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Abstract

In this paper, we develop a fast structured total least squares (STLS) algorithm for computing an approximate greatest

common divisor (GCD) of two univariate polynomials. By exploiting the displacement structure of the Sylvester matrix

and applying the generalized Schur algorithm, each single iteration of the proposed algorithm has quadratic computational

complexity in the degrees of the given polynomials.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Approximate greatest common divisor; Sylvester matrix; Structured total least squares; Displacement structure
1. Introduction

The problem of finding a greatest common
divisor (GCD) of univariate polynomials with
inexact coefficients is of great practical importance,
for example in signal pole estimation and system
identification [1–3]. Several different algorithms
have been proposed in [4–20]. An approximate
GCD problem can be formulated as an optimiza-
tion problem:

Problem 1.1. Given two univariate polynomials f, g 2

R½x� with degðf Þ ¼ m and degðgÞ ¼ n. For a positive
e front matter r 2007 Elsevier B.V. All rights reserved
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integer k with kpminðm; nÞ, we wish to find

perturbations Df , Dg 2 R½x� with degðDf Þpm and

degðDgÞpn, such that degðGCDðf þ Df ; gþ
DgÞÞXk and kDf k22 þ kDgk22 is minimized.

In [19], the authors transformed the above
problem 1.1 into the following one. Given a
Sylvester matrix, compute a new Sylvester matrix
of lower rank whose entries are near the corre-
sponding entries of that input matrix. They pre-
sented an iterative algorithm based on the
structured total least norm (STLN) algorithm in
[21,22] to solve the approximate GCD problem.
Each single iteration of their algorithm is carried
out with a number of floating point operations that
is of cubic order in the degrees of input polynomials.
By exploiting the displacement structure of the
Sylvester matrix, a fast version of the STLN
algorithm was proposed in [23,24], in which each
iteration has the quadratic order of complexity.
.
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However, the fast algorithm was applied to solve the
ill-conditioned least squares problems formed by
using large penalty values. Hence, it may need much
more iterations to achieve a minimum in some cases.
In this paper, we derive a new fast algorithm which
generalizes the STLS method developed in [25] for
computing the approximate GCDs.

The paper is organized as follows. In Section 2,
we introduce some notations on displacement
structured matrices and discuss the equivalence
between the approximate GCD problem and the
problem of structured low rank approximation of a
Sylvester matrix. In Section 3, we describe a new
fast STLS algorithm to compute the structured low
rank approximation of a Sylvester matrix. In
Section 4, we derive a fast implementation for
approximate GCD computations, and demonstrate
the practical performance of the algorithm on a
diverse set of pairs of univariate polynomials.
2. Preliminary

Let i be a positive integer, Zi be an i � i lower
shift matrix and I i be an i � i identity matrix.
Assume f is an univariate polynomial, then kf k2
denotes the Euclidean 2-norm of its coefficient
vector.

The displacement of an n� n Hermitian matrix T

is defined as

rT ¼ T � ZTZT, (1)

where Z is an n� n lower-triangular matrix. The
choice of Z depends on the matrix T, e.g., if T is a
Toeplitz matrix, then Z is chosen equal to a lower
shift matrix Zn. If rT has a lower rank a ð5nÞ

independent of n, the size of T, then T is said to be
structured with respect to the displacement defined
by (1) and a is referred to as the displacement rank
of T. It follows that rT can be factored as

rT ¼ GJGT,

where G is an n� a matrix and J is a signature
matrix of the form

J ¼
Ip0 0

0 �Iq0

" #
; p0 þ q0 ¼ a.

The integers p0, q0 denote the numbers of positive
eigenvalues and negative eigenvalues of rT , respec-
tively. The pair ðG; JÞ is said to be a generator pair
for T.
When T is strongly regular (i.e. all its leading
principal submatrices are of full rank), the LDLT

decomposition of T can be efficiently carried out by
the generalized Schur algorithm that operates on the
generator pair ðG; JÞ directly and costs Oðan2Þ flops.
The notion of displacement structure can be
extended to non-Hermitian matrices. A more
extensive description about the generalized Schur
algorithm can be found in [26].

Given two univariate polynomials f ; g 2 R½x�

with degðf Þ ¼ m, degðgÞ ¼ n,

f ¼ f mxm þ � � � þ f 1xþ f 0,

g ¼ gnxn þ � � � þ g1xþ g0.

