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A structured rank-revealing method for Sylvester matrix
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Abstract

We propose a fast algorithm for computing the numeric ranks of Sylvester matrices. Let S denote the Sylvester matrix and H
denote the Hankel-like-Sylvester matrix. The algorithm is based on a fast Cholesky factorization of STS or HTH and relies on a
stabilized version of the generalized Schur algorithm for matrices with displacement structure. All computations can be done in
O(r(n + m)), where n + m and r denote the size and the numerical rank of the Sylvester matrix, respectively.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given univariate polynomials f (x), g(x) ∈ R[x], where f (x) = fnx
n + fn−1x

n−1 + · · · + f1x + f0, fn �= 0 and
g(x) = gmxm + gm−1x

m−1 + · · · + g1x + g0, gm �= 0. Let S(f, g) ∈ R(n+m)×(n+m) denote the Sylvester matrix of
f (x) and g(x),

S(f, g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn gm

fn−1 fn gm−1 gm

... fn−1
. . .

... gm−1
. . .

f1
...

. . . fn g1
...

. . . gm

f0 f1 fn−1 g0 g1 gm−1

f0
. . .

... g0
. . .

...
. . . f1

. . . g1
f0 g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

.
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Here and hereafter, we assume that the coefficients of input polynomials are only known inexactly. For a given input
error tolerance �, the computation of the �-GCD (greatest common divisor) has been considered in [6–8,22,21]. For
computing �-GCD, a preliminary knowledge on the degree of �-GCD is important. The following lemma in [6] provides
us an upper bound on the degree of �-GCD.

Lemma 1 (Corless et al. [6]). If the singular values of S(f, g) are �i , i=1, . . ., m+n, and �1 � · · ·��r > �
√

m+n > �
��r+1 � · · · ��m+n (in other words, the numerical �-rank of S is r), and if d̂ is a common divisor of f + �f and
g + �g with deg(d̂)�m + n − r + 1, then one of ‖�f ‖ > � or ‖�g‖ > � holds, where ‖ · ‖ denotes the Euclidean
2-norm of a polynomial coefficients vector.

For the computation of numerical �-rank of a Sylvester matrix, a full singular value decomposition (SVD) is undoubt-
edly most reliable but expensive. In this paper, a fast rank-revealing algorithm is obtained by exploiting the displacement
structure of Sylvester matrices. The algorithm is based on the fast Cholesky factorization of STS or HTH and costs
O(r(n + m)) flops, where r denotes the numerical �-rank of the Sylvester matrix. Here H is the Hankel variation of the
Sylvester matrix S. We introduce H in order to complete the fast Cholesky factorization without pivoting. Suppose R̂r

is the Cholesky factor of STS or HTH produced by the first r steps of the generalized Schur algorithm [13,4,5],

R̂r =
[
R̂

(r)
11 R̂

(r)
12

0 0

]
,

where R̂
(r)
11 is an r × r upper triangular matrix. We declare r is a candidate �-rank of the Sylvester matrix when

‖STS − R̂T
r R̂r‖ or ‖HTH − R̂T

r R̂r‖ is small enough.
Following the lead of [3–5,9], we derive a backward error bound for the fast Cholesky factorization. It allows us to

set a termination tolerance in advance to compute �-rank of a Sylvester matrix.
The organization of this paper is as follows. In Section 2, we give a brief introduction for the displacement structure

and the generalized Schur algorithm. Then we discuss Cholesky factorizations of the semi-definite matrices STS and
HTH . We also show how to avoid early breakdown of the generalized Schur algorithm. In Section 3, we present error
analysis needed for our fast algorithm. In Section 4, we derive a fast rank-revealing algorithm. Numerical experiments
are presented in Section 5.

1.1. Notation

In the discussion that follows we use ‖ · ‖ to denote the 2-norm of its argument. Let i be a positive integer, Zi be an
i × i lower shift matrix and Ii be an i × i identity matrix. For matrices, we denote their singular values by �i (·) and
eigenvalues by �i (·). The ·̂ notation denotes the computed quantities, and u denotes the machine precision.

