that (a, b) ∈ A ∩ Z(G). Then, there exists a real
root ϑ of G such that

G0(ϑ)
(
a
b

)
=

deg(G)−1∑
i=1

ϑi

(
ai

bi

)
(3.2)

where the couples (ai,bi) ∈ Zk × Z are those returned by GenerateVectors (Step
(7d)). Since gcd(G0, G) = 1, G0(ϑ) 6= 0. Moreover, (a, b) ∈ A implies a 6= (0, . . . , 0).
Note also that (a, b) ∈ A implies that for all λ ∈ R?, (λa, λb) ∈ A since for all
(y1, . . . , yk) ∈ S and λ ∈ R?

a1y1 + · · ·+ akyk = b⇐⇒ λ(a1y1 + · · ·+ akyk) = λb

This proves that

(a?, b?) = (G0(ϑ)a,G0(ϑ)b) ∈ A and (a?
1, . . . , a

?
k) 6= (0, . . . , 0).

Thus, there exists i such that ai 6= 0, which implies that Step (7e) never fails. To end
the proof of correctness, we distinguish the case where S ∩Qk is empty or not.

The non-empty case. We suppose first that S∩Qk is non-empty; let (y1, . . . , yk) ∈
S ∩ Qk. Using (3.2), the linear relation a?

1y1 + · · · + a?
kyk = b? implies the algebraic

relation of degree deg(G)− 1:

deg(G)−1∑
i=0

ϑi(
k∑

j=1

ai,jyj − bi) = 0, (3.3)

where ai,j is the j-th coordinate of ai. Since G is irreducible, it is the minimal
polynomial of ϑ; hence ϑ is an algebraic number of degree deg(G). Thus, (3.3) is
equivalent to

∀0 ≤ i ≤ deg(G)− 1,
k∑

j=1

ai,jyj = bi.

We previously proved that there exists i such that ai 6= 0. We let a = (a1, . . . , ak) ∈
Zk \ (0, . . . , 0) and b ∈ Z be respectively the vector with integer coordinates and the
integer chosen in C (Step (7e)). We have just proved that S ∩Qk is contained in the
intersection of S and of the affine hyperplane H defined by a1Y1 + · · · + akYk = b.
Note also that S ∩H is convex since S is convex and H is an affine hyperplane.

Consider the projection πr : (y1, . . . , yk) ∈ Rk → (y1, . . . , yr−1, yr+1, . . . , yk) ∈
Rk−1 for the integer r computed at Step (7f). It is clear that the formula Φ′ computed
at Step (7h) defines the semi-algebraic set πr(S ∩H) ⊂ Rk−1. Since S ∩H is convex,
πr(S ∩H) is convex. Thus, the call to FindRationalPoints (Step (7i)) with inputs Φ′

and [Y1, . . . , Yr−1, Yr+1, . . . , Yk] is valid. From the induction assumption, it returns
a rational point in πr(S ∩H) if and only if πr(S ∩H) has a non-empty intersection
with Qk−1.
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Since S∩Qk (which is supposed to be non-empty) is contained in S∩H, πr(S∩H)
contains rational points. Thus, the list L (Step (7i)) contains a rational point qk−1 =
(q1, . . . , qr−1, qr+1, . . . , qk) ∈ πr(S ∩ H). This implies that π−1

r (qk−1) ∩ H has a
non-empty intersection with S ∩ H. Remark that π−1

r (qk−1) ∩ H is the rational
point q = (q1, . . . , qr−1, qr, qr+1, . . . , qk) where qr is computed at Step (7jii). It be-
longs to S since π−1

r (qk−1) ∩ H and S ∩ H have a non-empty intersection. Thus,
Φ(q1, . . . , qr−1, qr, qr+1, . . . , qk) is true and q is returned by FindRationalPoints.

