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Abstract

We present an explicit algorithm to compute a closed basis of the local dual space
of I = (f1, . . . , ft) at a given isolated singular solution x̂ = (x̂1, . . . , x̂s) when the
Jacobian matrix J(x̂) has corank one. The algorithm is efficient both in time and
memory use. Moreover, it can be modified to compute an approximate basis if the
coefficients of f1, . . . , ft and x̂ are only known with limited accuracy.

1 Introduction

Motivation and problem statement. Consider an ideal I generated by
a polynomial system F = {f1, . . . , ft}, where fi ∈ C[x1, . . . , xs], i = 1, . . . , t.
For a given isolated singular solution x̂ = (x̂1, . . . , x̂s) of F , suppose Q is the
isolated primary component whose associate prime is P = (x1 − x̂1, . . . , xs −
x̂s). In (Wu and Zhi, 2008), we used symbolic-numeric method based on the
geometric jet theory of partial differential equations introduced in (Reid et al.,
2003; Zhi and Reid, 2004; Bonasia et al., 2004) to compute the index ρ, the
minimal nonnegative integer such that P ρ ⊆ Q, and the multiplicity µ =
dim(C[x]/Q), where Q = (I, P ρ). A basis for the local dual space of I at
x̂ is obtained from the null space of the truncated coefficient matrix of the
involutive system. The size of these coefficient matrices is bounded by t
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which will be very big when ρ or s is large. In general ρ ≤ µ, however,
when the corank of the Jacobian matrix is one, then ρ = µ, which is also called
the breadth one case in (Dayton and Zeng, 2005; Dayton et al., 2009), the size
of the matrices grows extremely fast with the multiplicity µ. As pointed out in
(Zeng, 2009), the matrix size becomes the main bottleneck that slows down the
overall computation. This is the main motivation for us to consider whether
we can compute the multiplicity structure of x̂ efficiently in this worst case.

In (Dayton and Zeng, 2005; Dayton et al., 2009), they presented an efficient
algorithm for computing a dual basis for the breadth one case by solving
a deflated system of size roughly (µt) × (µs). A general construction of a
Gauss basis of differential conditions at a multiple point was also given in
(Marinari et al., 1996, Section 4.3), the breath one case is just a special case.
The size of linear systems they constructed is bounded by (µt) × (µs), and
they assumed that I is a zero dimensional system. In (Stetter, 2004, Section
8.5), an algorithmic approach for determining a basis of the local dual space
incrementally was stated and some examples were given to show that only
a sizeable number of free parameters are needed when we compute the k-th
order differential condition.

Main contribution. In the breadth one case, following Stetter’s arguments
and smart strategies given in (Stetter, 2004, Section 8.5), we prove that the
number of free parameters used in computing each order of the differential
condition of I at x̂ can be reduced to s − 1. So that we can compute the
multiplicity structure of an isolated multiple zero x̂ very efficiently by solving
µ − 2 linear systems with size bounded by t × (s − 1). Moreover, during the
computation, we only need to store polynomials, the LU decomposition of the
last s − 1 columns of the Jacobian matrix and the computed differential op-
erators. Therefore, in the breadth one case, both storage space and execution
time for computing a closed basis of the local dual space are reduced signifi-
cantly. Furthermore, we modify the algorithm for computing an approximate
basis when singular solutions and polynomials are only known approximately.

Structure of the paper. Section 2 is devoted to recalling some notations
and well-known facts. In Section 3, we prove that for the breadth one case, a
closed basis of the local dual space of I at x̂ can be constructed incrementally
by checking whether a differential operator parameterized by s − 1 variables
is consistent with polynomials in I. In Section 4, we describe an algorithm
for computing a closed basis of the local dual space of I at x̂ and the multi-
plicity µ. If I and x̂ are only known with limited accuracy, then we modify
the symbolic algorithm by introducing one more parameter and using sin-
gular value decomposition or LU decomposition with pivoting to ensure the
numeric stability of the algorithm. Three examples are given to demonstrate
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that our algorithms are applicable to positive dimensional systems, analytic
systems and polynomial systems with irrational or approximate coefficients.
The complexity analysis and experiments are done in Section 5. We mention
some ongoing research in Section 6.

2 Preliminaries

Suppose we are given an isolated multiple root x̂ of the polynomial system
F = {f1, . . . , ft} with multiplicity µ and index ρ.