2. Displacement structure and the generalized Schur algorithm

The displacement of an n × n Hermitian matrix T is defined as

∇T = T − ZTZT, (1)

where Z is an n × n lower-triangular matrix. The choice of Z depends on the matrix T, e.g., if T is a Toeplitz matrix,
then Z is chosen equal to a lower shift matrix Zn. If ∇T has a lower rank � (>n) independent of n, the size of T, then
T is said to be structured with respect to the displacement defined by (1) and � is referred to as the displacement rank
of T. It follows that ∇T can be factored as

∇T = GJGT,

where G is an n × � matrix and J is a signature matrix of the form

J =
[
Ip′ 0
0 −Iq ′

]
, p′ + q ′ = �.
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The integers p′, q ′ denote the numbers of positive eigenvalues and negative eigenvalues of ∇T , respectively. The pair
(G, J ) is said to be a generator pair for T.

When T is positive definite, the Cholesky factorization of T can be efficiently carried out by a generalized Schur
algorithm that operates on the generator pair (G, J ) directly and costs O(�n2). The notion of displacement structure
can be extended to non-Hermitian matrices. A more extensive description about the generalized Schur algorithm can
be found in [13].

As discussed in [22,12], a Sylvester matrix S(f, g) is a quasi-Toeplitz matrix with displacement rank at most 2.
Furthermore, we have

Theorem 1 (Zhi [22]). STS is a structured matrix with displacement rank at most 4.

In fact, let Z = diag(Zm, Zn), J = diag(1, 1, −1, −1), then

STS − ZSTSZT = GJGT, (2)

where G = [x1 x2 x3 x4] with

x1 = STS(:, 1)/‖S(:, 1)‖,

x2 = STS(:, m + 1)/‖S(:, m + 1)‖, x2[1] = 0,

x3 = x1 except that x3[1] = 0,

x4 = x2 except that x4[m + 1] = 0.

2.1. Avoiding early breakdown of the generalized Schur algorithm

Assume that the numeric �-rank of S is r. The generalized Schur algorithm applied to compute the fast Cholesky
factorization of STS may break down during the first r steps due to the loss of positive definiteness of the r × r leading
principal submatrix of STS.

Example 1. Let

f (x) = 2x2 + 3x − x4 − 2x3,

g(x) = 3x + 2 + x2,

then the Sylvester matrix S(f, g) is of rank 5. Since the leading 5 × 5 principal submatrix of S(f, g)TS(f, g) is of rank
4, the generalized Schur algorithm applied to STS completes the first four steps but breaks down at the fifth step.

However, for the above example, if we construct the Sylvester matrix as S(g, f ), we can check that the leading
5 × 5 principal submatrix of ST(g, f )S(g, f ) is of full rank and the generalized Schur algorithm completes the first
five steps successfully. In general, we have the following theorem.

Theorem 2. Let S(f, g) be the Sylvester matrix for two univariate polynomials f (x) and g(x) with degrees n and m,
respectively. Suppose f (x) = xp(fnx

n−p + · · · + fp) and g(x) = xq(gmxm−q + · · · + gq), where fp �= 0 and gq �= 0.
If 0�p�q and rank(S) = m + n − d for p�d � min{m, n}, then the first m + n − d column vectors of S(f, g) are
of full column rank.

Proof. Note that rank(S) = m + n − d implies gcd(f, g) is of degree d. Suppose the first m + n − d column vectors
of S(f, g) are not of full column rank, according to the following equation

(xm−1f, xm−2f, . . . , f, xn−1g, . . . , g) = (xm+n−1, . . . , xn, . . . , 1)S,

there exist not all zeros si , tj ∈ R such that

(sm−1x
m−1 + · · · + s0)f + (tn−1x

n−1 + · · · + tdxd)g = 0. (3)
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Set f ′ = f/ gcd(f, g), g′ = g/ gcd(f, g), we have

(sm−1x
m−1 + · · · + s0)f

′ + xd(tn−1x
n−d−1 + · · · + td )g′ = 0. (4)

Since p�q, then x�f ′. Furthermore gcd(f ′, g′) = 1, then from (4), we have

f ′|(tn−1x
n−d−1 + · · · + td ).