The Sylvester matrix generated by f and g is denoted
by S. For a given positive integer k with
kpminðm; nÞ, Sk 2 Rðmþn�kþ1Þ�ðmþn�2kþ2Þ is a sub-
matrix of S obtained by deleting the last k � 1 rows
of S and the last k � 1 columns of coefficients of f

and g separately in S:

Sk ¼

f m gn

f m�1
. .
.

gn�1
. .
.

..

. . .
.

f m
..
. . .

.
gn

f 0 f m�1 g0 gn�1

. .
. ..

. . .
. ..

.

f 0 g0

26666666666664

37777777777775
:

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n�kþ1

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m�kþ1

(2)

For k ¼ 1, S1 ¼ S is the Sylvester matrix. There is a
well-known strong relationship between the degree
of GCD and the rank deficiency of Sylvester matrix
and its kth submatrix.

Theorem 2.1 (Emiris et al. [7], Gao et al. [27]). Gi-

ven univariate polynomials f, g 2 R½x�, degðf Þ ¼ m

and degðgÞ ¼ n, and a positive integer k with

kpminðm; nÞ. Sðf ; gÞ is the Sylvester matrix of f

and g, Sk is the kth submatrix of Sðf ; gÞ. Then the

following statements are equivalent:
(1)
 degðgcdðf ; gÞÞXk;

(2)
 rankðSÞpmþ n� k;

(3)
 Rank deficiency of Sk is greater than or equal to

one.
Theorem 2.2 (Kaltofen et al. [19]). Based on the

same assumptions as in Theorem 2.1, let
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Sk ¼ ½bk;Ak�, where bk is the first column of Sk and

Ak consists of the last nþm� 2k þ 1 columns of Sk,
then we have

dim NullspaceðSkÞX1 () Akx ¼ bk

has a solution. ð3Þ

Theorem 2.3 (Kaltofen et al. [19]). Given the

integers m, n and k, kpminðm; nÞ, then there exists

a Sylvester matrix S 2 RðmþnÞ�ðmþnÞ with rank

mþ n� k.

Based on the above theorems, given two uni-
variate polynomials f and g and a positive integer
kpminðm; nÞ, suppose Sk ¼ ½bk;Ak�, where bk 2

Rðmþn�kþ1Þ�1 and Ak 2 Rðmþn�kþ1Þ�ðmþn�2kþ1Þ, it is
always possible to find a perturbation ½hk;Ek� of
kth Sylvester structure such that bk þ hk 2

RangeðAk þ EkÞ.
Thus the approximate GCD Problem 1.1 can be

formulated as a structure-preserving total least
norm problem

min
z2Rmþnþ2

kzk2 with ðAk þ EkÞx ¼ bk þ hk

for some vector x, ð4Þ

where the perturbation matrix ½hk;Ek� of Sk has the
form:

½hk;Ek� ¼

z1 zmþ2

z2
. .
.

zmþ3
. .
.

..

. . .
.

z1
..
. . .

.
zmþ2

zmþ1 z2 zmþnþ2 zmþ3

. .
. ..

. . .
. ..

.

zmþ1 zmþnþ2

26666666666664

37777777777775
;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�kþ1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m�kþ1

(5)

which is parameterized via the vector z 2 Rmþnþ2:

z ¼ ½z1; z2; . . . ; zmþnþ1; zmþnþ2�
T.

In the following section, we illustrate how to find a
minimum solution by generalizing and applying the
STLS method derived in [25]. As pointed out in [19,28],
the above STLN problem may not have a solution.
Moreover, the optimal solution may not correspond to
a nearest GCD pair since it may correspond to
polynomials of smaller degrees which remain relatively
prime. Although the STLS method is not guaranteed
to converge to a global minimum, in our experiments,
under some assumptions, they compute the solutions
found by the global method in [8].

3. A new fast STLS algorithm

By introducing the Lagrangian multipliers, the
constrained minimization (4) can be transformed
into an unconstrained optimization problem

Lðz;x;kÞ ¼ 1
2
zTz� kT

ðbk þ hk � Akx� EkxÞ

¼ 1
2
zTzþ kTrðz;xÞ. ð6Þ

A Sylvester-structured matrix X k is constructed
such that

X kz ¼ Ekx� hk ¼ ½hk;Ek�
�1

x

� �
, (7)

where

X k ¼

�1 xnþ1�k

x1
. .
.

xnþ2�k
. .
.

..

. . .
.

�1 ..
. . .

.
xnþ1�k

xn�k x1 xmþnþ1�2k xnþ2�k

. .
. ..

. . .
. ..

.

xn�k xmþnþ1�2k

26666666666664

37777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mþ1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nþ1

.