Let D(α) = D(α1, . . . , αs) : C[x] → C[x] denote the differential operator
defined by:

D(α1, . . . , αs) :=
1

α1! · · ·αs!
∂xα1

1 · · ·∂xαs

s ,

for non-negative integer array α = [α1, . . . , αs]. We write D = {D(α), |α| ≥ 0}
and denote by SpanC(D) the C-vector space generated by D and introduce a
morphism on D that acts as “integral”:

Φj(D(α)) :=











D(α1, . . . , αj − 1, . . . , αs), if αj > 0,

0, otherwise.

As a counterpart of the anti-differentiation operator Φj , we define the differ-
entiation operator Ψj as

Ψj(D(α)) := D(α1, . . . , αj + 1, . . . , αs).

Definition 1 Given a zero x̂ = (x̂1, . . . , x̂s) of an ideal I = (f1, . . . , ft), we
define the local dual space of I at x̂ as

△
x̂
(I) := {L ∈ SpanC(D)|L(f)|

x=x̂
= 0, ∀f ∈ I}. (1)

The vector space △
x̂
(I) and conditions equivalent to L(f)|

x=x̂
= 0, ∀L ∈

△
x̂
(I) are also called Max Noether space and Max Noether conditions in

Möller and Tenberg (2001) respectively.

For a non-negative integer k, △(k)
x̂

(I) consists of differential operators in △
x̂
(I)

with the differential order bounded by k. We have that dimC(△
x̂
(I)) = µ,

where µ is the multiplicity of the zero x̂.

Definition 2 A subspace △
x̂

of SpanC(D) is said to be closed, if its dimension
is finite, and if

L ∈ △
x̂

=⇒ Φj(L) ∈ △
x̂
, j = 1, . . . , s. (2)
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Suppose Span(L0, L1, . . . , Lµ−1) is closed and L0, . . . , Lµ−1 are linearly inde-
pendent differential operators satisfy that Li(fj)|x=x̂

= 0, j = 1, . . . , t, i =
0, . . . , µ − 1, then due to the closedness, Li(q · fj)|x=x̂

= 0, ∀q ∈ C[x1, . . . , xs].
Hence, △

x̂
(I) = Span(L0, L1, . . . , Lµ−1).

Remark 2.1 Suppose △
x̂
(I) = Span(L0, L1, . . . , Lµ−1), then {L0,x̂, . . . , Lµ−1,x̂}

is a dual basis of the local dual space of I at x̂, where Li,x̂(f) := Li(f)|
x=x̂

.
Hence, for simplicity, in the following context, we only show how to compute
a closed basis of the local dual space of I at x̂.

Lemma 2.2 Let J(x̂) be the Jacobian matrix of a polynomial system F =
{f1, . . . , ft} evaluated at x̂. Suppose the corank of J(x̂) is one, i.e., the di-

mension of its null space is one, then dim(△(k)
x̂

(I)) = dim(△(k−1)
x̂

(I)) + 1 for

1 ≤ k ≤ µ − 1 and dim(△(k)
x̂

(I)) = dim(△(µ−1)
x̂

(I)), for k ≥ µ. Hence µ = ρ.

Proof. Lemma 2.2 is an immediate consequence of (Stanley, 1973, Theorem
2.2) and (Dayton and Zeng, 2005, Lemma 1). �

3 The Local Dual Space of Breadth One

In this section, we are mainly interested in computing a closed basis of the
local dual space △

x̂
(I) when the corank of the Jacobian matrix J(x̂) is one. In

(Stetter, 2004, Section 8.5), an algorithmic approach for determining a basis
of the local dual space incrementally was stated and some examples were given
to show that only a sizeable number of free parameters are needed when we
compute the k-th order differential condition. It is very interesting to see that
in the breadth one case, the number of free parameters used in computing the
k-th order differential condition following Stetter’s strategies can be reduced
to s − 1. We state below our main theorem.

Theorem 3.1 Suppose we are given an isolated multiple root x̂ of the polyno-
mial system F = {f1, . . . , ft} with multiplicity µ and the corank of the Jacobian

matrix J(x̂) is one, and L1 = D(1, 0, . . . , 0) ∈ △(1)
x̂

(I).We can construct the
k-th order differential condition incrementally for k from 2 to µ − 1 by the
following formula:

Lk = Pk + ak,2D(0, 1, . . . , 0) + · · ·+ ak,sD(0, . . . , 1), (3)

where Pk has no free parameters and is obtained from the computed basis
{L1, . . . , Lk−1} by the following formula:

Pk = Ψ1(Q1) + Ψ2((Q2)i1=0) + · · · + Ψs((Qs)i1=i2=···=is−1=0), (4)
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where

Q1 = Lk−1, Qj = a2,jLk−2 + · · · + ak−1,jL1, 2 ≤ j ≤ s. (5)

Here i1 = · · · = ij−1 = 0 means that we only pick up terms which do not con-
tain derivatives in ∂x1, . . . , ∂xj−1, and ai,j are known parameters appearing in
Li for 2 ≤ i ≤ k − 1 and 2 ≤ j ≤ s.