The empty case. Suppose now that S ∩ Qk is empty. As above H denotes the
affine hyperplane defined by a1Y1 + · · ·+ akYk = b where (a1, . . . , ak) ∈ Zk and b ∈ Z
are chosen at Step (7e). Using the above argumentation, πr(S ∩H) is convex and the
formula Φ′ (Step (7h)) defines πr(S ∩H). Thus, the call to FindRationalPoints (Step
(7i)) with inputs Φ′ and [Y1, . . . , Yr−1, Yr+1, . . . , Yk] is valid. Suppose that πr(S ∩H)
does not contain rational points. Then, by the induction assumption, L is empty
and the empty list is returned (Step (7j)) which is the expected output since we have
supposed S ∩ Qk = ∅. Else, L contains a rational point (q1, . . . , qr−1, qr+1, . . . , qk).
Consider the rational point (q1, . . . , qr−1, qr, qr+1, . . . , qk) (where qr is computed at
Step (7jii)). It can not belong to S since we have supposed S ∩Qk is empty. Conse-
quently, Φ(q1, . . . , qr−1, qr, qr+1, . . . , qk) is false and the empty list is returned.

4. Complexity. We analyze now the bit complexity of FindRationalPoints.
Lemma 4.1. Steps (1-6) of FindRationalPoints(Φ) perform within σO(1)sk+1DO(k)

bit operations. If a rational point is returned at Step (6) or Step (2), its coordinates
have bit length dominated by σDO(k).

Proof. The result is a direct consequence of the results stated at Section 2.
1. From Corollary 2.6, Step (1) is performed within σsk+1DO(k) bit operations

and if a rational point is outputted at Step (2), its coordinates have bit length
dominated by σDO(k).

2. From Proposition 2.1, Steps (3) and (4) are performed within σO(1)sk+1DO(k)

bit operations.
3. From Proposition 2.3, Step (5) requires σO(1)DO(k) bit operations. Moreover,

if a rational point is outputted at Step (6), its coordinates have bit length
dominated by σDO(k).

Lemma 4.2.

1. Steps (7a-7h) require σO(1)(sD)O(k2) bit operations. The number of polyno-
mials in Φ′ is s; their degrees are dominated by D and the bit length of their
coefficients is dominated by σDO(k2).

2. If a rational point with coordinates of bit length dominated by ` is returned
at Steps (7i-7j), the rational number computed at Step (7jii) has bit length
dominated by `+ σDO(k2).

Proof. From Theorem 2.7, Steps (7a-7b) are performed within σsO(k2)DO(k2) bit
operations. The obtained quantifier-free formula is a disjunction of (sD)O(k2) conjunc-
tions. Thus the loop (Step (7c)) makes at most (sD)O(k2) calls to SemiAlgebraicSolve.
Each conjunction involves (sD)O(k) polynomials of degree DO(k) in Z[A1, . . . , Ak, B]
with integers of bit length dominated by σDO(k2). Thus, from Proposition 2.1, each
call to SemiAlgebraicSolve is performed within σO(1)DO(k2) bit operations. Since there
are at most (sD)O(k2) such calls, Step (7ci) is performed within σO(1)(sD)O(k2) bit
operations and outputs a rational parametrization of degree DO(k2) with integer co-
efficients of bit length dominated by σDO(k2).
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Thus, the integers in the list computed at Step (7d) have bit length dominated by
σDO(k2) and are obtained within a bit complexity dominated by σO(1)(sD)O(k2). This
implies that the polynomial h obtained from Steps (7e-7g) has rational coefficients of
bit length dominated by σDO(k2) and is obtained within a bit complexity dominated
by σO(1)(sD)O(k2). Assertion (2) follows immediately.

The substitution phase and removal of the denominators (Step (7h)) can be per-
formed in polynomial time in the maximum bit length of the coefficients of h and
those of the polynomials in Φ, i.e., σDO(k2), the maximum degree of the polynomials
in Φ, i.e., D and the number of polynomials in Φ, i.e., s. This cost is still dominated
by the cost of Step (7c). As announced, the obtained formula Φ′ contains s (k − 1)-
variate polynomials of degree D with integer coefficients of bit length dominated by
σDO(k2).

Proposition 4.3. Consider a set of polynomials P = {h1, . . . , hs} ⊂ Z[Y1, . . . ,
Yk], and a quantifier-free P-formula Φ(Y1, . . . , Yk) and let D be an integer such that
deg(hi) ≤ D for 1 ≤ i ≤ s and σ the maximum bit length of the coefficients of the
hi’s. Then, FindRationalPoints(Φ, [Y1, . . . , Yk]) requires σO(1)(sD)O(k3) bit operations.
Moreover, if it outputs a rational point, its coordinates have bit length dominated by
σDO(k3).

Proof. We prove Proposition 4.3 by induction on k. The initialization of the
induction is immediate from the correctness when k = 1 and Lemma 4.1.

