
Chapter 1

Algebraic Factorization and

GCD Computation

Lihong Zhi

This chapter describes several algorithms for factorization and GCD com-
putation of polynomials over algebraic extension fields. These algorithms
are common in using the characteristic set method introduced in the previ-
ous chapters. Some performance comparisons between these algorithms are
reported. Applications include geometry theorem proving, irreducible de-
composition of algebraic variaities, implicitization of parametric equations
and verification of geometric conditions.

1.1 Introduction

Factoring polynomials over algebraic extension fields can be traced back to
Kronecker (1882). A similar algorithm can also be found in van der Waerden
(1953), which was adopted and improved by Trager (1976). Further improve-
ments are given by Encarnación (1997) and Noro and Yokoyama (1997). By
using the Chinese remainder theorem, Hensel lemma and lattice techniques,
several different approaches were given in Wang (1976), Weinberger and
Rothschild (1976), Lenstra (1982, 1987), Landau (1985) and Abbott (1989).

The study of algebraic factorization in Wu’s research group started in
1984, motivated by the need for it in the method of Wu (1984, 1987) for
geometry theorem proving (GTP). Two different methods were proposed in
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Hu and Wang (1986), Wang (1992a) and Wu (1994), and applied to GTP

and irreducible decomposition of algebraic varieties (see Wang 1992b, 1994).
Investigations along this line have been furthered by Zhi (1996) who has been
trying to work out an optimized algorithm by incorporating and improving
different techniques.

Let Z denote the integers, Q be the field of rational numbers, u1, u2, . . . , ud,
be a set of transcendental elements, abbreviated as u. The transcenden-
tal extension field obtained from Q by adjoining u is denoted by K 0, i.e.,
K0 = Q(u). The algebraic elements η1, η2, . . . , ηr, abbreviated as η, are
defined by an irreducible ascending set AS

[A1(u, y1), A2(u, y1, y2), . . . , Ar(u, y1, y2, . . . , yr)]

with Ai ∈ Q[u, y1, . . . , yi], deg(Ai, yi) = mi > 0 and deg(Ai, yj) < deg(Aj , yj),
for each pair j < i. Here deg(Ai, yj) denotes the degree of Ai in yj as usual.
Ai, as a polynomial in K i−1[yi], is irreducible, where K i−1 = Ki−2(ηi−1),
with Ai−1 the minimal polynomial of ηi−1 for each i ≥ 2. The field Kr is
called an algebraic extension field of K0 defined by AS (or simply by A1

when r = 1). If d = 0, and thus K0 = Q, then Kr is called an algebraic
number field ; otherwise it is called an algebraic function field. Sometimes,
when AS is specified as above, we simply write K i−1(yi) for K i without
explicitly introducing the algebraic element ηi.

The problem amounts to factorizing a polynomial

F (u,η, x1, . . . , xt) ∈Kr[x1, . . . , xt]

over Kr.

By choosing a main variable x, suppose x1 without loss of generality, one
can write F in the form

F = f0x
n + f1x

n−1 + · · ·+ fn

with fi ∈ Kr[x2, . . . , xt], for i = 0, 1, . . . , n. f0 = lc(F, x) is the leading
coefficient of F in x. The content of F with respect to x is the greatest
common divisor of f0, . . . , fn; F is primitive if its content is 1. F is said to
be squarefree if it has no repeated factors. In what follows, F is assumed
to be squarefree and primitive with respect to its main variable. In the first
two methods to be presented, x2, x3, . . . , xt are treated as transcendental
elements and are absorbed in Kr, while in the third method, we distinguish



1.2. METHOD OF UNDETERMINED COEFFICIENTS 3

the x’s from the u’s. For nonzero polynomials A,B over K r with deg(A, x) =
m ≥ deg(B, x) = n ≥ 0, one defines the pseudo-division by the formula:

lc(B, x)[m−n+1]A = QB + R, and deg(R, x) < n,

where Q,R are polynomials over Kr. We call Q and R the pseudo-quotient
and pseudo-remainder of A and B, denoted by pquo(A,B, x) and prem(A,B, x),
respectively. Similarly, one can defines the pseudo-remainer of A with re-
spect to the ascending set AS as:

prem(A,AS) = prem(· · · (prem(A,Ar, yr), · · ·), A1, y1).