It implies that tj = 0, j = d, . . . , n − 1 since the degree of f ′ is n − d. Then from (3), si = 0, i = 0, . . . , m − 1. It is a
contradiction. �

Based on this theorem, to avoid early breakdown of the generalized Schur algorithm during the implementation of
the Cholesky factorization of STS, we construct the Sylvester matrix S(f, g) with f (x) having smaller number of near
zero tailing terms than g(x). However, for some cases such as f (x) and g(x) both have relatively small tailing terms,
it will be difficult to determine which one has smaller number of near zero tailing terms. In order to deal with this
numerical difficulty, we introduce a Hankel-like-Sylvester matrix.

Remark 1. As pointed out to us by Robert M. Corless, the rank deficiency of Barnett matrix introduced in [1,2] is
also equal to the degree of GCD of univariate polynomials. Furthermore, if the Barnett matrix is of rank r then the
first r columns of the Barnett matrix are linearly independent [14]. Our proof of Theorem 2 is very similar to the proof
in [14].

2.2. Hankel-like-Sylvester matrix

Let Pi denote an i × i anti-diagonal permutation matrix. The Hankel-like-Sylvester matrix for f (x) and g(x) is
defined as

H(f, g) = S(f, g)diag(Pm, Pn)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn gm

T fn−1 T gm−1

fn T
... gm T

...

fn fn−1 f1 gm gm−1 g1

fn−1
... f0 gm−1

... g0
... f1 T

... g1 T
f1 f0 g1 g0
f0 g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

The Hankel-like-Sylvester matrix has several properties similar to those of the Sylvester matrix.

Lemma 2. Supposing H =U�V T is the SVD of H(f, g), where U and V are orthogonal matrices and �=diag(�1(H),

�2(H), . . . , �m+n(H)) is a diagonal matrix, then S = U�(PV )T is the SVD of S(f, g), where P = diag(Pm, Pn).

Proof. It follows directly from the definition of H(f, g). �

Corollary 1. The Hankel-like-Sylvester matrix H(f, g) has the same rank as the Sylvester matrix S(f, g).

Theorem 3. HTH is a structured matrix with displacement rank at most 4.

Proof. We can construct matrices Z, G, J such that

HTH − ZHTHZT = GJGT,
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where Z = diag(Zm, Zn), J = diag(1, 1, −1, −1) and G = [x1, x2, x3, x4] with

x1 = HTH(:, 1)/‖H(:, 1)‖,

x2 = HTH(:, m + 1)/‖H(:, m + 1)‖, x2[1] = 0,

x3 = x1 except that x3[1] = 0,

x4 = x2 except that x4[m + 1] = 0. �

Theorem 4. Let H(f, g) be the Hankel-like-Sylvester matrix for two univariate polynomials f (x) and g(x) with
degrees n and m, respectively. If H is of rank m + n − d, with 0 < d � min{m, n}, then the first m + n − d column
vectors of H are of full column rank.

Proof. Note that rank(H) = m + n − d implies that gcd(f, g) is of degree d. Similar to the proof of Theorem 2, we
can derive from the following equation:

(f, x f, . . . , xm−1f, g, . . . , xn−d−1g, . . . , xn−1g) = (xm+n−1, . . . , xn, . . . , 1)H

that the first m + n − d columns of H are linearly independent. �

Theorem 4 tells us that for a rank r Hankel-like-Sylvester matrix H, the leading r × r principal submatrix of HTH

is always positive definite. We can apply the generalized Schur algorithm to obtain Cholesky factorization of HTH

without pivoting. In practice, we construct the Hankel-like-Sylvester matrix H(f, g) with fn having larger weight, i.e.,
|fn|/‖f ‖ being large.

