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We propose a fast algorithm for computing approximate GCD of univariate poly-

nomials with coefficients that are given only to a finite accuracy. The algorithm
is based on a stabilized version of the generalized Schur algorithm for Sylvester

matrix and its embedding. All computations can be done in O(n2) operations,

where n is the sum of the degrees of polynomials. The stability of the algorithm
is also discussed.

1. Introduction

Let f(x) and g(x) be given polynomials represented as f(x) = fnxn +
fn−1x

n−1 + · · ·+f1x+f0, g(x) = gmxm +gm−1x
m−1 + · · ·+g1x+g0, where

fi, gi ∈ R and ||f ||2 = ||g||2 = 1. Many papers have already discussed the
approximate GCD problem[11][17][18][19][20][21][22][25]. There are many
different definitions about approximate GCD. In the following text, we
make use of the definition in [17]. For a given tolerance ε, we are going
to find an approximate ε−GCD. In paper[12], we have already derived a
backward stable method for computing the approximate GCD. The method
is based on the classical QR factorization of the Sylvester matrix of f, g

and their reversals. Utilizing the special structure of Sylvester matrix,
we proposed a combined QR factoring algorithm using Givens rotations
and Householder transformations. But the cost of the algorithm is still
O(n3)(n ≥ m).

Recently, various results on matrix with displacement structure have
been reported in [2][3][4][5][6][7][14][16]. It is well-known that the Sylvester
matrix is a quasi-Toeplitz matrix with displacement rank at most 2. An
algorithm based on fast QR factorization was suggested in[9], but the sta-
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bility was not guaranteed. The paper [6] derives a modified fast QR factor-
ization for the matrices with shift structure(e.g., Toeplitz, quasi-Topelitz).
The algorithm is provably both fast and backward stable for solving lin-
ear systems of equations, the coefficients matrices of which are structured.
This motivates us to extend the stabilized version of the generalized Schur
algorithm for computing the approximate GCD efficiently. In the follow-
ing sections, we first introduce the displacement structure of the Sylvester
matrix and its embedding. We then show a fast algorithm for computing
the approximate GCD, giving an example that illustrates a good behavior
of the algorithm. The backward error and primitiveness test are discussed
briefly. All algorithms to be presented in section 4 are also based on fast
algorithms for structured matrix. We conclude with a short account on
open problems about stability and structured perturbation.

2. Displacement Structure of Sylvester Matrix and its
Embedding

The displacement of an n × n Hermitian matrix R was originally defined
by Kailath, Kung, and Morf [15] as

5R = R− ZnRZT
n . (2.1)

Here and hereafter, Zi denotes the i× i lower shift matrix with ones on the
first subdiagonal and zeros elsewhere; If 5R has low rank r(< n) indepen-
dent of n, then R is said to be structured with respect to the displacement
defined by (2.1) and r is refered to as the displacement rank of R.

The Sylvester matrix of f(x), g(x) is:

S(f, g) =




fn fn−1 · · · f1 f0

fn fn−1 · · · . . . . . .
. . . . . . . . . . . .

fn fn−1 · · · f1 f0

gm gm−1 · · · g1 g0

gm gm−1
. . . . . .

. . . . . . . . . . . .
gm gm−1 · · · g1 g0




. (2.2)

Theorem 2.3. The Sylvester matrix S is a quasi-Toeplitz matrix, i.e.,

S − Zn+mSZT
n+m has displacement rank at most 2.
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Proof. It is trivial to note that S − Zm+nSZT
m+n = [e1, en+1][u, v]T with

u = [fn, . . . , f0, 0, . . . , 0]T , v = [gm, . . . , g1, g0−fn,−fn−1, . . . ,−f1]T (2.4)

Here and hereafter, ei denotes the i− th column of the (n + m)× (n + m)
identity matrix.

In order to compute the QR factorization of the structured matrix S,
we need to apply the generalized Schur algorithm to the following properly
defined embedding matrix M5 of the Sylvester matrix.

Theorem 2.5. The 2(n + m)× 2(n + m) augmented matrix

M5 =
[

ST S ST

S 0

]
(2.6)

has displacement rank at most 5.