1.2 Method of Undetermined Coefficients

Suppose that F (x) can be factorized over Kr as

F (x) ≡ f0 ·G(x) ·H(x) mod AS,

where

G(x) = xs + g1x
s−1 + · · ·+ gs,

H(x) = xt + h1x
t−1 + · · ·+ ht

s + t = n, 1 ≤ s, t ≤ n− 1,

and ≡ means that prem(F − f0GH,AS) = 0. The above gi and hj can be
written as

gi =
∑

0≤kl≤ml−1

1≤l≤r

gik1···kr
y1

k1 · · · yr
kr ,

hj =
∑

0≤kl≤ml−1

1≤l≤r

hjk1···kr
y1

k1 · · · yr
kr ,

gik1···kr
, hjk1···kr

∈K0,
i = 1, . . . , s, j = 1, . . . , t.

(1.1)

Here, the number of gik1···kr
and hjk1···kr

is (s+ t)m1 · · ·mr = M. We rename
these indeterminate coefficients with a fixed order as z1 ≺ z2 ≺ · · · ≺ zM .
Now expand F − f0GH, compute its pseudo-remainder R with respect to
AS, and equate the coefficients of all the power products of R in y1, . . . , yr, x
to 0, we shall obtain a system of M polynomial equations

V1(u, z1, . . . , zM ) = 0
V2(u, z1, . . . , zM ) = 0

· · · · · ·
VM (u, z1, . . . , zM ) = 0

(1.2)
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with coefficients in K0. Thus, whether the polynomial F can be factorized
over Kr is equivalent to whether the above system of polynomial equations
has a solution for z1, . . . , zM in the field K0, which can be determined by
using the characteristic set method.

Algorithm FactorA. Given an irreducible ascending set AS = [A1, . . . , Ar]
that defines the field Kr and a polynomial F ∈ Kr[x] of degree m > 1
which is irreducible over K0 and reduced with respect to AS. This algorithm
calculates the irreducible factorization of F over K r.

S1. If m is even then set m← m/2, else set m← (m− 1)/2.

S2. For s = 1, · · · ,m do:

S2.1. Set t← m− s, and

G← xs + g1x
s−1 + · · ·+ gs, H ← xt + h1x

t−1 + · · · + ht,

where gi, hj are defined by (1.1).

S2.2. Expand R ← prem(F − f0GH,AS), equate the coefficients of
R of all power products in y1, . . . , yr, x to 0 and obtain a system
(1.2) of polynomial equations.

S2.3. Solve (1.2) for x1, · · · , xM in Q(u) by the characteristic set
method. If there is no solution then go back to S2 for the next
s. Otherwise, let x1 = x1, . . . , xM = xM be any solution of (1.2),
set

G← G|x1=x1,...,xM=xM
, H ← H|x1=x1,...,xM=xM

,

and go to S4.

S3. Return “F is irreducible over K r”.

S4. Factorize G and H in Kr[x] and return

F ← f0 · FactorA(G,AS) · FactorA(H,AS).

Example 1 Factorize the polynomial F = x3 +3yx2−x+6y over K, where
K = Q(y) is the algebraic extension field defined by A = y2 + 2.

Suppose that F has a factorization of the form

F = [x + (x1y + x2)][x
2 + (x3y + x4)x + (x5y + x6)], i = 1, . . . , 6, (1.3)
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where the xi are unknowns to be determined in Q. Comparing the coeffi-
cients of x on the two sides of (1.3), we obtain

x1y + x2 + x3y + x4 = 3y,
(x1y + x2)(x3y + x4) + x5y + x6 = −1,

(x1y + x2)(x5y + x6) = 6y.