(8)

We initialize x as the unstructured least squares
solution to Akx � bk and z ¼ k ¼ 0. Since Ak is a
structured matrix with displacement rank at most 2,
we can find the solution x efficiently using Oððmþ
n� k þ 1Þðmþ n� 2k þ 1ÞÞ flops based on the
normal equation method [14].

We refine x, z and kT simultaneously by applying
the Newton’s method on the Lagrangian L, which
yields:

M

Dz

Dx

Dk

2664
3775 ¼

I t1 0t1�t2 XT
k

0t2�t1 0t2�t2 AT
k þ ET

k

X k Ak þ Ek 0s�s

2664
3775

Dz

Dx

Dk

2664
3775

¼ �
gþ JTk

rðz; xÞ

" #
, ð9Þ

where t1 ¼ mþ nþ 2, t2 ¼ mþ n� 2k þ 1, and
s ¼ mþ n� k þ 1. Here J ¼ ½X k;Ak þ Ek�, which
is the Jacobian of rðz; xÞ with respect to the vector
½zT;xT�T, and g ¼ ½zT; 0T�T. The iterative update z ¼
zþ Dz; x ¼ xþ Dx; and k ¼ kþ Dk is stopped
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when kDxk2, kDzk2 and kDkk2 become smaller than
a given tolerance.

It can be shown that M is a matrix with
displacement structure. However, since M is not
strongly regular, a permutation matrix P has been
introduced in [25] to transform M into eM:

eM ¼ PMPT ¼

I t1 XT
k 0t1�t2

X k 0s�s Ak þ Ek

0t2�t1 AT
k þ ET

k 0t2�t2

264
375.

(10)

The matrix eM in (10) is strongly regular if the
matrices X k and AT

k þ ET
k are all of full row rank

[29]. For a properly chosen positive integer
kX degðgcdðf ; gÞÞ, by Theorems 2.1, 2.2, Ak is of
full column rank. We initialize x as the unstructured
least squares solution to Akx � bk, the coprime
polynomials u and v, formed from the vector
½�1;x�T are

v ¼ �xn�k þ x1x
n�k�1 þ � � � þ xn�k,

u ¼ xnþ1�kxm�k þ xnþ2�kxm�k�1 þ � � � þ xmþnþ1�2k.

The matrix X k can be obtained from the Sylvester
matrix of the polynomials xkþ1v and xkþ1u by
cutting off its last k þ 1 rows. Since these last k þ 1
rows only consist of zero entries, and u; v are
coprime, by Theorem 2.1, the matrix X k is of full
row rank. So the matrix eM can be initialized to be
strongly regular if we choose k properly.

Let bM denote the Schur complement of eM with
respect to the block I t1 ,

bM ¼ �X kXT
k Ak þ Ek

AT
k þ ET

k 0t2�t2

" #
. (11)

A partial LDLT decomposition of eM is of the form:

eM ¼ I

X k I

0t2�t1 I

264
375 I bM
� � I

X k I

0t2�t1 I

264
375
T

.

(12)

Theorem 3.1. bM is a structured matrix with the

displacement rank at most 8. We havebM � F bMFT ¼ GJGT, where

F ¼
Zmþn�kþ1

Zmþn�2kþ1

" #
; J ¼

I4

�I4

" #
and

G ¼
c6 c5 c4 c3 c1 c2 c5 c6

1
2
en�kþ1

1
2
e1 0 0 0 0 �1

2
e1 �

1
2
en�kþ1

" #
,

here

c1 ¼ X kð:; 1Þ,

c2 ¼ X kð:;mþ 2Þ,

c3 ¼ Zmþn�kþ1X kð:;mþ 1Þ,

c4 ¼ Zmþn�kþ1X kð:;mþ nþ 2Þ,

c5 ¼ Akð:; 1Þ þ Ekð:; 1Þ,

c6 ¼ Akð:; n� k þ 1Þ þ Ekð:; n� k þ 1Þ

� Zmþn�kþ1Akð:; n� kÞ

� Zmþn�kþ1Ekð:; n� kÞ,

and Zi is a lower shift matrix of order i, ei denotes the

ith column of the identity matrix Imþn�2kþ1.

Applying the generalized Schur algorithm on the
generator pair ðG; JÞ of bM with mþ n� k þ 1
negative steps and mþ n� 2k þ 1 positive steps, we
obtain a backward stable factorization of bM [26,30]:bM ¼ RTDR,

where R is an upper-triangular matrix and D is a
signature matrix. Thus we haveeM ¼ L1L2D1L

T
2 LT

1 ,

where

L1 ¼

I

X k I

0t2�t1 I

2664
3775; L2 ¼

I

RT

" #
,

D1 ¼
I

D

" #
.