Proof. We can verify that

M5 − FM5F
T = GJGT , (2.7)

where F = Zn+m⊕Zn+m, J = (1⊕1⊕−1⊕−1⊕−1) is a signature matrix
and

G =
[

xT
0 yT

0 xT
1 yT

1 0

e1 em+1 em+1 0 e1

]
. (2.8)

Here,

x0 = Row(S, 1),

x1 = Row(S,m)ZT
n+m,

y0 = Row(S,m + 1),

y1 = Row(S, n + m)ZT
n+m,

It is clear that the generator G can be computed directly from Sylvester
matrix S instead of embedding matrix M5. As in[6], after first n + m steps
of the generalized Schur algorithm applied to (F, G), we have the partial
triangulation as:

M5 =
[

L

U

]
D−1

[
LT UT

]
+

[
0 0

0 −I

]
, (2.9)

where L is (n+m)×(n+m) lower-triangular, and U is an (m+n)×(m+n)
matrix, D is an 2(m + n)× 2(m + n) diagonal matrix. By equating terms
on both sides of the above equality we conclude that

ST S = RT R, S = QR, QQT = I, (2.10)
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where Q = UD−1/2, R = (LD−1/2)T . The cost of the algorithm is O(n2).
Notice that Q may not be orthogonal matrix even in well-conditioned
case[6].

3. M5 for computing the GCD of univariate approximate
polynomials

For exact (or infinite precision) computation, it is well-known that S(f, g)
is of rank m + n− r if and only if deg(GCD(f, g)) = r. Let R be an upper
triangular factor of S, then the last non-zero row of R gives the coefficients
of GCD(f, g). See [24] for a proof.

For polynomials with coefficients that are given only to a finite accuracy,
the above statement must be used carefully. A backward stable method
such as QR factoring using Givens rotations or Householder transformations
may not result in an R whose numeric rank equals to the degree of a
numeric(approximate) GCD. Although QR factoring with column pivoting
can possibly reveal the rank of a matrix, pivoting is forbidden in GCD
computation. However, the paper[12] has proved that if all common roots
of f, g lie inside the unit circle, the computed R using QR factoring without
pivoting gives the coefficients of an approximate GCD; Otherwise, the last
“non-zero” row of R will only be a factor of the approximate GCD which
includes all common roots inside or close to the unit circle. Other common
roots outside of the unit circle can be recovered from the QR factoring of
the Sylvester matrix of the reversals of f, g. See[12] for detail.

In[9], a fast QR factorization combined with efficient rank estimator
were applied to compute the approximate GCD of univariate polynomials .
The method has two unsolved issues. One is that stability of the algorithm
was unknown. The other is that the rank estimator has difficulty in deciding
the rank in presence of perturbations. Moreover, according to[12], even we
can estimate the rank correctly, the computed R may still have different
numeric rank as we estimated.

The second issue has been discussed in[12] extensively. So now let us
concentrate on the stability problem. Chandrasekaran and Sayed derived
a stable and fast solver for non-symmetric systems of linear equations with
shift structured coefficient matrices. Can it be extended to solve the ap-
proximate GCD problem? We have derived an explicit formula for the
generator of M5 in previous section, now let us see if the stability problem
of fast algorithm can also be solved for the approximate GCD computation.

There are two important properties follow from Householder QR or
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Givens QR [13] [23]:

||S −QR||2 = O(u||S||2), (3.1)

||Q−1S −R||2 = ||QT S −R||2 = O(u||S||2) (3.2)

where u is the machine precision. The first property shows that the GCD of
f, g can be written approximately as a linear combination of the polynomials
formed by the rows of R. The second condition tells that any polynomials
formed from the rows of R can be written approximately as a polynomial
combination of f, g. Now let us check these properties for the R computed
by fast QR factoring of M5.

Suppose 2(n+m) steps of the generalized Schur algorithm can be com-
pleted to give

M̂ =

[
R̂T 0
Q̂ ∆

] [
R̂ Q̂T

0 ∆T

]
. (3.3)

Since the generalized Schur algorithm is backward stable, The first prop-
erty can be easily derived. In the well-conditioned case, although Q̂ is
not orthogonal, we still have that ∆−1Q̂ is numerically orthogonal and
||∆−1||22 is bounded by 1/5. So the second property can be derived as
||(∆−1Q̂)T ∆−1S − R̂||2 = O(u||S||2). In the ill-conditioned case, we can
not guarantee that ∆ is well-conditioned and ∆−1Q̂ is numerically orthog-
onal. But if we restrict perturbation β which introduced in [6] to be 0,
the last m + n negative steps do not fail implies λmin(Q̂T Q̂) > u. So that
we have ||Q̂−1S − R̂||2 = O(

√
u||S||2). Though the second property is not

guaranteed, we may still obtain useful information from R̂ suppose
√

u is
of the size of tolerance.