Expanding the above equalities, reducing them by A and then comparing
the coefficients of y on the two sides of the obtained equalities, we get a set
of polynomial equations

x1 + x3 = 3,
x2 + x4 = 0,

x2x3 + x1x4 + x5 = 0,
x2x4 − 2x1x3 + x6 = −1,

x2x5 + x1x6 = 6,
x2x6 − 2x1x5 = 0.

(1.4)

By the characteristic set method, we find a rational solution:

(x1, x2, x3, x4, x5, x6) = (2, 0, 1, 0, 0, 3).

Therefore, F can be factorized as

F = (x + 2y)(x2 + xy + 3)

over Q. Factorizing x2 + xy + 3 by using the same method, we shall find
that it is irreducible.

The above method was proposed by Hu and Wang (1986). It has been
improved in Wu (1994) by introducing only one polynomial H and perform-
ing R = prem(prem(F,H, x), AS). For H to be a factor of F it is necessary
and sufficient that R = 0.

Algorithm FactorA*. Given an irreducible ascending set AS = [A1, . . . , Ar]
that defines the field Kr and a polynomial F ∈Kr[x] of degree m > 1, irre-
ducible over K0 and reduced with respect to AS. This algorithm calculates
the irreducible factorization of F over K r.

S1. If m is even then set m← m/2, else set m← (m− 1)/2.

S2. For t = 1, · · · ,m do:

S2.1. Set H ← xt + h1x
t−1 + · · ·+ ht, where hj defined by (1.1).
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S2.2. Expand R ← prem(prem(F,H, x), AS), equate the coefficients
of R of all the power products in y1, . . . , yr, x to 0, and obtain a
system of polynomial equations as in (1.2) with M = tm1 · · ·mr.

S2.3. Solve the system for x1, · · · , xM in Q(u) by the characteristic
set method. If there is no solution then go back to S2 for the
next t. Otherwise, let x1 = x1, . . . , xM = xM be any solution, set

H ← H|x1=x1,...,xM=xM
, G← pquo(F,H, x),

and go to S4.

S3. Return “F is irreducible over K r ”.

S4. Factorize G and H in Kr[x] and return

F ← f0 · FactorA
∗(G,AS) · FactorA

∗(H,AS).

Now we apply this improved method to Example 1 again. Suppose that
F has a factor H = x + (x1y + x2) of degree 1; then

R = prem(prem(F,H, x), A, y)
= 6y + x1y − 3x1x

2
2y + x2 + 3x2

2y − x3
2 − 6yx2

1 + 2yx3
1 + 6x2

1x2 − 12x1x2.

Let R = 0, i.e., let the coefficients of y in R be all zero; we obtain

6x2
1x2 − x3

2 + x2 − 12x1x2 = 0,
−3x1x

2
2 + 6− 6x2

1 + 2x3
1 + 3x2

2 + x1 = 0.
(1.5)

Solving this system of equations by the characteristic set method, we find a
unique rational solution (x1, x2) = (2, 0). Therefore, F can be factorized as

F = (x + 2y)(x2 + xy + 3).

From this example one can see that the number of equations in (1.4) is 6 and
in (1.5) is 2 but the equations in (1.4) are all simpler than those in (1.5).

1.3 Method via Transformation and Triangular-

ization

This method was discovered by Wang (1992a,1995) during his implementa-
tion of the CharSets package. The basic idea underlying the method is the
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reduction of polynomial factorization over algebraic extension fields to that
over the rational number field via linear transformation and the computa-
tion of characteristic sets with respect to a proper variable ordering. The
factors over the algebraic extension fields are finally determined via algebraic
GCD computation. The following lemma (see Wang 1999) guarantees the
correctness of the factoring algorithm described below.

Lemma 1 Let AS and F be as in the preceding section, c1, . . . , cr be r inte-
gers,

F ← F |x=x−c1y1−···−cryr
,

and CS be an characteristic set of AS = AS ∪ {F } over K0 with respect to
x ≺ y1 ≺ y2 · · · ≺ yr. Let C be the first polynomial in CS and

C ← C|x=x+c1y1+···+cryr
.