3. Error analysis

3.1. Backward error analysis for the fast Cholesky factorization

Here and hereafter, we assume that T = ATA, where A = H(f, g) or S(f, g). According to Theorem 1 or 3, we
compute (G, J ) as a generator pair of T with respect to a shift-block matrix Z. After applying the first r steps of the

generalized Schur algorithm to (G, J, Z), we obtain a truncated Cholesky factorization T̂r = R̂T
r R̂r . In this section, we

derive a backward error analysis for the fast Cholesky factorization along the line of [3–5,9,10].

Let Ĝi be the generator matrix at stage i of the generalized Schur algorithm, ˆ̄Gi be the proper form of Ĝi , i.e., the

top nonzero row of ˆ̄Gi has a single nonzero entry in its first column. It is formed via a sequence of two orthogonal
transformations and a hyperbolic rotation in OD form [4].

Assume that

ˆ̄GiJ
ˆ̄GT

i − ĜiJ ĜT
i = Ni, i = 1, . . . , r .

Summing up the equations, we get

T̂r − ZT̂rZ
T + Ĝr+1J ĜT

r+1 =
r∑

i=1

Ni + T − ZTZT.

Noting that Z is nilpotent (without loss of generality, suppose n�m, then Zn = 0), we derive

T̂r +
n−1∑
k=0

ZkĜr+1J ĜT
r+1(Z

k)T = T +
n−1∑
k=0

Zk

(
r∑

i=1

Ni

)
(Zk)T.

Setting

T̂s =
n−1∑
k=0

ZkĜr+1J ĜT
r+1(Z

k)T, E =
n−1∑
k=0

Zk

(
r∑

i=1

Ni

)
(Zk)T, (5)
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we have

T̂r + T̂s = T + E.

Since the first r rows of entries in Ĝr+1 are zero, by the definition of T̂s , we set

T̂s =
[

0r

Ŝr+1

]
, (6)

where 0r is a zero matrix of size r, Ŝr+1 is the true Schur complement of T + E. We aim to bound ‖E − T̂s‖.
Firstly, along the line of [5], we derive that

‖E‖�c1u(6r3‖R̂T
r ‖2 + (24r + 4)‖T ‖) + O(u2),

where c1 denotes a low order polynomial in n. Since

‖R̂T
r ‖2 = ‖T̂r‖�‖T ‖ + ‖E‖ + ‖T̂s‖,

we obtain

‖E‖� c1u

1 − 6r3c1u
((6r3 + 24r + 4)‖T ‖ + 6r3‖T̂s‖) + O(u2). (7)

Thus, the backward error is bounded as

‖T − T̂r‖�‖E‖ + ‖T̂s‖� c1u(6r3 + 24r + 4)‖T ‖ + ‖T̂s‖
1 − 6r3c1u

+ O(u2). (8)

In order to bound ‖T̂s‖, we write T as

T = T̃ + �T , (9)

where T̃ is the nearest matrix to T with exact rank r. Specifically, we assume that

T = V diag(�1(T ), . . . , �n+m(T ))V T

is the SVD of T, then T̃ is taken as

T̃ = V diag(�1(T ), . . . , �r (T ), 0, . . . , 0)V T,

thus

‖�T ‖ = �r+1(T ).

Denote by F = �T + E and partition T̃ and F as

T̃ =
[

T̃11 T̃12
T̃ T

12 T̃22

]
, F =

[
F11 F12
F T

12 F22

]
,

where T̃11, F11 ∈ Rr×r . Since Ŝr+1 is the true Schur complement of T + E = T̃ + F , following the lead of [9], we
have

Lemma 3. Assume that T̃11 is invertible, then

Ŝr+1 = F22 − W̃TF12 − F T
12W̃ + W̃TF11W̃ + O(‖F‖2), (10)

where

W̃ = T̃ −1
11 T̃12. (11)
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Following the arguments in [9], we have

‖T̂s‖ = ‖Ŝr+1‖�(1 + ‖W̃‖)2(‖�T ‖ + ‖E‖) + O(‖F‖2).

