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Abstract

We present a method based on symbolic-numeric reduction to geometric involutive
form to compute the primary component and a basis of Max Noether space of a
polynomial system at an isolated singular solution. The singular solution can be
known exactly or approximately. If the singular solution is known with limited
accuracy, then we propose a generalized quadratic Newton iteration to refine it to
high accuracy.

1 Introduction

Consider an ideal I generated by a polynomial system F = {f1, . . . , ft},
where fi ∈ C[x1, . . . , xs], i = 1, . . . , t. For a given isolated singular solution
x̂ = (x̂1, . . . , x̂s) of F , suppose Q is the isolated primary component whose
associate prime is P = (x1 − x̂1, . . . , xs − x̂s), in [Wu and Zhi 2008], we use
symbolic-numeric method based on the geometric jet theory of partial differen-
tial equations introduced in [Reid et al. 2003; Zhi and Reid 2004] to compute
the index ρ and multiplicity µ, such that Q = (I, P ρ) and µ = dim(C[x]/Q).
We also derive a simple involutive criterion based on the special structure of
the ideal (I, P k) and apply it to the truncated coefficient matrices formulated
from the Taylor series expansions of polynomials in prolonged systems of F
at x̂ to order k. The number of columns of these coefficient matrices is fixed
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by
(

k+s−1
s

)

. A basis for the Max Noether space of I at x̂ is obtained from the
null space of the truncated coefficient matrix of the involutive system.

If a singular solution is only known with limited accuracy, by choosing a tol-
erance, we can compute the index, multiplicity and a basis of Max Noether
space for this approximate singular solution. It is well known that numeric
computations deeply depend on the choice of tolerance. In order to obtain ac-
curate information about the multiplicity structure, we present in [Wu and Zhi
2008] a method to improve the accuracy of the singular root. Suppose x̂ =
x̂exact + x̂error, where x̂exact denotes the exact singular solution of F and x̂error

denotes the error in the solution. In [Wu and Zhi 2008], we observe that a
good approximation ŷ of −x̂error is computed from the null vectors of the
truncated coefficient matrix of the involutive system. The singular solution
x̂+ ŷ has higher accuracy compared with x̂. For a set of benchmark problems,
we show that singular solutions accurately to the full machine precision are
obtained in a few iterations after applying the procedure iteratively to x̂ + ŷ
with smaller tolerances. However, we did not provide the convergence and
complexity analysis of our refining algorithm.

In this paper, we prove the quadratic convergence of the refining algorithm
under the condition that the index and multiplicity of the singular solution
are computed correctly. Newton’s original thought about calculating corrector
for an approximate solution is to compute the Taylor series expansion of the
system at the approximate zero to the first order and solve the linear equations
to obtain the Newton iterator. If the solution is simple, then the Newton
iteration is well-defined and converges quadratically. We generalize the Newton
iteration for handling approximate multiple roots. We compute the truncated
coefficient matrix of the involutive system by shifting the coefficient matrix
formulated from the truncated multivariate Taylor series expansions of the
polynomials f1, . . . , ft at x̂ to order ρ, then generate multiplication matrices
from its null vectors. Let ŷ be the averages of the traces of the multiplication
matrices. We prove that if the given singular solution satisfies ‖x̂ − x̂exact‖ =
O(ε), then the refined solution obtained by adding ŷ to x̂ will satisfy ‖x̂+ ŷ−
x̂exact‖ = O(ε2). That’s the reason we call our algorithm generalized quadratic
Newton iteration. If we underestimate or overestimate the index due to poorly
chosen tolerance, then we can rediscover the correct index after the accuracy
of the approximate singular solution improved after one or two iterations.

Since the size of the coefficient matrices we used for computing the primary
component, and refining a singular solution is bounded by t

(

ρ+s

s

)

×
(

ρ+s

s

)

, the

complexities of Algorithm 1 and Algorithm 3 are O
(

t
(

ρ+s

s

)3
)

. The complexity

of Algorithm 2 is O
(

t
(

ρ+s−1
s

)3
)

because the size of the matrix for computing

a basis of the Max Noether space of I at x̂ is bounded by t
(

ρ+s−1
s

)

×
(

ρ+s−1
s

)

.
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The algorithms have been implemented in Maple 11 and Matlab. We give an
example to illustrate our method along the paper. Test results are presented
in Maple 11 with Digits := 14 for a set of benchmark problems. We show that
for most of examples, we can refine a singular solution with only two correct
digits to high precision by only two or three generalized Newton iterations.

2 Isolated Primary Component

The following paragraphs give a brief outline of the notations and tools we use
throughout this paper. We refer to [Cox et al. 1992; van der Waerden B. L.
1970] for detailed introduction.

Definition 1 If P and Q are ideals and have the property that (1) fg ∈ Q
and f /∈ Q implies g ∈ P , (2) Q ⊆ P , (3) g ∈ P implies gρ ∈ Q for some
positive integer ρ, then Q is primary and P the prime ideal belonging to Q.

If Q is a primary ideal then P =
√

Q is the prime ideal belonging to Q and Q
is called P -primary.