The computational cost of the generalized Schur
algorithm is proportional to ð2mþ 2n� 3k þ 2Þ2.

In order to solve the linear system (9), we need to
solve five linear systems with coefficient matrices
L1;L2;D1;L

T
2 ;L

T
1 , respectively. The solution of the

linear systems with coefficient matrix L1 and LT
1 can

be computed in Oððm� k þ 1Þ � ðmþ 1ÞÞ flops that
is dominated by the computational complexity of
multiplying XT

k by a vector, here we assume that
mXn. The solution of the linear system with
coefficient matrix D1 is obtained by changing the
sign of the corresponding entries of the right vector.
Furthermore, the solution of the linear systems with
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coefficient matrix L2 and LT
2 can be computed in

Oðð2mþ 2n� 3k þ 2Þ2Þ flops.
Remark 1. Since the optimization (6) is non-convex,
the local optimization algorithm can only produce a
local minimum, moreover, the stationary point may
be a maxima or a point of inflection [20,25,28,31].
However, in our experiments, we suppose that the
input polynomials are within a relative error of no
more than 10�2 to the polynomials with an exact
GCD of given degree k. Under this assumption, we
demonstrate that our fast STLS algorithm con-
verges quickly to the minimal approximate solu-
tions. In some difficult cases, for example, the input
polynomials are far from having an approximate
GCD, our fast algorithm takes significantly many
iterations of search before reaching a point of
convergence. This point may still only be a local
minima or maxima.
Y ¼

~um�k � � � ~u0 �~vn�k � � � �~v0

. .
. . .

. . .
. . .

.

~um�k � � � ~u0 �~vn�k � � � �~v0

2664
3775
T

2 Rðmþnþ2Þ�ðkþ1Þ.
4. An approximate GCD algorithm and experiments

The following algorithm is designed for finding an
approximate solution to Problem 1.1:

Algorithm FSyl-STLS.
Input: A Sylvester matrix S generated by two

univariate polynomials f ; g 2 R½x� with degðf Þ ¼ m;
degðgÞ ¼ n, an integer 1pkpminðm; nÞ, a tolerance
tol.

Output: Polynomials ~f and ~g with dim
NullspaceðSð ~f ; ~gÞÞXk and the Euclidean distance
k ~f � f k22 þ k ~g� gk22 is reduced to a minimum:
(1)
 Form the kth Sylvester matrix Sk, choose the
first column of Sk as bk, and the remaining
columns of Sk as Ak. Let Ek ¼ 0; hk ¼ 0, k ¼ 0.
(2)
 Compute x from min kAkx� bkk2 and set
r ¼ Akx� bk. Form X k as shown in (8).
(3)
 Repeat
(a) Solve the linear system (9) by the fast

algorithm introduced in Section 3.
(b) Set x ¼ xþ Dx, z ¼ zþ Dz, k ¼ kþ Dk.
(c) Construct the matrix Ek and hk from z, and
X k from x. Set Ak ¼ Ak þ Ek, bk ¼ bk þ hk,
r ¼ Akx� bk, until ðkDxk2ptol and
kDzk2ptol and kDkk2ptolÞ.
(4)
 Output polynomials ~f and ~g formed from bk and
Ak.
Suppose ~Sk ¼ ½~bk; ~Ak� is the nearest singular kth
Sylvester matrix computed by the algorithm FSyl-
STLS and ~Akx ¼ ~bk. We form the polynomials ~u and
~v from the vector ½�1; xT�T, where ~u, ~v satisfy that

~v ~f þ ~u ~g ¼ 0.

Let ~u¼ ~um�kxm�kþ� � � þ ~u1xþ ~u0 and ~v ¼ ~vn�kxn�kþ

� � � þ ~v1xþ ~v0. Suppose k ¼ degðgcdð ~f ; ~gÞÞ, an
approximate GCD of f and g can be formed from
the vector d which solves the least squares problem

min
d
kY d� ck2, (13)

where c ¼ ½ ~f m; . . . ; ~f 0; ~gn; . . . ; ~g0�
T and
Since the coefficient matrix Y is a sparse Toeplitz
matrix, and YTY is a positive definite Toeplitz
matrix with displacement rank at most 2, the linear
system (13) can be solved using Oððmþ nþ 2ÞkÞ
flops [20,25,28]. When k is smaller than degðgcd
ð ~f ; ~gÞÞ, as suggested in [32], we may increase k by
k þ 1 and run the algorithm FSyl-STLS on ~f ; ~g again
until we find the correct k.