The parameters ak,j, j = 2, . . . , s in (3) are determined by checking whether

[Pk(f1)|x=x̂
, . . . , Pk(ft)|x=x̂

]T

can be written as a linear combination of the last s − 1 linearly independent
columns of the Jacobian matrix J(x̂).

Remark 3.2 It has been pointed out in (Stetter, 2004, Section 8.5) that if

L1 ∈ △(1)
x̂

(I) is not D(1, 0, . . . , 0) but a linear combination of ∂x1, . . . , ∂xs,
then we can perform linear transformation of the variables which takes the
vector of the linear combination into a unit vector (1, . . . , 0)T and reduces
the situation to the one where L1 = D(1, 0, . . . , 0). However, the change of
variables usually will destroy the sparsity structure of input polynomials and
might be avoided by using directional derivative (Apostol, 1974; Stetter, 2004).

Let us suppose now that the given isolated multiple root x̂ of an ideal I =
(f1, . . . , ft) has multiplicity µ and the corank of its Jacobian matrix J(x̂) is

one, and L0 = D(0, . . . , 0), L1 = D(1, 0, . . . , 0) ∈ △(1)
x̂

(I). In the following,
we show how to compute incrementally from L0, L1, a closed set of linearly
independent differential operators L2, . . . , Lµ−1 of derivative order 2, . . . , µ − 1
respectively, and △

x̂
(I) = Span(L0, L1, L2, . . . , Lµ−1).

Lemma 3.3 Suppose {L0, . . . , Lµ−1} is a closed set of µ linearly independent
differential operators which form a basis of the local dual space △

x̂
(I), where

the highest order derivative of Lk is k, then D(k, 0, . . . , 0) is the only term in
Lk consisting of the k-th derivative.

Proof. The proof is done by induction on k. It is clear that Lemma 3.3 is true
for k = 0, 1. Our inductive assumption is that, Lk−1 has only one term D(k−
1, 0, . . . , 0) as the (k − 1)-th derivative, therefore, the k-th order differential
operator which retains closedness can only be Ψj(D(k − 1, 0, . . . , 0)) for 1 ≤
j ≤ s. However, when j 6= 1, Φ1

k−1(Ψj(D(k − 1, 0, . . . , 0))) = Ψj(D(0, . . . , 0))
which does not belong to the subspace generated by {L0, L1} and violate the
closedness condition. Hence, j = 1 and the only k-th order derivative in Lk is
D(k, 0, . . . , 0). �

According to Lemma 3.3, in the following, we suppose that

Lk = D(k, 0, . . . , 0) + {derivatives of order bounded by k − 1}.

Li and Zhi 5 Submitted



Moreover, we assume that there are no terms D(i, 0, . . . , 0) for i < k appear
in Lk, otherwise, we can reduce it by Li.

Lemma 3.4 Under the assumptions above, we have

Φ1(Lk) =Lk−1,

Φj(Lk) = ck−2,jLk−2 + · · · + c0,jL0, 2 ≤ j ≤ s. (6)

Proof. Suppose

Φ1(Lk) = Lk−1 + ck−2,1Lk−2 + · · · + c0,1L0.

If ci,1 6= 0, 0 ≤ i ≤ k − 2 then Φ1(Lk) must have the term D(i, 0, . . . , 0).
Hence Lk has the term D(i + 1, 0, . . . , 0) for i ≤ k − 2 which contradicts the
assumptions. Our claim follows for the first equation.

The second equation is clear since the only k-th order derivative in Lk is
D(k, 0, . . . , 0). We will prove later that ci,j for 1 ≤ i ≤ k − 2 are determined
by {L0, . . . , Lk−1}. �

Proof of Theorem 3.1. Since

Pk = Ψ1(Φ1(Pk)) + {derivatives in Pk do not contain ∂i1
x1

for i1 > 0}
= Ψ1(Φ1(Pk)) + Ψ2(Φ2(Pk))i1=0

+{derivatives in Pk do not contain ∂i1
x1

∂i2
x2

, for i1, i2 > 0}
= Ψ1(Φ1(Pk)) + Ψ2(Φ2(Pk))i1=0 + · · ·+ Ψs(Φs(Pk))i1=i2=···=is−1=0,

we prove the theorem inductively by showing that

Φ1(Pk) = Lk−1, Φj(Pk) = a2,jLk−2 + · · ·+ ak−1,jL1, 2 ≤ j ≤ s. (7)

Therefore, formulas (4) and (5) are correct by setting Qj = Φj(Pk), 1 ≤ j ≤ s.