If CS is irreducible and contains exactly r +1 polynomials, then the GCD of
F and C is irreducible over Kr.

We continue using the above notations and let CS = [C 0, C1, . . . , Cr] be
a characteristic set of AS. It happens in general that all the polynomials
other than C0 in CS are linear in their leading variables, while C0 involves
the variables u and x only. If this is the case, CS is said to be quasilinear.
If CS is not quasilinear, we make a linear transformation by substituting
x − c1y1 − · · · − cryr for x, where c1, . . . , cr are randomly chosen integers.
The probability of obtaining a quasilinear characteristic set with such a linear
transformation is one (see Wang 1992).

If CS is quasilinear and C0 is irreducible over K0, then the GCD of F
and C0 = C0|x=x+c1y1+···+cryr

over Kr must be a true irreducible factor of
F over Kr according to Lemma 1. If C0 is reducible over K0, we try to
determine possible factors of F over K r by computing the GCD of F with
each K0-factor of C0 over the algebraic extension field Kr. Practically, we
can start this determination as soon as CS is triangularized, without need
to arrive at an exact characteristic set. Note that during the computation
one should try to remove some factors (over K0) if possible. Some factors
of F over Kr may also be determined from those K0-factors and the initials
of the polynomials in CS = CS|x=x+c1y1+···+cryr

.

Algorithm FactorB. Given an irreducible ascending set AS = [A1, . . . , Ar]
that defines the field Kr and a polynomial F ∈Kr[x] that is reduced with
respect to AS and irreducible over Q, this algorithm gives the irreducible
factorization of F over Kr.
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S1. Set AS∗ ← [Ai : deg(Ai, yi) > 1, Ai ∈ AS]. If AS∗ is empty, then the
procedure terminates and return F . Otherwise, let yp1

≺ yp2
· · · ≺ yps

be the leading variables of the polynomials in AS∗. Choose a set of
integers [c1, . . . , cs].

S2. Set F ← F |x=x−c1y1−···−csys
. Compute a characteristic set CS of AS∗∪F

with respect to the variable ordering x ≺ yp1
· · · ≺ yps

. Let ∆ be the
set of the irreducible factors (over K0) of the initials of the polynomials
in CS and Ω the set of the irreducible factors (over K0) of the first
polynomial in CS which is not included in ∆.

S3. If CS is quasilinear, then go to S4. If Ω is empty, then choose a new set
of integers c1, . . . , cs and go to S2. Otherwise, set ∆← ∆∪Ω, Ω← ∅.

S4. Set G ← F,Ω ← Ω|x=x+c1y1+···+csys
and ∆ ← ∆|x=x+c1y1+···+csys

. For
each P ∈ Ω∪∆, compute the GCD FP of G and P over Kr with heuris-
tic normalization, and set G ← G/FP over Kr. If some true factors
of F are found, then apply FactorB to FP and obtain an irreducible
factorization F ∗

P for each P ∈ ∆ ∪ {G}, then return

F ∗ =
∏

P∈Ω

FP

∏

P∈∆∪{G}

F ∗
P .

Otherwise, if CS is quasilinear, then return F ; otherwise try new
c1, . . . , cs and go to S2.

Normalizing a polynomial G by AS amounts to finding a polynomial G∗

that differs from G only by a factor in Kr, and lc(G∗, x) ∈ Q[u]. In many
cases, G∗ is much simpler than G, but the opposite is also true in many
other cases. Heuristic use of normalization may improve the efficiency of
FactorB considerably ( see Wang 1992a, 1999). An immediate variation of
the above algorithm is to compute not only the characteristic set but also the
characteristic series in S2. The irreducible factors of F are determined from
those ascending sets in the series whose irreducibility can be easily verified.