In practically, we can always perturb the polynomials f, g within toler-
ance of coefficients to obtain a well-conditioned Q̂ even when the perturbed
S is still ill-conditioned. Since ||Q̂Q̂T − ∆∆T ||2 = (O(u)), the condition
number of Q̂ is very close to the condition number of ∆. ∆ is a triangular
matrix, its condition number can be estimated efficiently. In the case Q̂ or
∆ is well-conditioned, we can guarantee the second property.

Example 3.4.

f := 0.02077971692x13 + 0.09350872615 x12 − 0.2246806892 x11 − 0.4552056739 x10

−0.2659154401 x9 + 0.2584477292x8 + 0.5175448246 x7 + 0.1149378092 x6

−0.3357223016 x5 − 0.3237090279x4 + 0.2444863572 x3 + 0.1655883694 x2

−0.09935302169x + 0.000000006520463574
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g := −0.03804013712x11 − 0.1616705828 x10 + 0.3870583952 x9 + 0.2277653210 x8

−0.2833990216 x7 + 0.2268143176 x6 + 0.5102133391x5 − 0.1183999265 x4

−0.07227626008x3 + 0.5663225421x2 + 0.03233411610x− 0.1940046900

For Digits= 15, in Maple 8, gcd(f, g) = 1 (Note that if we choose Digits= 10
in Maple, we will get gcd(f, g) = x2 + 0.4623160489 x− 0.5507384540. We
also tried SNAP package in Maple 8, both the QuasiGCD and EpsilonGCD
fail for this example). Now let us apply generalized Schur algorithm to the
rank 5 generator G and J , the algorithm fails at step 22. It is interesting
to check that the 22-th row of computed R gives a polynomial very close
to following c1, c2. Since it is not clear how the algorithm works in such
case, we would rather to follow [6] to introduce a small perturbation to the
matrix M5 in order to avoiding the early breakdown of the algorithm. We
add 10−8 to f, g to get f̂ , ĝ, then both the positive and negative steps of
generalized Schur algorithms succeed. We have

||S(f̂ , ĝ)− Q̂R̂||2 = 0.400670 10−13.

The condition number of Q̂ and ∆ is 30.5154. The orthogonality of ∆−1Q̂

can be verified as

||∆−1Q̂(∆−1Q̂)T − I||2 = 0.483682 10−10.

Consequently,

||(∆−1Q̂)T ∆−1S − R̂||2 = 0.123234 10−11.

So the two properties can be achieved even in the ill-conditioned case.
The norms of the last two rows of Q̂ are less than 10−8. Forming the
polynomial from the last third row, we will obtain a monic factor of GCD
of f, g as

c1 := x2 + 0.46231633 x− 0.5507386676

Now, if we apply the classical QR factoring to S(f, g), the norms of the
last two rows are less than 10−10. The last third row gives

c2 := x2 + 0.4623160154 x− 0.5507384496

It is clear c1, c2 are very close to each other.



December 17, 2003 9:23 WSPC/Trim Size: 9in x 6in for Proceedings displacement

7

4. Backward Error Analysis

Although it has been proved that the modified generalized Schur algorithm
in[6] is backward stable and fast for solving system of linear equations, it
is still not fully proved that the fast QR factorization for the approximate
GCD computation is backward stable. So it is important to check the
backward error after we obtain a candidate for the approximate GCD. There
are two main steps for checking backward error: 1) Approximate polynomial
division 2) Test for primitiveness of cofactors.

Approximate Polynomial Division

Let f(x), c(x) be given polynomials have degree n > n1 respectively, sup-
pose ||f ||2 = ||c||2 = 1,

f(x) = fnxn + fn−1x
n−1 + · · ·+ f1x + f0,

c(x) = cn1x
n1 + cn1−1x

n1−1 + · · ·+ c1x + c0. (4.1)

We are trying to find the cofactor h which minimizes ||f − ch||2. There are
many methods to solve this least square problem. We present one method
based on the displacement structure of the following matrix. Define A as

A =




cn1

...
. . .