• For k = 2, it is clear that P2 = D(2, 0, . . . , 0) and (7) is correct.
• For k = 3, suppose L3 = P3 + a3,2D(0, 1, 0, . . . , 0) + · · · + a3,sD(0, . . . , 1),

where P3 consists of derivatives of order at least two. By formula (6),

Φ1(P3) = Φ1(L3) = L2, Φj(P3) = c1,jL1, 2 ≤ j ≤ s.

If c1,j 6= 0, then the term D(1, 0, . . . , 1, . . . , 0) with 1 at positions 1 and
j must appear in P3, moreover, due to the closedness, the term must be
obtained by applying Ψ1 to L2 = D(2, 0, . . . , 0)+a2,2D(0, 1, 0, . . . , 0)+ · · ·+
a2,sD(0, . . . , 1) since L2 does not include the term D(1, 0, . . . , 0). Therefore

c1,j = a2,j , for 2 ≤ j ≤ s,
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and (7) is correct for k = 3.
• For k > 3, we assume the formula (7) is correct up to k − 1. According to

(6), it is clear that

Φ1(Pk) = Φ1(Lk) = Lk−1, Φj(Pk) = ck−2,jLk−2 + · · ·+ c1,jL1, 2 ≤ j ≤ s.

Similarly, if ci,j 6= 0, then Pk must have a term ci,jD(i, 0, . . . , 1, 0, . . . , 0)
which has 1 at the position j, for 2 ≤ j ≤ s. Moreover, to retain closedness,
this term should come from Ψ1(Lk−1) since there is no D(i, 0, . . . , 0) term in
Lk−1 for 1 ≤ i ≤ k−2. Hence the term ci,jD(i−1, 0, . . . , 1, 0, . . . , 0) appears
in Lk−1. If i = 1, then ci,j = ak−1,j = ak−i,j, otherwise, it must appear in
Ψ1(Lk−2) according to (4), which implies that ci,jD(i − 2, 0, . . . , 1, 0, . . . , 0)
should appear in Lk−2. In the same way, we can proceed further until Lk−i

and get
ci,j = ak−i,j, for 2 ≤ j ≤ s.

Therefore, the formula (7) is correct for Φj(Pk), 1 ≤ j ≤ s.
• The differential operator Lk defined by formulas (3, 4, 5) retains closedness

and Lk ∈ △(k)
x̂

(I) if and only if the vector [Pk(f1)|x=x̂
, . . . , Pk(ft)|x=x̂

]T

can be written as a linear combination of the last s − 1 linear independent
columns of the Jacobian matrix J(x̂). The values for the parameters ak,j, j =
2, . . . , s can be determined if the linear combination does exist. Otherwise,
we are finished and the multiplicity of the root x̂ is k.

�

4 Algorithms for Computing a Basis of the Local Dual Space

The routine MultiplicityStructureBreadthOneSymbolic below takes as input ex-
act polynomials F = {f1, . . . , ft} which generate an ideal I, an exact isolated
solution x̂ and the Jacobian matrix of F evaluated at x̂ has corank one, and
returns the multiplicity µ and a closed basis L = {L0, . . . , Lµ−1} of the local
dual space of I at x̂.

Algorithm 1 MultiplicityStructureBreadthOneSymbolic

Input: An isolated singular solution x̂ of a polynomial system F = {f1, . . . , ft},
and the Jacobian matrix of F evaluated at x̂ has corank one, L0 = D(0, 0, . . . , 0),

L1 = D(1, 0, . . . , 0) ∈ △(1)
x̂

(I).

Output: A closed basis L = {L0, . . . , Lµ−1} of the local dual space of I at x̂

and the multiplicity µ.