Definition 2 Every polynomial ideal has an irredundant primary decompo-
sition, i.e. I = ∩r

i=1Qi, where Qi are primary, Qi  ∩j 6=iQj. We call Qi a
primary component (ideal) of I. Qi is said to be isolated if no prime ideal
belonging to Qj, j 6= i, is divisible by a prime ideal belonging to Qi.

Definition 3 ρ is called the index of a primary ideal Q if ρ is the minimal
nonnegative integer such that

√
Q

ρ ⊆ Q.

Theorem 4 [van der Waerden B. L. 1970] Suppose the polynomial ideal I
has an isolated primary component Q whose associated prime P is maximal,
and ρ is the index of Q.
If σ < ρ, then

dim(C[x]/(I, P σ−1)) < dim(C[x]/(I, P σ)). (1)

If σ ≥ ρ, then

Q = (I, P ρ) = (I, P σ). (2)

Corollary 5 [Wu and Zhi 2008] If a polynomial ideal I has an isolated pri-
mary component Q whose associated prime P is maximal, then the index ρ of
Q is less than or equal to the multiplicity µ of Q.
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3 Involutiveness of Polynomial Systems

Consider a polynomial system F = {f1, . . . , ft}, where fi ∈ C[x1, . . . , xs] is of
degree d, i = 1, . . . , t and s ≤ t. We study the variety

V (F ) =
{

[xd, . . . , 1] ∈ CNd | M
(0)
d · [xd, . . . , 1]T = 0

}

,

where Nd =
(

d+s

s

)

, xj denotes all monomials of total degree equal to j. All

distinct monomials are regarded as independent variables and V (F ) is simply

the null space of M
(0)
d .

A single prolongation of the system F is to multiply the polynomials in F by
variables, so that the resulting augmented system has degree d+1. Successive
prolongations of the system yield F = F (0), F (1), F (2), . . ., and a sequence of
corresponding linear constant matrix systems:

M
(0)
d · vd = 0, M

(1)
d · vd+1 = 0, M

(2)
d · vd+2 = 0, · · ·

where vi = [xi,xi−1, . . . ,x, 1]
T
.

A single geometric projection is defined as

π(F ) =
{

[xd−1, . . . , 1] ∈ CNd−1 | ∃xd, M
(0)
d · [xd, . . . , 1]T = 0

}

.

The projection operator π maps a point in CNd to one in CNd−1 by eliminat-
ing the monomials of the highest degree d. A numeric projection operator π̂

based on singular value decomposition (SVD) was proposed in [Bonasia et al.
2004; Reid et al. 2003; Wittkopf and Reid 2001]. We first find the singular

value decomposition M
(0)
d = U · Σ · V. The approximate rank r of M

(0)
d is the

number of singular values bigger than a fixed tolerance. The tolerance is cho-
sen according to the number of correct digits for the coefficients of the input
polynomials. The dimension of F is defined as the dimension of the null space
of M

(0)
d , so we have dim F = dim Nullspace(M

(0)
d ) = Nd − r. Deleting the first

r rows of V yields an approximate basis for the null space of M
(0)
d . To esti-

mate dim π̂(F ), the components of the approximate basis for the null space of

M
(0)
d corresponding to the monomials of the highest degree d are deleted. This

projected basis yields an approximate spanning set for π̂(F ). Application of
the SVD to each of these approximate spanning sets yields the approximate
dimensions of π̂(F ), π̂

2(F ), π̂
3(F ), ..., which are required for the approximate

involutive form test.

The symbol matrix of polynomials of degree d is simply the submatrix of
the coefficient matrix M

(0)
d corresponding to the monomials of the highest

degree d. One of the most important requirements of involutive systems is

Wu and Zhi 4 Submitted



that their symbols are involutive. The following criterion of involution for
zero dimensional polynomial systems is given in [Zhi and Reid 2004].

Theorem 6 [Zhi and Reid 2004] A zero dimensional polynomial system F is
involutive at prolongation order m and projected order ℓ if and only if π

ℓ(F (m))
satisfies the projected elimination test:

dim π
ℓ
(

F (m)
)

= dim π
ℓ+1

(

F (m+1)
)

, (3)

and the symbol involutive test:

dim π
ℓ
(

F (m)
)

= dim π
ℓ+1

(

F (m)
)

. (4)

Suppose x̂ = (x̂1, . . . , x̂s) is an isolated singular solution of F = {f1, . . . , ft}.
Let P = (x1 − x̂1, . . . , xs − x̂s) and I be an ideal having P -primary isolated
component. Let

Tk(F ) = {Tk(f1), . . . , Tk(ft)},

where Tk(fi) =
∑

|α|<k fi,α(x− x̂)α denotes truncated Taylor series expansions
of the polynomial fi at x̂ to order k.

The singular solution can be moved to the origin by changing of variables. For
simplicity, we suppose x̂ is the origin and still use M

(0)
k and M

(j)
k to denote the

coefficient matrices of the truncated polynomial system Tk(F ) and truncated

prolonged polynomial systems Tk(F
(j)). Let d

(j)
k = dim Nullspace(M

(j)
k ) for

j ≥ 0. The coefficient matrices M
(0)
k and M

(j)
k are much smaller than the

coefficient matrices of F ∪ P k and their prolongations.