Suppose that k > 1. Suppose that the execution of FindRationalPoints(Φ) stops
at Steps (2), or (4) or (6). From Lemma 4.1, we are done. Suppose now that we enter
in Step (7).

By Lemma 4.2(1), the formula Φ′ computed at Step (7h) contains s (k−1)-variate
polynomials of degree D and coefficients of bit length dominated by σDO(k2) and is
obtained within σO(1)(sD)O(k2) bit operations. The induction assumption implies
that

• Step (7i) requires σO(1)(sD)O(k3) bit operations,
• If a rational point is contained in L (Step (7j)), its coordinates have bit length

dominated by σDO(k3).
Hence, by Lemma 4.2(2), the rational number computed at Step (7jii) has bit length
dominated by σDO(k3). Moreover, Steps (7jii-7jiii) have a cost which is the one of
evaluating the input formula Φ at rational points. Thus, the cost is log-linear in the
maximum bit length of the coordinates of the rational point in L, i.e., σDO(k3) the
maximum degree of the polynomials in Φ, i.e., D and the number of polynomials in
Φ, i.e., s.

4.1. Proof of Corollary 1.2. We prove now Corollary 1.2 that we restate below:
Let S ⊂ Rk be a convex set defined by

S = {Y ∈ Rk : (Q1X
[1] ∈ Rn1) · · · (QωX

[ω] ∈ Rnω ) P (Y,X [1], . . . , X [ω])}

with quantifiers Qi ∈ {∃,∀}, where X [i] is a set of ni variables, P is a Boolean function
of s atomic predicates

gi(Y,X [1], . . . , X [ω]) ∆i 0

where ∆i ∈ {>,<,=} (for i = 1, . . . , s) and the gi’s are polynomials of degree D
with integer coefficients of binary size at most σ. There exists an algorithm which
decides if S ∩ Qk is non-empty within σO(1)(sD)O(k3Πω

i=1ni) bit operations. In case



12

of non-emptiness, it returns an element of S ∩ Qk whose coordinates have bit length
dominated by σDO(k3Πω

i=1ni).
Proof. Denote by Θ the quantified formula defining S. Theorem 2.7 states that

QuantifierElimination(Θ) requires σs(k+1)Πω
i=1(ni+1)D(k+1)Πω

i=1O(ni) bit operations. It
outputs a list of conjunctions Φ1, . . . ,ΦI with I ≤ s(k+1)Πω

i=1(ni+1)D(k+1)Πω
i=1O(ni),

and for 1 ≤ i ≤ I, Φi is a conjunction of Ji ≤ sΠω
i=1(ni+1)DΠω

i=1O(ni) atomic predicates
h∆ 0 with h ∈ Z[Y1, . . . , Yk], ∆ ∈ {=, >} and deg(h) ≤ DΠω

i=1O(ni) and the bit length
of the coefficients of the polynomials hij is dominated by σD(k+1)Πω

i=1O(ni). Thus,
the cost of running FindRationalPoints on all the Φi’s requires σO(1)(sD)O(k3Πω

i=1ni)

bit operations. In case of non-emptiness of S ∩ Qk, it returns an element of S ∩ Qk

whose coordinates have bit length dominated by σDO(k3Πω
i=1ni). This ends to prove

Corollary 1.2.

5. Rational sums of squares. Consider a polynomial f ∈ Z[x1, . . . , xn] of
degree 2d whose coefficients have bit length bounded by τ . If we choose v as the
vector of all monomials in Z[x1, . . . , xn] of degree less than or equal to d, then we
consider the set of real symmetric matrices M = MT of dimension D =

(
n+d

n

)
for

which f = vT ·M · v. By Gaussian elimination, it follows that there exists an integer
k ≤ 1

2D(D + 1)−
(
n+2d

n

)
such that

M = {M0 + Y1M1 + . . .+ YkMk, Y1, . . . , Yk ∈ R} (5.1)

for some rational symmetric matrices M0, . . . ,Mk. The polynomial f can be written
as a sum of squares of polynomials if and only if the matrix M can be completed as
a symmetric positive semidefinite matrix (see [12]). Let Y = (Y1, . . . , Yk), we define

S = {Y ∈ Rk | M(Y ) � 0, M(Y ) = M(Y )T , f = vT ·M(Y ) · v}. (5.2)