(1) Set k = 2 and P2 = D(2, 0, . . . , 0). Compute the LU decomposition of N
which consists of the last s − 1 columns of J(x̂). Suppose N = L · U .
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(2) Compute pk = [Pk(f1)|x=x̂
, . . . , Pk(ft)|x=x̂

]T . If the triangular system
L · bk = −pk is solvable then solve the triangular system U · ak = bk

to get ak = [ak,2, . . . , ak,s]
T , set Lk = Pk + ak,2D(0, 1, 0, . . . , 0) + · · · +

ak,sD(0, . . . , 0, 1), and go to Step (3). Otherwise, go to Step (4).
(3) Set k := k+1, Pk = Ψ1(Lk−1)+Ψ2((Q2)i1=0)+· · ·+Ψs((Qs)i1=i2=···=is−1=0),

where Qj = a2,jLk−2 + · · · + ak−1,jL1, for 2 ≤ j ≤ s, and go back to Step
(2).

(4) The algorithm returns {L0, L1, . . . , Lµ−1} as a basis of the local dual space
of I at x̂ and the multiplicity µ = k.

Remark 4.1 If L1 is not D(1, 0, . . . , 0), we compute a null vector of F ′(x̂),
denoted by r1, and then form a regular matrix R = [r1, . . . , rs]. By mapping x

to Rz, we generate a new system H(z) = F (Rz), and apply MultiplicityStruc-

tureBreadthOneSymbolic to H and ẑ = R−1x̂ to get a closed basis. We map it
back to a closed basis of △

x̂
(I) by the following formula:

D(α) =
1

α1! · · ·αs!
∂zα1

1 · · ·∂zαs

s

=
1

α1! · · ·αs!
∂(rT

1 · x)
α1 · · ·∂(rT

s · x)
αs

=
1

α1! · · ·αs!

∑

|β|=|α|
cβ · β1! · · ·βs! · D(β).

In Maple implementation of MultiplicityStructureBreadthOneSymbolic, we as-
sociate polynomials with the differential operators and this allows Ψj to be im-
plemented as multiplication by xj. For example, we store L1 = D(1, 0, . . . , 0)
as the polynomial x1 and store Ψj(L1) = D(1, 0, . . . , 0, 1, 0, . . . , 0) as x1xj.

EXAMPLE 4.1 (Dayton, 2007) Consider a polynomial system

F = {2x2 − x − x3 + z3, x − y − x2 + xy + z2, xy2z − x2z − y2z + x3z.}

The system F has (0, 0, 0) as a 5-fold isolated solution, and there are also
two other simple isolated zeros but the ideal I defined by polynomials in F is
not zero dimensional since the entire line {z = 0, x = 1} is a solution of F
(Dayton, 2007).

Set x̂ = [0, 0, 0]T and L0 = D(0, 0, 0). The Jacobian matrix of F evaluated at
x̂ is

J(x̂) =















−1 0 0

1 −1 0

0 0 0















which is annihilated by r1 =















0

0

1















.
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We complete this column by r2 = [0, 1, 0]T , r3 = [1, 0, 0]T to form a regular
3 × 3-matrix R and generate a new polynomial system H(z) = F (Rz):

H = {2z2 − z − z3 + x3, z − y − z2 + yz + x2, xy2z − xz2 − xy2 + xz3}.

The Jacobian matrix of H evaluated at ẑ = R−1x̂ is

J(ẑ) =















0 0 −1

0 −1 1

0 0 0















.

Initialize L1 = D(1, 0, 0), P2 = D(2, 0, 0), then we get p2 = [0, 1, 0]T . Solving

N







a2,2

a2,3






=















0 −1

−1 1

0 0





















a2,2

a2,3






= −















0

1

0















gives a2,2 = 1, a2,3 = 0. Hence

L2 = D(2, 0, 0) + D(0, 1, 0).

From the data above, iteration k = 3 proceeds

Q1 = L2,

Q2 = a2,2(L1)i1=0 = 0,

Q3 = a2,3(L1)i1=0,i2=0 = 0,

so P3 = Ψ1(L2) = Ψ1(D(2, 0, 0) + D(0, 1, 0)) = D(3, 0, 0) + D(1, 1, 0), then
p3 = [1, 0, 0]T . Solving N [a3,2, a3,3]

T = −p3 gives a3,2 = 1, a3,3 = 1. Hence

L3 = D(3, 0, 0) + D(1, 1, 0) + D(0, 1, 0) + D(0, 0, 1).

Now we continue with k = 4 to obtain

L4 = D(4, 0, 0) + D(2, 1, 0) + D(1, 1, 0) + D(1, 0, 1) + D(0, 2, 0).

For k = 5, we have

Φ1(P5) = L4, Φ2(P5) = L3 + L2, Φ3(P5) = L2.