Theorem 7 [Wu and Zhi 2008] The polynomial system Fk = Tk(F )∪P k is
involutive at prolongation order m if and only if

dim Nullspace(M
(m)
k ) = dim Nullspace(M

(m+1)
k ). (5)

Proof: The lower submatrices of the symbol matrices of Fk and prolonged
system F

(j)
k are identity matrices corresponding to monomials in P k and P k+j.

Therefore the symbol matrices are of full column rank, i.e., the symbols of F
(j)
k

are involutive according to (4). Furthermore, the dimensions of null spaces of

coefficient matrices of the systems Fk and F
(j)
k can be computed from the

coefficient matrices M
(0)
k and M

(j)
k generated by the truncated systems Tk(F )

and Tk(F
(j)). 2
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4 Algorithm for Computing Isolated Primary Component

For a given isolated solution x̂ of the ideal I = (f1, . . . , ft), without loss of
generality, suppose x̂ is the origin. Let Q be the isolated primary component
whose associate prime is P = (x1 − x̂1, . . . , xs − x̂s), we compute the index
ρ, such that Q = (I, P ρ) and the multiplication matrices of the quotient ring
C[x]/Q.

Algorithm 1 IsolatedPrimaryComponent

Input: An isolated multiple solution x̂ of an ideal I = (f1, . . . , ft) and a
tolerance τ .

Output: Multiplicity µ, index ρ, and multiplication matrices Mx1
, . . . , Mxs

of
the quotient ring C[x]/Q where Q = (I, P ρ), P = (x1 − x̂1, . . . , xs − x̂s).

• Form the coefficient matrix M
(0)
k . The prolonged matrix M

(j)
k is computed

by shifting M
(0)
k accordingly.

• Compute d
(j)
k = dim Nullspace(M

(j)
k ) for the given tolerance τ . The prolon-

gation is stopped until d
(m)
k = d

(m+1)
k = dk.

• If dk = dk−1, then set ρ = k − 1 and µ = dρ which are the index and
multiplicity of the singular solution x̂.

• Compute the multiplication matrices Mx1
, . . . , Mxs

of C[x]/Q from the null

vectors of the matrix M
(m)
ρ+1, where Q = (I, P ρ).

Remark 8 If the solution is not at the origin, we can compute the matrix
M

(0)
k by changing of variables yi = xi − x̂i for i = 1, . . . , s, and compute

the coefficients of polynomials f1(y1 + x̂1, . . . , ys + x̂s), . . . , ft(y1 + x̂1, . . . , ys +
x̂s) with respect to the variables y1, . . . , ys. However, since we only need the
coefficients of yα1

1 · · · yαs
s with total degree less than k to formulate the matrices

M
(0)
k . Hence it is more efficient and numerically stable to obtain the coefficient

matrix M
(0)
k by computing the truncated multivariate Taylor series expansions

of f1, . . . , ft at x̂ to order k. The prolonged matrix M
(j)
k is computed by shifting

M
(0)
k accordingly.

Remark 9 Since all polynomials are truncated by degree k, the coefficient
matrix M

(j)
k has only

(

k+s−1
s

)

columns. Furthermore, the number of prolonga-

tions m has an upper bound: m ≤ max{1, k−1−min(ldeg(f1), . . . , ldeg(ft))},
where ldeg(f) denotes the lowest degree of f . The dimensions of the matrices

appeared in the Algorithm 1 are bounded by t
(

ρ+s

s

)

×
(

ρ+s

s

)

.

Symbolic methods based on the uniqueness of the reduced Gröbner basis are
given in [Gianni et al. 1988; Lakshman 1994] to determine the index of Q.
However, when the singular solution is only known with finite precision, their
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methods are subject to numerical stability problem.

Example 4.1 [Ojika 1987] Consider the polynomials

{f1 = x2
1 + x2 − 3, f2 = x1 + 0.125x2

2 − 1.5}.

The system has (1, 2) as a 3-fold solution.

By changing of variables, we get a new system

{g1 = x2
1 + 2x1 + x2, g2 = x1 + 0.125x2

2 + 0.5x2},

which has a 3-fold solution x̂ = (0, 0). Let I = (g1, g2) and P = (x1, x2).

• k = 2. We have:

[T2(g1), T2(g2)]
T = M

(0)
2 · [x1, x2, 1]T ,

where

M
(0)
2 =







2 1 0

1 0.5 0







and d
(0)
2 = 2. The prolonged matrix M

(1)
2 is obtained by adding zero elements

to M
(0)
2 . Hence d

(1)
2 = 2 and

d2 = dim(C[x]/(I, P 2)) = 2.