Substituting from (7), and rearranging, we find

‖T̂s‖��

(
c1u(6r3 + 24r + 4)‖T ‖

1 − 6r3c1u
+ ‖�T ‖

)
(1 + ‖W̃‖)2 + O(‖F‖2), (12)

where

� =
(

1 − 6r3c1u

1 − 6r3c1u
(1 + ‖W̃‖)2

)−1

. (13)

Finally, using (12) and (8), we have

Theorem 5. Let T = T̃ + �T be a symmetric matrix described as (9). Assume that

‖�T11‖
‖T11‖ = �, (14)

and T11 is positive definite with

2�	2(T11) < 1. (15)

After carrying out r steps of the generalized Schur algorithm, we get

‖T − R̂T
r R̂r‖� c1u


1 − 6r3c1u
+ �

1 − 6r3c1u

(
c1u


1 − 6r3c1u
+ ‖�T ‖

)
(1 + ‖W̃‖)2 + O(‖F‖2), (16)

where 
 = (6r3 + 24r + 4)‖T ‖.

Proof. The proof is similar to that of Theorem 3.1 in [9]. �

Remark 2. According to Theorem 5, the size of the backward error of the fast Cholesky factorization of T depends on
the size of ‖W̃‖. The backward error is approximately bounded as

‖T − R̂T
r R̂r‖�(1 + ‖W̃‖)2‖�T ‖. (17)

For Cholesky factorization with complete pivoting, a nice upper bound of ‖W̃‖ was given in [9]. However, pivoting
is prohibited in our fast algorithm since it destroys the displacement structure of involved matrices, so we only have
the following bound similar to Lemma 10.12 in [10].

Theorem 6. For W̃ defined by (11), we have

‖W̃‖�
√

2‖T −1
11 ‖‖T22‖. (18)

Proof. Notice that the Schur complement T̃22 − T̃ T
12T̃

−1
11 T̃12 is equal to 0, we derive that

‖W̃‖ = ‖T̃ −1
11 T̃12‖ = ‖T̃ −1/2

11 T̃
−1/2
11 T̃12‖�‖T̃ −1

11 ‖1/2‖T̃ T
12T̃

−1
11 T̃12‖1/2 =

√
‖T̃ −1

11 ‖‖T̃22‖.

Under the assumption of Theorem 5 we have

‖T −1
11 �T11‖�‖T −1

11 ‖ ‖�T11‖ = 	2(T11)
‖�T11‖
‖T11‖ < 1/2,
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so that

‖T̃ −1
11 ‖� ‖T −1

11 ‖
1 − ‖T −1

11 �T11‖
< 2‖T −1

11 ‖.

Meantime, we note that T̃ and �T are positive semi-definite, so that T̃22 and �T22 are all positive semi-definite. Thus
from T22 = T̃22 + �T22 we get ‖T̃22‖�‖T22‖. �

Remark 3. This theorem provides us with an upper bound on ‖W̃‖, which depends on
√

	2(T11) in some sense. In fact,
it is easy to construct examples where ‖W̃‖ is large and near to the derived upper bound. However, by applying some
techniques for constructing T (see Algorithm HSylSRRA), the ‖W̃‖ appearing during the fast Cholesky factorization
of T, is typically less than 1000.

3.2. A forward error bound for the estimate of some singular values

Suppose a truncated Cholesky factorization R̂T
r R̂r for T =ATA is obtained after carrying out r steps of the generalized

Schur algorithm. The singular value �r (R̂r ) and a null space basis of R̂r can be used to approximate �r (A) and �r+1(A),
respectively.