Example 2 Factorize the polynomial

F = 2x3 − 2x2y2 + 2x2y1 + 4x2y1y2 − 2xy1y
2
2 + 2x2y2

2 + y1x
−6y1y2 − xy1y2 − 4x2 − 4xy2 − 12

over K, where K = Q(y1, y2) is the algebraic extension field defined by the
irreducible ascending set

AS = [y2
1 + 2, 2y3

2 − y1y2 − y1].
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We begin by choosing c1 = 0, c2 = 0; F = F . A characteristic set of
{F } ∪ AS with respect to the ordering x ≺ y1 ≺ y2 is quasilinear and the
first polynomial can be factorized over Q into 2G1G2 :

G1 = 2x6 + 12x4 − 8x3 + 13x2 − 14x + 27,
G2 = 4x12− 48x11 + 292x10− 820x9 + 1561x8 − 3490x7 + 7657x6

−14400x5 + 23778x4 − 28080x3 + 3888x2 + 15552x + 23328

One may find that the GCD of F and G1 over K is

F1 = x + y1 − y2,

and the GCD of F and G2 over K is

F2 = x2 − 2x + xy2
2 + 2xy1y2 + 3y1.

Therefore, F is factorized into 2F1F2 over K.

1.4 Hybrid Method with Modular Techniques

The methods described previously are both of sufficient generality. But in
the presence of having trancendentals, the algorithms are quite slow. This
is mainly because the complexity of computation in Q(u) is high. It turns
out that in this case the modular techniques of using integer substitution
and Hensel lifting can be adapted to improve the methods.

Following standard modular approach to the factorization of a multi-
variate polynomial over an algebraic function field, we have the following
steps:

• Ensure that the polynomial is squarefree.

• Find “lucky” integer substitutions to reduce the multivariate polyno-
mial to a univariate polynomial, and the algebraic function field to an
algebraic number field.

• Factorize the univariate polynomial over the algebraic number field.

• Lift the univariate factors as well as the ascending set.

• Check the true factors.
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We assumed that x1 is the main variable and the polynomial F is square-
free and primitive with respect to x1 in the algebraic extension field Q(u,η).
The set of integers b,a, with b = (b1, . . . , bd) and a = (a2, . . . , at), is said to
be lucky if it satisfies the following two conditions:

1. F (0) = F (b,η, x1,a) remains squarefree and deg(F (0), x1) = deg(F, x1).

2. AS(0) = [A1(b, y1), . . . , Ar(b, y1, . . . , yr)] is still an irreducible ascend-
ing set.

For the first condition, choose a and b such that

res(F, F ′, x1)(b, x1,a) 6= 0.

Here, and later on, res(F,G, x) denotes the resultant of the polynomials F,G
with respect to the variable x; F ′ is the partial differential of F with respect
to x1. It is more difficult to choose b such that the ascending set remains
irreducible. However, there is a lot of freedom according to the following
Hilbert irreducibility theorem (see Abbott 1989) and the primitive element
theory.

Proposition 1 (Hilbert Irreducibility Theorem) Let P be irreducible in Z

and U(N) denote the number of s-tuples (b1, . . . , bs) ∈ Zs such that |bi| ≤ N
for 1 ≤ i ≤ s. Let P = P (b1, . . . , bs, x1, . . . , xt) be reducible in Z[x1, . . . , xt].
Then there exist constants a and c (depending on P ) such that U(N) ≤
c(2N + 1)s−a and 0 < a < 1.

For the Hensel lemma, we refer to Zassenhaus (1969) for details. Now
the most important thing is to determine when to stop the lifting and check
the true factors. Let us look at two examples.

Example 3 Factorize F = ux2 − 2yx− u + 1 ∈ Q[u, y, x] with y defined by
the polynomial A = y2 − u.

The solution is given by

F ≡ u

(

x +
u− y

u

) (

x−
u + y

u

)

mod A.

The factors have u appearing in the denominators.

Example 4 Factorize F = x2−u ∈ Q[u, y, x] with y defined by A = u3y2−1.
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The solution is given by

F = (x + u2y)(x− u2y) mod A.