• k = 3. We have:

[T3(g1), T3(g2)]
T = M

(0)
3 ·

[

x2
1, x1x2, x

2
2, x1, x2, 1

]T
,

where

M
(0)
3 =







1 0 0 2 1 0

0 0 0.125 1 0.5 0







and d
(0)
3 = 4. After the first prolongation, we have:

[T3(x1g1), . . . , T3(x2g2), T3(g1), T3(g2)]
T = M

(1)
3 ·

[

x2
1, x1x2, x

2
2, x1, x2, 1

]T
,

where

M
(1)
3 =



































2 1 0 0 0 0

1 0.5 0 0 0 0

0 2 1 0 0 0

0 1 0.5 0 0 0

1 0 0 2 1 0

0 0 0.125 1 0.5 0



































.
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We have d
(1)
3 = 3. The prolonged matrix M

(2)
3 is obtained by adding zeros

to M
(1)
3 , hence d

(2)
3 = 3, and

d3 = dim(C[x]/(I, P 3)) = 3.

• k = 4. We compute d
(0)
4 = 4, and d

(1)
4 = d

(2)
4 = 3. Hence,

d4 = dim(C[x]/(I, P 4)) = 3.

Since d3 = d4 = 3, the multiplicity of x̂ = (0, 0) is µ = 3 and the index of
the primary component is ρ = 3. Last but not least, multiplication matrices
computed from null vectors of M

(1)
4 with respect to the normal set {x1, x2, 1}

are:

Mx1
=















−2 −1 0

4 2 0

1 0 0















, Mx2
=















4 2 0

−8 −4 0

0 1 0















The primary component of I at (0, 0) is

(x2
1 + 2x1 + x2, x2

2 + 8x1 + 4x2, x1x2 − 4x1 − 2x2).

Obviously, we can get the primary component of (f1, f2) at (1, 2) by changing
the variables back:

(x2
1 + x2 − 3, x2

2 + 8x1 − 12, x1x2 − 6x1 − 3x2 + 10).

5 Algorithm for Computing a Basis of Max Noether Space

Let D(α) = D(α1, . . . , αs) : C[x] → C[x] denote the differential operator
defined by:

D(α1, . . . , αs) =
1

α1! · · ·αs!
∂xα1

1 · · ·∂xαs

s ,

for non-negative integer array α = [α1, . . . , αs]. We write D = {D(α), |α| ≥ 0}
and denote by SpanC(D) the C-vector space generated by D and introduce a
morphism on D that acts as “integral”:

σxj
(D(α)) =











D(α1, . . . , αj − 1, . . . , αs), if αj > 0,

0, otherwise.

Definition 10 A subspace L of SpanC(D) is said to be closed if

σxj
(L) ⊆ L, j = 1, . . . , s.
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Definition 11 [Lasker 1905; Möller and Tenberg 2001] Given a zero x̂ =
(x̂1, . . . , x̂s) of an ideal I, we define the Max Noether space of I at x̂ as

△x̂ := {L ∈ SpanC(D)|L(f)|x=x̂ = 0, ∀f ∈ I}. (6)

Theorem 12 [Damiano et al. 2007] Let M be the maximal ideal (x1, . . . , xs)
of C[x]. There is a bijective correspondence between M-primary ideals of C[x]
and closed subspaces of SpanC(D):

{M-primary ideals in C[x]}
↑↓

{closed subspaces of SpanC(D)}.

Moreover, for a zero dimensional M-primary ideal of C[x] whose multiplicity
is µ, we have that dimC(△x̂) = µ.

Dayton and Zeng [Dayton and Zeng 2005] compute a set of basis from the
dual space. We obtain a basis from studying the primal space directly.

Theorem 13 [Wu and Zhi 2008] Let Q = (I, P ρ) be the isolated primary
component of an ideal I = (f1, . . . , ft) at the multiple solution x̂ and µ be
the multiplicity of x̂. Suppose the system Fρ = Tρ(F ) ∪ P ρ is involutive at
prolongation order m, the null space of the matrix M (m)

ρ is generated by vectors
v1,v2, . . . ,vµ. Let

L = [D(ρ − 1, 0, . . . , 0), D(ρ− 2, 1, 0, . . . , 0), . . . , D(0, . . . , 0)]

denote the vector consists of all differential operators of order less than ρ.
Then a basis for the Max Noether space △x̂ can be computed as

Lj = L · vj , for 1 ≤ j ≤ µ.

Algorithm 2 MaxNoetherSpace

Input: An isolated multiple solution x̂ = (x̂1, . . . , x̂s) of an ideal I = (f1, . . . , ft)
and the index ρ of the primary component Q = (I, P ρ), a tolerance τ .

Output: A basis L = {L1, . . . , Lµ} of Max Noether space of I at x̂, where µ
is the multiplicity.

• Compute d(j)
ρ = dim Nullspace(M (j)

ρ ) for the given τ . The prolongation is

stopped until d(m)
ρ = d(m+1)

ρ and µ = d(m)
ρ .

• Compute the null vectors of M (m)
ρ denoted by v1, . . . ,vµ. The basis is com-

puted as Lj = L · vj, for j from 1 to µ.
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Example 4.1(continued) The null space of the matrix M
(1)
3 has dimension

3 and can be written as

N
(1)
3 =





































































































0

0

0

0

0

1



































,



































−1

2

−4

0

1

0



































,



































−2

4

−8

1

0

0





































































































.