Theorem 7. Assume the truncated error after carrying out r steps of the generalized Schur algorithm is �̄, i.e.,

‖T − R̂T
r R̂r‖� �̄, (19)

then

|�i (A) − �i (R̂r )|� �̄/�r (A), i = 1, . . . , r . (20)

Furthermore, we assume that Vr = [vr+1, . . . , vn+m] and Wr = [wr+1, . . . , wn+m] are two matrices with orthonormal
column vectors, where Vr satisfies that

ATAV r = Vr�r with �r = diag(�2
r+1(A), . . . , �2

n+m(A)), (21)

and Wr consists of a null space basis of R̂r , then

‖ sin �(Vr , Wr)‖�
√

n + m − r �̄/�2
r (A), (22)

and

|‖AWr‖ − �r+1(A)|� 4‖A‖2(n + m − r)�̄2

�4
r (A)�r+1(A)

. (23)

Proof. Applying Corollary 7.3.8 in [11] to (19) we get

|�i (A
TA) − �i (R̂

T
r R̂r )| = |�2

i (A) − �2
i (R̂r )|� �̄, i = 1, 2, . . . , r .

Consequently, we obtain

|�i (A) − �i (R̂r )|� �̄/(�i (A) + �i (R̂r ))� �̄/�i (A)� �̄/�r (A), i = 1, 2, . . . , r .

To prove the inequality (22) we note that

�j (R̂r ) = 0, j = r + 1, . . . , n + m.

We define


̄ = min
i,j

|�2
i (A) − �2

j (R̂r )|, i = 1, . . . , r, j = r + 1, . . . , n + m.
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It is obvious that


̄ = �2
r (A).

Meantime, denote by R̄ the residual matrix:

R̄ = ATAWr − WrDr where Dr = diag(�2
r+1(R̂r ), . . . , �

2
n+m(R̂r )),

we have

‖R̄‖�‖ATAWr − R̂T
r R̂rWr‖ + ‖R̂T

r R̂rWr‖�‖ATA − R̂T
r R̂r‖‖Wr‖� �̄.

According to the eigenproblem perturbation theories [19] we get

‖ sin �(Vr , Wr)‖�
√

n + m − r‖R̄‖/
̄�
√

n + m − r �̄/�2
r (A).

Now we check the norm ‖AWr‖. Based on results on eigenvalues of Rayleigh quotient matrices in [15,17], we get

|‖AWr‖2 − �2
r+1(A)| = |�1(W

T
r ATAWr) − �1(V

T
r ATAV r)|�4‖ATA‖‖ sin �(Vr , Wr)‖2,

where �1(·) denotes the largest eigenvalue of its argument. Combining with the inequality (22), we find

|‖AWr‖2 − �2
r+1(A)|�4‖ATA‖(n + m − r)�̄2/�4

r (A).

Finally, we have

|‖AWr‖ − �r+1(A)|� 4‖A‖2(n + m − r)�̄2

�4
r (A)�r+1(A)

. �

In view of Theorem 7, when �̄ is small and �r (A) is large, �r (R̂r ) and ‖AWr‖ are nice estimates to �r (A) and
�r+1(A), respectively.

4. A fast rank-revealing scheme

We implement fast Cholesky factorization of T by running the generalized Schur algorithm on the generator pair
(G, J ) of T, where T = ATA and A is S(f, g) or H(f, g). Assume that R̂i is the Cholesky factor produced from the
first i steps of the generalized Schur algorithm,

R̂i =
[
R̂

(i)
11 R̂

(i)
12

0 0

]
,

where R̂
(i)
11 is an i × i upper triangular matrix. When ‖T − R̂T

r̂
R̂r̂‖ is small, we terminate the Cholesky factorization

and declare that the numeric rank of the Sylvester matrix is r̂ . This process costs O(r̂(n + m)) flops.
According to the backward error analysis in Section 3.1, we can set a Cholesky factorization termination tolerance

� in advance. Based on (17) and the fact that, when the Sylvester matrix is of �-rank r, �2 ��r+1(T ) = ‖�T ‖, we take
an appropriate multiple of �2 as a termination tolerance �. As stated in [9,18], at each step of the generalized Schur
algorithm, the norm of the Schur complement ‖Ŝi+1‖(i�1) is approximately equal to ‖T − R̂T

i R̂i‖, we can set �

directly on the norms of successive Schur complements. Furthermore, Ŝi+1 can be efficiently computed from Ĝi+1 by
using a similar formula in (5) [13,20]:[