Hence
P5 = Ψ1(L4) + 2D(0, 2, 0) + D(0, 1, 1),

and p5 = [0, 0,−1]T . The fifth order differential operator consistent with
closedness is

L5 = P5 + a5,2D(0, 1, 0) + a5,3D(0, 0, 1).
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Since the last entry of p5 is nonzero, there are no parameters a5,2, a5,3 exist
such that L5 is consistent with H . So that we transform {L0, . . . , L4} back to
a basis of the local dual space of I at x̂:

L0 = D(0, 0, 0), L1 = D(0, 0, 1), L2 = D(0, 0, 2) + D(0, 1, 0),

L3 = D(0, 0, 3) + D(0, 1, 1) + D(0, 1, 0) + D(1, 0, 0),

L4 = D(0, 0, 4) + D(0, 1, 2) + D(0, 1, 1) + D(1, 0, 1) + D(0, 2, 0).

Notice that the matrix R only maps variables [x, y, z] to [z, y, x].

If I and x̂ are only known approximately, in order to compute an approximate
closed basis of △

x̂
(I), for ensuring the numerical stability, we need to add a

free parameter to Pk and solve the resulted linear system using the singular
value decomposition or LU decomposition with pivoting.

Algorithm 2 MultiplicityStructureBreadthOneNumeric

Input: An isolated singular solution x̂ of a polynomial system F = {f1, . . . , ft},
and the Jacobian matrix of F evaluated at x̂ has corank one with respect to a
given tolerance τ , an approximate basis L0 = D(0, 0, . . . , 0), L1 = D(1, 0, . . . , 0)

of △(1)
x̂

(I).

Output: A closed approximate basis L = {L0, . . . , Lµ−1} of the local dual
space of I at x̂ and the multiplicity µ.

(1) Set k = 2, P2 = D(2, 0, . . . , 0), and N consists of the last s − 1 columns
of J(x̂).

(2) Compute pk = [Pk(f1)|x=x̂
, . . . , Pk(ft)|x=x̂

]T . For the given tolerance τ , if
the linear system [pk, N ] · ak = 0 is solvable, we get ak = [ak,1, . . . , ak,s]

T ,
set Lk = ak,1Pk + ak,2D(0, 1, 0, . . . , 0) + · · ·+ ak,sD(0, . . . , 0, 1), and go to
Step (3). Otherwise, go to Step (4).

(3) Set k := k+1, Pk = Ψ1(Lk−1)+Ψ2((Q2)i1=0)+· · ·+Ψs((Qs)i1=i2=···=is−1=0),

where Qj =
bk−2,j

lk−2

Lk−2 + · · · + b1,j

l1
L1. For 1 ≤ i ≤ k − 2 and 2 ≤ j ≤ s,

bi,j is the coefficient of D(i, 0, . . . , 0, 1, 0, . . . , 0) in Ψ1(Lk−1), which has 1
at the position j, and li is the coefficient of D(i, 0, . . . , 0) in Li. Go back
to Step (2).

(4) The algorithm returns {L0, L1, . . . , Lµ−1} as an approximate basis of the
local dual space of I at x̂ and the multiplicity µ = k.

Remark 4.2 In order to show the correctness of the algorithm MultiplicityS-

tructureBreadthOneNumeric, we need to check whether Qj in Step (3) is defined
properly. Suppose D(i, 0, . . . , 0, 1, 0, . . . , 0) is a term in Ψ1(Lk−1) which has 1
at the position j for 1 ≤ i ≤ k − 2 and 2 ≤ j ≤ s, then D(i, 0, . . . , 0) must be
a term in Φj(Pk) with the same coefficient, which is bi,j. On the other hand,
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by the formula (6) and lemma 3.3, we have

Φj(Pk) = ck−2,jLk−2 + · · ·+ c1,jL1, 2 ≤ j ≤ s.

Hence, the coefficient of D(i, 0, . . . , 0) in Φj(Pk) is ci,j · li. Therefore, from

bi,j = ci,j · li,

we derive that ci,j =
bi,j

li
, for 1 ≤ i ≤ k − 2 and 2 ≤ j ≤ s.

In Step (2), suppose ak = [ak,1, . . . , ak,s]
T is a null vector of [pk, N ] with respect

to the give tolerance τ , then we have

|Lk(fi)|x=x̂
| ≤ τ, for 0 ≤ k ≤ µ − 1 and 1 ≤ i ≤ t.

Moreover, according to our construction, all these computed Lk, 0 ≤ k ≤
µ − 1 satisfy the closedness condition, hence, {L0, L1, . . . , Lµ−1} is a closed
approximate basis of the local dual space of I at x̂.