A basis can be obtained by multiplying the differential operators of order less
than 3 with the null vectors in N

(1)
3 :



























L1 = D(0, 0),

L2 = D(0, 1) − D(2, 0) + 2D(1, 1) − 4D(0, 2),

L3 = D(1, 0) − 2D(2, 0) + 4D(1, 1) − 8D(0, 2).

6 Algorithm for Refining Approximate Singular Solution

Suppose we are given an approximate solution

x̂ = x̂exact + x̂error,

where x̂error denotes the error in the solution and x̂exact denotes the exact
solution of the polynomial system F = {f1, . . . , ft} with multiplicity µ and
index ρ. By changing of variables yi = xi − x̂i, i = 1, . . . , s, we obtain a new
polynomial system G = {g1, . . . , gt}, where

gj(y1, . . . , ys) = fj(y1+x̂1,exact+x̂1,error, . . . , ys+x̂s,exact+x̂s,error), j = 1, . . . , t.

Next lemma may be clear at a glance, but it is important for our proof of
convergence.

Lemma 14 The polynomial system G has an exact solution

ŷ = −x̂error = (−x̂1,error, . . . ,−x̂s,error) (7)

with the same index ρ and multiplicity µ as x̂exact to F .
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Proof: It is clear that gi(−x̂error) = fi(x̂exact) = 0 for i = 1, . . . , t. Moreover,
given a set of basis {L1, . . . , Lµ} of Max Noether space of F at x̂exact, for
j = 1, . . . , µ, and i = 1, . . . , t,

Lj(gi(y)) |y=−x̂error
= Lj(fi(y + x̂)) |y=−x̂error

= Lj(fi(x)) |x=x̂exact
= 0.

Hence {L1, . . . , Lµ} is also a set of basis of Max Noether space of G at ŷ. 2

Consider the polynomial system

Ḡ = {g1, . . . , gt, (y + x̂error)
α, |α| = ρ + 1},

where ρ is the index of −x̂error. By Lemma 14, we know that this system has
only one exact multiple solution −x̂error with index ρ. The polynomials in Ḡ
generate an isolated primary component denoted by Q̄. Suppose the system
Ḡ is involutive after m prolongations. We denote its coefficient matrix by

M =







M ′
h M ′

l

Mh Ml





 , (8)

where [M ′
h M ′

l ] and [Mh Ml] are coefficient matrices of polynomial systems
{(y+ x̂error)

α, |α| = ρ+1}, {g1, . . . , gt} and their prolongations with respective
to the high order monomials

[yρ+m, . . . ,yρ+1]

and low order monomials
[yρ, . . . ,y, 1].

Notice that
Ml = M

(m)
ρ+1, (9)

where M
(m)
ρ+1 is the coefficient matrix of the truncated system

Gρ+1 = {Tk(g1), . . . , Tk(gt)}

prolonged to order m, and

M ′
h =















Iρ+m · · · M̃h

. . .
...

Iρ+1















, (10)

where Iρ+i is an identity matrix with dimension
(

s+ρ+i−1
ρ+i

)

.

Theorem 15 Suppose {L1, . . . , Lµ} is a set of basis of Max Noether space of
G at ŷ and M is the coefficient matrix of the involutive form of Ḡ after m
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prolongations, we have

{L1(v(y)ρ+m) |y=ŷ, . . . , Lµ(v(y)ρ+m) |y=ŷ} (11)

is a basis of null space of the matrix M , where ŷ = −x̂error and

v(y)T
ρ+m = [yρ+m

1 , . . . , yρ+1
s , yρ

1, . . . , ys, 1]T . (12)

Proof: Since {L1, . . . , Lµ} is a set of basis of Max Noether space of G at ŷ,
for any Li ∈ L, i = 1, . . . , µ, we have

Li(M · [yρ+m
1 , . . . , yρ+1

s , yρ
1, . . . , . . . , ys, 1]T ) |y=ŷ= 0.

It is clear that

M [Li(y
ρ+m
1 ), . . . , Li(y

ρ+1
s ), Li(y

ρ
1), . . . , Li(ys), Li(1)]T |y=ŷ= 0.

Hence Li(v(y)ρ+m) |y=ŷ, i = 1, . . . , µ are null vectors of M .

By the definition of index, we can select µ monomials from the monomial
vector v(y)ρ−1, which consists of all monomials of order at most ρ − 1, to
constitute a basis of C[y]/Q̄. Since {L1 |y=ŷ, . . . , Lµ |y=ŷ} is a basis of dual
space of C[y]/Q̄, we have that

L1(v(y)ρ−1) |y=ŷ, . . . , Lµ(v(y)ρ−1) |y=ŷ (13)

are linearly independent. Therefore, L1(v(y)ρ+m) |y=ŷ, . . . , Lµ(v(y)ρ+m) |y=ŷ

are linearly independent. 2

If we form multiplication matrices {My1
, . . . , Mys

} using null vectors of M ,
then 1

µ
Tr(Myi

) = −x̂i,error since the system Ḡ has only one solution ŷ = −x̂error

with multiplicity µ.