0i

Ŝi+1

]
=

n−1∑
k=0

ZkĜi+1J ĜT
i+1(Z

k)T,

where 0i is a zero matrix of size i.
Algorithm HSylSRRA.
Input: f (x), g(x) two univariate polynomials, � a given error tolerance for the input polynomials, � a termination

tolerance for the Cholesky process.
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Output: r̂ a candidate numerical rank of the Sylvester matrix S, R̂r̂ a truncated Cholesky factor, A a Sylvester matrix
or a Hankel-like-Sylvester matrix.

1. Initialization
(a) Select a suitable order of polynomials to form S and H.

(i) Set f̄ := f, ḡ := g or f̄ := g, ḡ := f to guarantee that |lc(f̄ )|/‖f̄ ‖� |lc(ḡ)|/‖ḡ‖, where lc(·) denotes the
leading coefficient of a polynomial;

(ii) Assume that fp �= 0 and gq �= 0 are the first nonzero tailing coefficients of f and g, respectively. If p�q then
set f̃ := f, g̃ := g or f̃ := g, g̃ := f to satisfy |f̃p|/‖f̃ ‖� |g̃p|/‖g̃‖; otherwise set f̃ := g, g̃ := f, p := q.

(b) If |lc(f̄ )|/‖f̄ ‖� |f̃p|/‖f̃ ‖ then set A := H(f̄ , ḡ); otherwise, set A := S(f̃ , g̃).
(c) Set T := ATA, construct a shift-block matrix Z and a generator pair (G, J ) according to Theorem 1 or 3.

2. Cholesky rank-revealing
(a) Perform the generalized Schur algorithm on (G, J, Z), and compute the Schur complement Ŝi+1, i�1.

(b) If ‖Ŝr̂+1‖��, then terminate the Schur algorithm and return r̂ , R̂r̂ and A.

Remark 4. When the Sylvester matrix S is of numerical rank r, and ���r (T ), it is possible to find a rank r − 1 matrix
in the �-neighborhood of T. An appropriate � must satisfy that � < �r (T )=�2

r (S). Combined with the numerical results
as shown in the next section, it is necessary for our algorithm that the gap �r (S)/�r+1(S) is sufficiently large.

Remark 5. Usually it is not necessary to compute all the Schur complements. We need to compute a few Schur
complements in view of preliminary rank information.

As mentioned in Section 3.2, we can obtain approximate r̂th and (r̂ + 1)th largest singular values of the Sylvester
matrix by computing �r̂ (R̂r̂ ) and ‖AWr̂‖, where Wr̂ is a matrix consisting of an orthonormal null space basis of R̂r̂ .
We can calculate �r̂ (R̂r̂ ) and an orthonormal null space basis of R̂r̂ by performing the algorithm given in [16] on R̂r̂ .
Since R̂r̂ is an upper triangular matrix, the total cost of the procedure is O((n + m)2) flops.

5. Numerical experiments

In the following table, we show the performance of Algorithm HSylSRRA and its application for computing some
singular values of Sylvester matrices. Here we use Maple 9 and set Digits = 16.

We test 600 polynomial pairs at total. The sample polynomials are generated in the following way: for each polynomial
pair, the prime parts and GCD are constructed by choosing polynomials with random integer coefficients in the range
−10�c�10, and then adding a perturbation. For noise we choose a relative tolerance 10−e, then randomly choose a
polynomial that has the same degree as the product, and coefficients in [−10e, 10e]. Finally, we scale the perturbation
so that the relative error is 10−e. For each polynomial pair, we take the larger norm of the two perturbations as the input
error tolerance �. We perform Algorithm HSylSRRA to compute the �-rank of Sylvester matrix for each polynomial
pair.

In the tables, (n, m, d) denotes the degrees of the input polynomials and their GCDs, respectively. For each (n, m, d)

we construct three sets of polynomials: each of them comprises 50 random cases with the same relative tolerance. We
report the average of input error tolerances for each set of polynomial pairs, and denote it by �aver.