EXAMPLE 4.2 (Dayton and Zeng, 2005) Consider the polynomial system

F = {14 x + 33 y − 3
√

5
(

x2 + 4 xy + 4 y2 + 2
)

+
√

7 + x3 + 6 x2y

+12 xy2 + 8 y3, 41 x− 18 y −
√

5 + 8 x3 − 12 x2y + 6 xy2 − y3

+3
√

7
(

4 xy − 4 x2 − y2 − 2
)

}.

The system F has (2
√

7
5

+
√

5
5

,−
√

7
5

+ 2
√

5
5

) as a 5-fold isolated solution.

Unlike algorithms based on Gröbner basis, we can use MultiplicityStructure-

BreadthOneSymbolic to compute an exact dual basis of F at x̂, despite of
irrational numbers

√
5,
√

7 in F and x̂. In order to comparing with Multiplic-

ityStructureBreadthOneNumeric, we normalize the differential operators with
respect to the highest order derivative in x, and obtain:

L0 =D(0, 0), L1 = D(1, 0) +
1

3
D(0, 1),

L2 =D(2, 0) +
1

3
D(1, 1) +

1

9
D(0, 2),

L3 =D(3, 0) +
1

3
D(2, 1) +

1

9
D(1, 2) +

1

27
D(0, 3) +

25

54
D(1, 0) − 25

18
D(0, 1),

L4 =D(4, 0) +
1

3
D(3, 1) +

1

9
D(2, 2) +

1

27
D(1, 3) +

1

81
D(0, 4) +

25

27
D(2, 0)

−100

81
D(1, 1) − 25

27
D(0, 2).

In (Dayton and Zeng, 2005), the coefficients of F and x̂ are rounded to five
digits. Hence, choosing tolerance τ = 0.002, we apply MultiplicityStructure-

BreadthOneNumeric to the rounded system and the approximate singular root.
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After normalizing and cutting off coefficients with absolute values less than τ ,
we obtain an approximate basis:

L0 =D(0, 0), L1 = D(1, 0) + 0.33341 D(0, 1),

L2 =D(2, 0) + 0.33343 D(1, 1) + 0.11116 D(0, 2),

L3 =D(3, 0) + 0.33343 D(2, 1) + 0.11117 D(1, 2) + 0.037065 D(0, 3)

+0.46313 D(1, 0)− 1.3891 D(0, 1),

L4 =D(4, 0) + 0.33343 D(3, 1) + 0.11117 D(2, 2) + 0.037065 D(1, 3)

+0.012358 D(0, 4) + 0.92629 D(2, 0)− 1.2347 D(1, 1)− 0.92629 D(0, 2).

The values of Li(F )|
x=x̂

for 0 ≤ i ≤ 4 are

L0(F )|
x=x̂

=(−0.00066377,−0.00039331)T ,

L1(F )|
x=x̂

=(−0.00023342, 0.00023341)T ,

L2(F )|
x=x̂

=(−0.0000099698, 0.0000099694)T ,

L3(F )|
x=x̂

=(−0.00060593, 0.00060608)T ,

L4(F )|
x=x̂

=(0.00080432,−0.00080428)T .

An example of an analytic system. The method introduced in this paper
can also be applied to systems of analytic equations, since the construction
of the system of linear equations only relies on the existence of the partial
derivatives of the analytic system up to the order µ.

EXAMPLE 4.3 (Dayton et al., 2009, Example 6) Consider the analytic
system

F = {x2 sin(y), y − z2, z + sin(xn)}.
The system F has (0, 0, 0) as an 2(n + 1)-fold isolated solution.

The Jacobian matrix of F evaluated at x̂ = [0, 0, 0]T is:

J(x̂) =















0 0 0

0 1 0

0 0 1















.

The rank deficiency of J(x̂) is one and its null vector is [1, 0, 0]T . Hence,
L1 = D(1, 0, 0). For k ≥ 2, in order to compute Lk, we only need to check
whether the vector pk = [Pk(f1)|x=x̂

, Pk(f2)|x=x̂
, Pk(f3)|x=x̂

]T can be written
as linear combination of the last two columns of J(x̂), which is equivalent to
check whether the first entry of pk is zero. The dominant cost is the evalu-
ation of Pk(F ) at x̂. This can be done very efficiently since each polynomial
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in F only consists of one or two terms. Therefore, for this example, our algo-
rithm MultiplicityStructureBreadthOneSymbolic is significantly faster and more
powerful than the algorithm presented in (Dayton et al., 2009).

n 5 50 100 200 300 400 500

multiplicity 12 102 202 402 602 802 1002

time 0.056 0.608 2.077 9.596 35.415 105.060 232.490

Table 1. Algorithm Performance of Example 4.3

Remark 4.3 The reviewer pointed out that for this analytic system, the local
ring at (0, 0, 0) has basis {x2y, y−z2, z+xn} and the standard basis {y−z2, z+
xn, x2n+2} can be computed by Singular from the algebraic basis in negligible
amount of time. From the degree of the variable x, we know that the multiplicity
of (0, 0, 0) is 2n + 2.