Suppose the given approximate solution x̂ of F is not far away from the exact
solution x̂exact, i.e.,

‖ŷ‖ = ‖ − x̂error‖ = O(ε) ≪ 1. (14)

Here and hereafter, ‖ · ‖ is denoted as the infinity norm. We prove that an
approximate solution of ŷ of double precision can be computed from the null
vectors of the matrix M

(m)
ρ+1. Therefore, there is no need to construct and work

with the full size big matrix M (8).

Corollary 16 Suppose v = [vT
h ,vT

l ]T is a normalized null vector of the big

matrix M defined in (8), where vh and vl are column vectors of length
(

ρ+m+s

ρ+m

)

−
(

ρ+s

ρ

)

and
(

ρ+s

ρ

)

respectively, then ‖vh‖ = O(ε2).
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Proof: By Theorem 15, we know that

{L1(v(y)ρ+m) |y=ŷ, . . . , Lµ(v(y)ρ+m) |y=ŷ}

is a basis of null space of the matrix M .

Pick up a differential operator of the highest order, without loss of generality,
denoted it by Lµ, its order is ρ − 1. Applying it to the monomials of order α,
we obtain

Lµ(yα) =
∑

|β|=|α|−ρ+1
cβy

β, cβ ∈ C. (15)

If |α| ≥ ρ + 1, then |β| ≥ 2, hence ‖Lµ(y
α) |y=ŷ ‖ = O(ε2) as ‖ŷ‖ = O(ε).

For i from 1 to µ, we have

‖(Li([y
ρ+m, . . . ,yρ+1]T ) |y=ŷ ‖ ≤ ‖(Lµ([yρ+m, . . . ,yρ+1]T ) |y=ŷ ‖ = O(ε2).

(16)
Moreover, by duality, we have

‖Li(v(y)ρ−1) |y=ŷ ‖ = O(1). (17)

For any normalized null vector v = [vT
h ,vT

l ]T of M , v can be written as linear
combination of Li(v(y)ρ+m) |y=ŷ and vh corresponds to the linear combination
of terms ‖Li(y

α) |y=ŷ ‖ = O(ε2) for |α| ≥ ρ + 1 and i = 1, . . . , µ. We have
‖vh‖ = O(ε2)‖vl‖ = O(ε2) because of (16),(17) and ‖v‖ = 1. 2

For the matrix M defined in (8), due to the special structure of the matrix M ′
h

displayed in (10), there exists an invertible matrix P1, such that P1M
′
h = I.

M̃ =







I 0

−Mh I













P1 0

0 I













M ′
h M ′

l

Mh Ml






=







I M̃l

0 Ml − MhM̃l






,

where, M̃l = P1M
′
l . Thence, computing null vectors of M is equivalent to

computing null vectors of Ml − MhM̃l.

Suppose v = [vT
h ,vT

l ]T is a normalized null vector of M ,







I M̃l

0 Ml − MhM̃l













vh

vl






= 0.

Since vh + M̃lvl = 0, according to Corollary 16,

‖M̃lvl‖ = ‖vh‖ = O(ε2).
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Furthermore, since Mlvl − MhM̃lvl = 0, we have

‖Mlvl‖ = ‖MhM̃lvl‖ ≤ ‖Mh‖‖M̃lvl‖ = O(ε2).

We have the following theorem:

Theorem 17 Suppose {L1, . . . , Lµ} is a set of basis of Max Noether space of
G at ŷ and the truncated system

Gρ+1 = {Tk(g1), . . . , Tk(gt)}

is involutive after m prolongations, whose coefficient matrix is Ml = M
(m)
ρ+1.

For the threshold O(ε2), we have that

{L1(v(y)ρ) |y=ŷ, . . . , Lµ(v(y)ρ) |y=ŷ} (18)

is a basis of null space of the matrix M
(m)
ρ+1, where ŷ = −x̂error and

v(y)T
ρ = [yρ

1 , y
ρ−1
1 y2, . . . , y1, . . . , ys, 1]T .

Proof: By Theorem 15,

{L1(v(y)ρ+m) |y=ŷ, . . . , Lµ(v(y)ρ+m) |y=ŷ}

is a basis of null space of the matrix M . According to Corollary 16 and analysis
given above, we have

‖M (m)
ρ+1Li(v(y)ρ) |y=ŷ ‖ = O(ε2), 1 ≤ i ≤ µ.

By virtue of (13), these null vectors (18) are linearly independent. 2

Remark 18 According to Theorem 17, if we choose a threshold O(ε2) to com-
pute the rank of Ml, then we will root out

dim Nullspace(M
(m)
ρ+1) = dim Nullspace(M).

Furthermore, the multiplication matrices {M̃y1
, . . . , M̃ys

} are formed from the

null vectors of M
(m)
ρ+1 by linear system solving, see [Reid and Zhi 2008] for

details. Hence, by Theorem 15 and Theorem 17, we have

1

µ
Tr(M̃yi

) =
1

µ
Tr(Myi

) + O(ε2) = −x̂i,error + O(ε2). (19)

Therefore, we can get the error part of the singular solution with double correct
digits.