It is clear that S ⊆ Rk is a convex set defined by setting all polynomials in

Φ(Y1, . . . , Yk) = {(−1)(i+D)mi, i = 0, . . . , D − 1} (5.3)

to be nonnegative, where the mi’s are the coefficients of the characteristic polynomial
of M(Y ). The cardinality s of Φ is bounded by D and Φ contains polynomials of
degree bounded by D whose coefficients have bit length bounded by τD (see [19]).
Hence the semi-algebraic set defined by (5.2) is

S = {(Y1, . . . , Yk) ∈ Rk | (−1)(i+D)mi ≥ 0, 0 ≤ i ≤ D − 1}. (5.4)

The result below is obtained by applying Theorem 1.1 to the semi-algebraic set
defined above.

Corollary 5.1. Let f ∈ Z[x1, . . . , xn] of degree 2d with integers of bit length
bounded by τ . By running the algorithm FindRationalPoints for the semi-algebraic set
defined in (5.2), one can decide whether f is a sum of squares in Q[x1, . . . , xn] within
τO(1)DO(k3) bit operations. Suppose f =

∑
f2

i , fi ∈ Q[x1, . . . , xn], then the bit lengths
of rational coefficients of the fi’s are bounded by τDO(k3).

Remark 5.2. Applying Proposition 1.3 by Khachiyan and Porkolab to the semi-
algebraic set defined in (5.2), one can decide whether f is a sum of squares in
Z[x1, . . . , xn] within τO(1)DO(k4) operations. Suppose that f =

∑
f2

i (with fi ∈
Z[x1, . . . , xn]), then the bit lengths of integer coefficients of fi are bounded by τDO(k4).
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Porkolab and Khachiyan showed that the non-emptiness of the convex set defined
in (5.2) over the reals can be determined in O(kD4) + DO(min{k,D2}) arithmetic op-
erations over `DO(min{k,D2})-bit numbers, where ` is the maximal bit length of the
matrices Mi (see [18]). Suppose S 6= ∅, i.e., f ∈ Q[x1, . . . , xn] is a sum of m squares
in K[x1, . . . , xn] where K is an algebraic extension of Q. If K is a totally real number
field, then f is also a sum of squares in Q[x1, . . . , xn], i.e, S

⋂
Qn 6= ∅ (see [6, 9]). The

following lemma and proof can be deduced from arguments given in [9].
Lemma 5.3. Suppose G = (G,G0, G1, . . . , Gk) is a rational parametrization for

the semi-algebraic set S defined in (5.2) computed by SemiAlgebraicSolve. Suppose ϑ
is a real root of G such that

Y (ϑ) =
1
q

(G1(ϑ), G2(ϑ), . . . , Gk(ϑ)) ∈ S, (5.5)

then for any real root ϑi of G, we have

Y (ϑi) =
1
q

(G1(ϑi), G2(ϑi), . . . , Gk(ϑi)) ∈ S. (5.6)

Moreover, if G has only real roots, then the point defined by 1
deg G

∑deg G
i=1 Y (ϑi) is a

rational point in S.
Proof. Since Y (ϑ) ∈ S, the matrix M(Y (ϑ)) is positive semidefinite. We can

perform the Gaussian elimination over Q(ϑ) to obtain the decomposition M(Y (ϑ)) =
A(ϑ)TA(ϑ). It is clear that for any real root ϑi of G, M(Y (ϑi)) = A(ϑi)TA(ϑi) is
also positive semidefinite, i.e., Y (ϑi) ∈ S. Moreover, if G has only real roots ϑi, then∑

ϑi,G(ϑi)=0Gj(ϑi) ∈ Q. It follows that the point defined by 1
deg G

∑deg G
i=1 Y (ϑi) is a

rational point in S.
The above discussion leads to the following result.
Theorem 5.4. Suppose f ∈ Z[x1, . . . , xn]. There exists a function RationalTo-

talRealSolve which either determines that f can not be written as sum of squares over
the reals or returns a sum of squares representation of f over Q[x1, . . . , xn] if and
only if the polynomial G outputted from the function SemiAlgebraicSolve has only real
solutions, else it returns an empty list. The coordinates of the rational coefficients
of polynomials fi in f =

∑
i f

2
i have bit length dominated by τDO(k) and the bit

complexity of RationalTotalRealSolve is τO(1)DO(k).
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