... cn1

c0

. . .
...
c0




∈ R(n+1)×(n−n1+1), (4.2)

we can write the minimization problem in matrix form as min ‖AVh−Vf‖2,
where Vf and Vh are the coefficient vectors of polynomials f and h re-
spectively. Clearly, A is a generalized Toeplitz matrix. The minimization
problem can be solved by normal equations[13].

Theorem 4.3. Let A be of full rank, then T = AT A is symmetric pos-

itive definite Toeplitz matrix. The difference T − Zn−n1+1TZT
n−n1+1 has

displacement rank at most 2:

T−Zn−n1+1TZT
n−n1+1 =




1 0
t1 t1
...

...

tn−n1 tn−n1




[
1 0
0 −1

]



1 0
t1 t1
...

...

tn−n1 tn−n1




T

= GJGT
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[1, t1, · · · , tn−n1 ]
T = AT Column(A, 1).

Apply the modified generalized Schur algorithm to the generator G, we
obtain the Cholesky factorization using O(n2) operations:

T = AT A = RT R. (4.5)

Solve RT y = AVf and RVh = y, we can find the cofactor h.
For example 1, the above algorithm finds the backward error ||f −

c1
f
c1
||2 = 0.5566147 10−7, ||g − c1

g
c1
||2 = 0.1643287 10−6.

Test for Primitiveness

After dividing out the common divisor c(x), it is necessary to check the
primitiveness of the polynomials f/c, g/c to guarantee that the computed
the approximate GCD c(x) is of the highest degree. As stated in [1], it is
equivalent to computing condition number of Sylvester matrix S(f/c, g/c)
by solving two systems of linear equations with S as coefficient matrix, i.e,

ST x = b, b ∈ Rm+n (4.6)

where b is the coefficient vector of the polynomial b(x) = 1 or b(x) =
xm+n−1 respectively. ST is also a quasi-Toeplitz matrix. We can directly
apply the fast and stable solver to the following embedding of Sylvester
matrix,

M4 =
[

SST S

ST 0

]
. (4.7)

Theorem 4.8. M4 has displacement rank at most 4, i.e.,

R = M4 − FM4F
T = GJGT , (4.9)

where F = Zn+m ⊕ Zn+m and J = (1 ⊕ 1 ⊕ −1 ⊕ −1) The generator can

be written as

G = [x1, x2, y1, y2], (4.10)

where

x1 = Column(R, 1), except x1[m + 1] = 0,

y1 = Column(R, 1), except y1[1] = 0, y1[m + 1] = 0,

x2 = Column(R, m + 1), except x2[m + 1] = 1/2,

y2 = Column(R, m + 1), except y2[m + 1] = −1/2,
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xk[i] and yk[i] mean the ith entry in the vectors xk and yk for k = 1, 2.
Another different rank 4 generator was given by Claude-Pierre Jeannerod
in [8]. It is still unknown which generator is better for computing.

Continuing for example 1, we will find the condition number of
S(f/c1, g/c1) is of order 109. This means that f/c1, g/c1 are not prime
to each other. The classical QR factoring with pivoting running in Matlab
tells us the numeric rank of S(f, g) is 21 not 22 as showed by the above
QR factoring. Actually, the missing common root of f, g is −5.787684. For
finding this common root, it is necessary to reapply the fast QR factoring
algorithm to the Sylvester matrix of the reversals of f/c1, g/c1. See[12] for
details. The approximate GCD c of f and g is:

x3 + 6.250020509 x2 + 2.125011483 x− 3.187512489

The backward errors are:

||f − c
f

c
||2 = 0.119003 10−6, ||g − c g

c ||2 = 0.285738 10−6.

5. Concluding Remarks

This paper proposes a new fast algorithm for computing an approximate
GCD of univariate polynomials. The algorithm has been implemented in
Maple 8. Some experimental results are included. The work reported here is
just a first attempt to use displacement structure on the approximate GCD
computations. There are many interesting and important aspects are not
explored yet. One of the open problems is whether the fast QR factorization
is backward stable for computing the approximate GCD. Another open
problem is to find the structured perturbation( of Sylvester type) to avoid
the early breakdown of the fast algorithm. We will pursue these problems
in a future paper.
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