Based on the above discussions, we are ready to give an algorithm to refine
an approximate singular solution.
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Algorithm 3 MultipleRootRefiner

Input: An isolated approximate singular solution x̂ of an ideal I = (f1, . . . , ft)
and a tolerance τ .

Output: Refined solution x̂, the multiplicity µ and index ρ of the primary
component Q = (I, P ρ) and a basis L = {L1, . . . , Lµ} of Max Noether space
of I at the refined solution.

• For given approximate root x̂ and tolerance τ , applying Algorithm 1 to es-
timate the multiplicity µ and index ρ.

• Suppose the truncated system Gρ+1 is involutive at prolongation order m,
then form multiplication matrices Mx1

, . . . , Mxs
from null vectors of the

matrix M
(m)
ρ+1. An approximate solution ŷ is obtained by averaging the trace

of each multiplication matrix.
• Set x̂ = x̂ + ŷ and run the first two steps for the refined solution. The

tolerance is decreased according to the solution ŷ.
• If ŷ converges to the origin, then we get the refined solution x̂ with high

accuracy. We apply Algorithm 1 to compute the primary component and
Algorithm 2 to compute a basis of Max Noether space of I at the refined
solution. Otherwise, we decrease the tolerance and run the above steps again.

Theorem 19 Algorithm 3 provides a stable quadratically convergent method
to refine a multiple solution.

Proof: The quadratical convergency follows from Theorem 17 and Remark 18.
Our algorithm is stable since we use singular value decomposition to compute
the dimensions and null vectors of the coefficient matrices and formulate the
multiplication matrices. Moreover, we form the coefficient matrices by com-
puting the Taylor expansions up to desired order instead of changing variables
and expanding the polynomials. 2

We apply symbolic and numeric perturbations to Example 4.1 to illustrate
the quadratical convergence of Algorithm 3.

Example 4.1 (continued) Suppose we are given an approximate singular
solution x̂ = (1 + ε, 2 + ε) and set ρ = 3. Applying Gaussian elimination to
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M
(1)
4 , we get an upper triangular matrix of 12 × 10:



















































I5×5 ⋆ ⋆ ⋆ ⋆ ⋆

01×5 1 + 1
2
ε ⋆ ⋆ ⋆ ⋆

01×5 0 1 ⋆ ⋆ ⋆

01×5 0 0 −2ε2 + O(ε3) −1
4
ε2 + O(ε3) − 3

16
ε3 + O(ε4)

01×5 0 0 0 − 1
144

ε3 + O(ε4) − 1
192

ε4 + O(ε5)

01×5 0 0 0 0 − 3
32

ε4 + O(ε5)

01×5 0 0 0 0 0

01×5 0 0 0 0 0



















































,

where ⋆ represents rational function of ε.

It is clear that elements of the last five rows of the above matrix are O(ε2). Let
us take off the last five rows and compute null vectors and form multiplication
matrices with respect to the normal set {x1, x2, 1}:

Mx1
=















−2 − 2ε −1 −3ε − ε2

4 − ε + O(ε2) 2 − ε + O(ε2) 6ε + O(ε2)

1 0 0















,

Mx2
=















4 − ε + O(ε2) 2 − ε + O(ε2) 6ε + O(ε2)

−8 −4 − 2ε −12ε − ε2

0 1 0















.

The average of the trace of Mx1
is the same as Mx2

, which is −ε + O(ε2).
Adding it to x̂, we get a refined solution (1 + O(ε2), 2 + O(ε2)).

Example 4.1 (continued) Suppose we are given an approximate solution
x̂ = (1.001, 1.998). Applying Algorithm 1 to estimate multiplicity and index
for a given tolerance τ = 10−3.

• The singular values of M
(1)
3 are:

{3.1234, · · · , 1.8285, 2.8400× 10−4, 4.4717× 10−10, 1.3509 × 10−20}

and d
(1)
3 = 3.

• The singular values of M
(2)
3 are:

{3.1234, · · · , 1.8285, 2.8400× 10−4, 2.3352 × 10−9, 3.2703× 10−13}
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and d
(2)
3 = 3.

• The singular values of M
(1)
4 are:

{3.5118, · · · , 4.6516 × 10−2, 1.2633 × 10−6, 6.1389 × 10−13, 6.4274 × 10−20}

and d
(1)
4 = 3.

So that for the given tolerance τ = 10−3, the multiplicity is µ = 3 and the
index is ρ = 3. The multiplication matrices are formed from the null space
of M

(1)
4 . The solution computed by averaging the traces of the multiplication

matrices is
ŷ = (−0.001000696, 0.002003323).

Adding ŷ to x̂, we obtain the refined solution x̂. We apply Algorithm 3 twice
to the new singular solution x̂ for tolerance 10−5 and 10−8 respectively, and
get the refined solution:

x̂ = (1 − 3.5470 × 10−16, 2 − 2.3068 × 10−15).