5 Complexity and Experiments

The complexity of algorithms MultiplicityStructureBreadthOneSymbolic and Mul-

tiplicityStructureBreadthOneNumeric is dominated by solving µ − 2 linear sys-
tems with size bounded by t× s− 1 or t× s respectively, and the evaluations
of

pk = [Pk(f1)|x=x̂
, . . . , Pk(ft)|x=x̂

]T .

Although we only need to store polynomials and the computed differential
conditions during the computation, similar to other any algorithm designed
to calculate and store the dual basis in memory, our algorithm suffers too
when polynomials or the differential operators are not sparse. The following
example is kindly provided by the reviewer.

EXAMPLE 5.1 Consider a system F = {f1, . . . , fs} given by

fi =x3
i + x2

i − xi+1, if i < s,

fs =x2
s

with zero (0, 0, . . . , 0) of multiplicity 2s.

In the following table, we show the time needed for computing the differential
conditions for s from 2 to 6.

For s = 6, about 17MB of memory is used to store the differential operators
{L0, . . . , L63} and takes about 3 hours. For s ≥ 7, we are not able to obtain all
differential conditions after running the algorithm for 2 days. A new algorithm
has been proposed in (Li, 2011) to deal with this kind of problems efficiently.
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s 2 3 4 5 6

multiplicity 4 8 16 32 64

time 0.023 0.059 0.510 23.093 11061.269

Table 2. Algorithm Performance of Example 5.1

EXAMPLE 5.2 Consider a system F = {f1, . . . , fs} given by

fi =x2
i + xi − xi+1, if i < s,

fs =x3
s

with zero (0, 0, . . . , 0) of fixed multiplicity 3.

s 10 20 40 100 200

time 0.071 0.166 1.126 21.528 270.735

Table 3. Algorithm Performance of Example 5.2

For this example, the computational time only increases almost cubically with
respect to the number of variables since the polynomials have very few terms
and the multiplicity is fixed.

The Maple code and all test results, including examples from the PHCpack de-
mos, are available at http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/.

6 Conclusion

The multiplicity structure of a singular solution has been studied extensively
in (Dayton et al., 2009; Zeng, 2009; Pope and Szanto, 2009; Wu and Zhi, 2008;
Damiano et al., 2007; Dayton, 2007; Bates et al., 2006; Dayton and Zeng, 2005;
Stetter, 2004; Möller and Tenberg, 2001; Kobayashi et al., 1998; Marinari et al.,
1996; Mourrain, 1996; Möller and Stetter, 1995; Marinari et al., 1995). In this
paper, we present an algorithm MultiplicityStructureBreadthOneSymbolic based
on Stetter’s strategies (Stetter, 2004) for computing a closed basis of the local
dual space of I = (f1, . . . , ft) at x̂ efficiently in the breadth one case. The num-
ber of parameters used in computing each order of the differential condition is
s − 1, which does not increase along with the multiplicity. The algorithm has
also been extended to deal with approximately known systems and multiple
roots. We are going to investigate the minimum number of parameters needed
in computing a closed basis for △

x̂
(I) if the breadth is not one.

It is still a challenge problem to compute the multiple solutions of polynomial
systems accurately. Various methods have been proposed for refining an ap-
proximate singular solution to high accuracy (Wu and Zhi, 2008; Leykin et al.,
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2006a,b; Giusti et al., 2007; Lecerf, 2002; Corless et al., 1997; Ojika, 1987;
Ojika et al., 1983). The breadth one case root refinement has been studied
in (Dayton et al., 2009; Dayton and Zeng, 2005; Giusti et al., 2007). We have
started to investigate how to apply the strategies in our paper to reduce the
matrices appeared in the (Wu and Zhi, 2008; Dayton and Zeng, 2005) to ob-
tain a more efficient algorithm for refining an approximately known multiple
root for this special case.
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