Below we present an example to show that the
performance of the fast algorithm derived in [24]
can be affected by the large condition number of the
involved least squares problem.

Example 1. We construct the polynomials f and g

according to the following way:

f ¼ phþ 10�7d1
kphk2
kd1k2

; g ¼ qhþ 10�7d2
kqhk2
kd2k2

,

where the prime parts p; q and the common divisor h

have degrees 50; 40 and 10, respectively; for noises
the polynomials d1 and d2 have degrees 60 and 50,
respectively, with random integer coefficients in
½�107; 107�. After scaled, the noises have sizes
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4
5
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0:000283 and 0:000317, respectively.

f ¼ 25:2137x60 � 2:03761x59 � 49:5383x58

þ � � � � 14:3085,

g ¼ � 12:3988x50 � 35:6049x49 � 49:3511x48

þ � � � þ 7:61565.

Let tol ¼ 10�5, k ¼ 10, applying the algorithm FSyl-
STLS, after three iterations, we obtain an approxi-
mate GCD of f ; g of degree 10 with the minimal
perturbation 2:265� 10�8. However, since the condi-
tion number of the least squares problem solved by
the fast STLN algorithm in [24] is about 3:7� 1014,
the minimal polynomial perturbation 6:645� 10�7 is
obtained by the fast STLN algorithm after 10
iterations, and it is larger than the input perturbation
1:807� 10�7ð¼ 0:0002832 þ 0:0003172Þ.
x m, n k error it.num error it.num error
(STLN) (FSTLN) (FSTLN) (FSTLS) (FSTLS)

2; 2 1 5:59933e23 2:20 5:59933e23 2:25 5:59933e23
3; 3 2 1:07129e22 3:05 1:07129e22 3:15 1:07129e22
5; 4 3 1:56146e26 1:20 1:56146e26 1:20 1:56146e26
5; 5 3 1:34138e28 1:05 1:34318e28 1:05 1:34318e28
6; 6 4 1:96333e210 1 1:96333e210 1 1:96333e210
8; 7 4 1:98415e216 1 1:98415e216 1 1:98415e216

10; 10 5 1:51551e212 2:15 1:51551e212 1 1:51551e212
14; 13 7 2:61818e24 2 2:61819e24 2 2:61819e24
28; 28 10 3:54575e24 2:75 3:54575e24 2 3:54575e24

0 50; 50 30 9:35252e26 3:25 9:35274e26 1:4 9:35250e26
In the table, we compare the accuracy of the
new fast algorithm with the algorithms in [19,24,33].
We use Maple 9 and take Digits ¼ 15. The
sample polynomials are generated as described in
[19]: we use 50 random cases for each ðm; nÞ, and
report the average over all results. For each
example, the prime parts and the GCD of two
polynomials are constructed by choosing polyno-
mials with random integer coefficients in the range
�10pcp10, and then adding a perturbation. For
noise we choose a relative tolerance 10�e, then
randomly choose a polynomial that has the same
degree as the product, with coefficients in
½�10e; 10e�. Finally, we scale the perturbation so
that the relative error is 10�e.
Here m; n denote the degrees of polynomials f and
g; k is the degree of the approximate GCD of f and
g; error(STLN), error(FSTLN) and error(FSTLS)
denote the minimal perturbation k ~f � f k22 þ k ~g�
gk22 computed by the algorithms in [19,24,33]
and the FSyl-STLS algorithm; it.num(FSTLN)
and it.num(FSTLS) denote the average numbers
of iterations performed by the fast STLN algorithm
[24] and the FSyl-STLS algorithm respectively.
As shown in the table, the two fast algorithms
both converge quickly to the minimal approx-
imate solutions, needing no more than five
iterations. When the degrees of polynomials
become large, we note that the FSyl-STLS
algorithm still converges very quickly while the
fast STLN algorithm requires more number of
iterations.
5. Concluding remarks

In this paper, we develop a fast STLS algo-
rithm for computing an approximate GCD
of two univariate polynomials. For this ite-
rative algorithm, each single iteration has quad-
ratic computational complexity in the degrees of
the given polynomials. Experiments show that
the new algorithm can produce satisfactory
computational results and it may require less
number of iterations than the fast algorithm derived
in [24]. Our new algorithm can also be gene-
ralized to compute the approximate GCDs of
several polynomials with linearly constrained
coefficients.
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