As shown in Table 1,we take � by multiplying �2 a multiply: 104, 105, 106. r̂ is the computed numerical rank of the
Sylvester matrix by applying our algorithm; r denotes the �-rank obtained by the SVD. We make a comparison between
r̂ and r and report the results in Table 1. For cases where r̂ = r , the Schur complements Ŝr+1 are all of rather small
norms. Comparing with Ŝr the norms of Ŝr+1 drop dramatically. The average of ‖W̃‖ is smaller than 1000. For those
cases where r̂ < r , the Cholesky factorization is broken down during the first r steps. For a number of such examples,
especially for the cases with d = 3, ‖W̃‖ is of small size; The early breakdown of the algorithm is due to an unsuitable
chosen � (see Remark 4). However, for cases r̂ > r , the norms of W̃ can be of large sizes, e.g. larger than 1000.

For cases r̂ = r , we also apply Algorithm HSylSRRA to calculate the rth and (r + 1)th largest singular values of
the Sylvester matrix. Let err-�̂r , err-�̂r+1 denote the average of the relative errors for the computed rth and (r + 1)th
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Table 1
Numerical rank tests

(n, m, d) � = 104�2 � = 105�2 � = 106�2

�aver Cases Num. �aver Cases Num. �aver Cases Num.

r̂ = r 39 r̂ = r 47 r̂ = r 48
(71, 56, 11) 0.1006 r̂ < r 2 0.0099 r̂ < r 1 0.000101 r̂ < r 1

r̂ > r 9 r̂ > r 2 r̂ > r 1

r̂ = r 46 r̂ = r 48 r̂ = r 47
(68, 53, 8) 0.085 r̂ < r 1 0.0090 r̂ < r 2 0.000087 r̂ < r 0

r̂ > r 3 r̂ > r 0 r̂ > r 3

r̂ = r 46 r̂ = r 48 r̂ = r 50
(80, 78, 3) 0.064 r̂ < r 4 0.0068 r̂ < r 2 0.000065 r̂ < r 0

r̂ > r 0 r̂ > r 0 r̂ > r 0

r̂ = r 46 r̂ = r 45 r̂ = r 49
(43, 38, 8) 0.066 r̂ < r 1 0.0067 r̂ < r 0 0.000067 r̂ < r 0

r̂ > r 3 r̂ > r 5 r̂ > r 1

Table 2
Relative errors of computed singular values

(n, m, d) �aver err − �̂r �aver err − �̂r �aver err − �̂r

err − �̂r+1 err − �̂r+1 err − �̂r+1

(71, 56, 11) 0.1006 0.33e − 1 0.0099 0.195e − 1 0.000101 0.22e − 1
0.147e − 2 0.34e − 4 0.33e − 6

(68, 53, 8) 0.085 0.43e − 1 0.0090 0.23e − 1 0.000087 0.39e − 1
0.24e − 3 0.20e − 4 0.17e − 6

(80, 78, 3) 0.064 0.32e − 1 0.0068 0.32e − 1 0.000065 0.24e − 1
0.24e − 5 0.14e − 6 0.63e − 6

(43, 38, 8) 0.066 0.36e − 1 0.0067 0.30e − 1 0.000067 0.25e − 1
0.20e − 2 0.28e − 5 0.91e − 6

largest singular values with respect to the singular values computed by SVD. The small relative errors in Table 2 show
that the computed singular values are of satisfactory accuracy.

6. Conclusion

In this paper, a fast rank-revealing algorithm for the Sylvester matrix is derived. It costs O(r(n + m)) flops, where
n+m and r are the size and the numerical rank of the Sylvester matrix, respectively. This algorithm is based on the fast
Cholesky factorization of STS or HTH , where S is the Sylvester matrix and H is the Hankel variation of S. Numerical
tests show that the fast rank-revealing algorithm is valid for Sylvester matrices with low rank deficiency.
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