7 Complexity and Experiments

There are quantity of masterpieces on designing algorithms for computing
involutive bases of polynomial systems [Apel 1995; Gerdt and Blinkov 1998;
Seiler 2002]. However, they seldom talk about complexity of algorithms. In
[Chistov and Gigorier 2007], they work out a double-exponential complexity
bound of constructing a Janet basis of a D-module. In [Gerdt and Zinin 2008],
they give some bound estimations for cardinality of Boolean Gröbner bases.
As to Boolean Pommaret bases, they give an example of single-exponential
cardinality and they have a conjecture that their exact cardinality is single-
exponential. Since we are working with the special polynomial system Fk =
Tk(F ) ∪ P k. It has been shown in the above sections that the truncated co-

efficient matrices M
(j)
k have provided us enough information to compute the

multiplicity structure of the singular solution and refine an approximate mul-
tiple solution. Hence we have the following combinatorial complexity for our
algorithms.

Theorem 20 The complexity of Algorithm 2 is:

O
(

t
(

ρ+s−1
s

)3
)

.

Proof: Algorithm 2 computes null vectors of a matrix of size at most t
(

ρ+s−1
s

)

×
(

ρ+s−1
s

)

. 2
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Remark 21 In [Mourrain 1996], the complexity of the algorithm to compute

differential operators is O((s2 + t)µ3). Generally speaking, µ ≤
(

ρ+s−1
s

)

. We
need more operations because we do prolongations in all directions. In some
sense, we sacrifice efficiency to ensure numeric stability.

Theorem 22 The complexities of Algorithm 1 and Algorithm 3 are:

O
(

t
(

ρ+s

s

)3
)

Proof: The size of the matrices used in Algorithm 1 and Algorithm 3 are
bounded by t

(

ρ+s

s

)

×
(

ρ+s

s

)

.

Remark 23 The complexity of the deflation algorithm for refining a singu-
lar solution [Lecerf 2002] is bounded by the multiplicity which could be much
smaller than ours.

The following experiments are done for Digits := 14 in Maple 11 under Win-
dows. The systems DZ1 and DZ2 are quoted from [Dayton and Zeng 2005].
The system D2 [Dayton 2007] is positive dimensional, but we can compute its
isolated zero dimensional primary component at the origin. The other exam-
ples are cited from the PHCpack demos http://www.math.uic.edu/~jan/.
We use s, ρ and µ to represent the number of variables, the index and the
multiplicity respectively. The fifth column lists the increase in the number of
correct digits from the approximate solutions obtained by Algorithm Multiple-
RootRefiner. The Maple code of three algorithms and test results are available
http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/polysolver.

8 Conclusion

The multiplicity structure of a singular solution has been studied extensively
in [Bates et al. 2006; Damiano et al. 2007; Dayton 2007; Dayton and Zeng
2005; Kobayashi et al. 1998; Marinari et al. 1995, 1996; Möller and Stetter
1995; Möller and Tenberg 2001; Mourrain 1996]. Various methods have been
proposed for computing the singular solutions to high accuracy [Corless et al.
1997; Lecerf 2002; Leykin et al. 2006, 2008; Ojika 1987; Ojika et al. 1983]. In
this paper, we describe algorithms based on the geometric involutive form to
completely describe the multiplicity structure of an isolated singular solution.

If the polynomial system and the singular solutions are known exactly, the
tolerance is set to be zero. We compute the multiplicity, index and a basis of
Max Noether space by exact linear algebra computation. If we are given an
approximate isolated singular solution of an exact polynomial system, then we
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System s ρ µ # Digits

cmbs1 3 5 11 2 → 7 → 14

cmbs2 3 4 8 2 → 5 → 14

mth191 3 3 4 2 → 6 → 13 → 15

LVZ 3 8 18 4 → 7 → 14

KSS 5 5 16 3 → 7 → 13 → 14

Caprasse 4 3 4 3 → 9 → 12→ 13

DZ1 4 11 131 2 → 8 → 15

DZ2 3 8 16 3 → 7 → 14

tangents1 6 4 4 2 → 6 → 12 → 13

D2 3 5 5 2 → 4 → 7 → 14

Ojika1 2 3 3 2 → 4 → 8 → 14

Ojika2 3 2 2 2 → 4 → 9 → 13

Ojika3 3 3 4 2 → 4 → 9 → 13

Ojika4 3 3 3 2 → 6 → 13

Cyclic9 9 3 4 3 → 5 → 11 → 13

Table 1. Algorithm Performance

apply generalized quadratic Newton iterations to refine the singular solution
to have high accuracy and obtain accurate multiplicity structure with respect
to the refined solution.

Our refinement procedure is different from deflation methods in [Leykin et al.
2006, 2008; Ojika 1987; Ojika et al. 1983]. They restore quadratic convergence
of a modified Newton’s method by producing a new polynomial system which
has the original multiple solution as a simple one. Since the column dimension
of the matrix we used to refine an approximate singular solution is

(

ρ+s

s

)

. Our
algorithm for refining an approximate singular solution is not efficient when
the index ρ is big. For the example in [Kobayashi et al. 1998], the number of
variables is 10, and the index can be as large as 11, we still have trouble to
deal with this one. We are going to explore more algebraic structure to reduce
the size of the matrices in our methods as Zeng did in his latest work [Zeng
2009], which aims at developing a new method to improve the computational
efficiency for large systems.
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