The factors have powers of u higher than that in the original F .

The above two simple examples show that it is necessary to distinguish
the transcendental elements u from the variables x1, . . . , xt because the total
degree in x1, . . . , xt is bounded by that of the original F , but this is not true
for the total degree in u and much worse, u can appear in the denominators
of the factors. In Abbott (1989) a possible upper bound for the total degree
in u was given, but unfortunately the bound is often too large and his proof,
based on Trager (1976), is not complete. We adopt an optimal bound; after
arriving at that bound, we multiply every factor by a common polynomial
and check whether it is a true factor of F over the field K r. This common
polynomial can be obtained according to the following discussion taken from
Abbott (1989).

Any element in Kr can be represented by the basis

{η1
e1 · · · ηr

er : 0 ≤ ei < mi for all i},

The defect of this basis for Kr is the largest denominator appearing in the
representation of those algebraic functions whose monic minimal polynomials
lie in Z[u]. The discriminant of the basis for Kr is

N2N3 · · · (dis(A1))N1N3 · · · (dis(A2))N1N2 · · · (dis(A3)) · · · ,

where Ni is the norm map, i.e. the product of the images under the different
embeddings from K i to Ki−1, and dis(Ai) = res(Ai, Ai

′, yi).

Proposition 2 The square of the defect of the basis for K r divides its dis-
criminant.

The following algorithms can be considered as variants of the method of
P. S. Wang (1976); the algorithm SFactorC improves the method of Trager
(1976) by using non-squarefree norms of polynomials.

Algorithm FactorC. Given an irreducible ascending set AS = [A1, . . . , Ar]
that defines the algebraic function field Kr and a squarefree polynomial
F ∈ Kr[x1, . . . , xt], the algorithm determines the irreducible factorization
of F over Kr.
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S1. Choose lucky integers b← (b1, . . . , bd) and a← (a2, . . . , at). Set

F (0) ← F (b,η, x1,a),

AS(0) ← [A1(b, y1), . . . , Ar(b, y1, . . . , yr)].

S2. Use UFactorC to factorize F (0)(η, x1) over Q(η) defined by AS(0):

F (0) ≡ G
(0)
1 (η, x1) · · ·G

(0)
m (η, x1) mod (U,AS(0)),

where U = (u1 − b1, . . . , ud − bd, x2 − a2, . . . , xt − at).

S3. Apply Hensel lifting to the factors G
(0)
i and AS(0) such that

F ≡ G
(δ)
1 (u,η, x1, . . . , xt) · · ·G

(δ)
m (u,η, x1, . . . , xt) mod (U δ+1, AS(δ)),

AS ≡ AS(δ) mod (U δ+1).

S4. When δ > deg(F,u) +
∑t

i=2 deg(F, xi) +
∑r

i=1 deg(Ai,u) (the degree in
u means the total degree), try the true factor test to obtain

F ← G1(u,η, x1, . . . , xt) · · ·Gs(u,η, x1, . . . , xt).

Algorithm UFactorC. Given an irreducible ascending set AS = [A1, . . . , Ar]
that defines Q(η) and a squarefree polynomial F ∈ Q(η)[x]. The algorithm
calculate the irreducible factorization of F over Q(η).

S1. Select a set of integers c ← (c1, . . . , cr) such that the characteristic
set CS of AS ∪ {w − c1y1 − · · · − cryr} under the variable ordering
w ≺ y1 ≺ · · · ≺ yr is irreducible and quasilinear.

S2. Normalize CS ← [C0(w), y1 − C1(w), . . . , yr − Cr(w)].

S3. Set F ∗(w, x)← F (C1(w), . . . , Cr(w), x) and apply SFactorC to F ∗(ξ, x)
over Q(ξ):

F ∗ ← F1(ξ, x) · · ·Fs(ξ, x),

where ξ has minimal polynomial C0(w).

S4. Substitute ξ =
∑r

i=1 ciηi for ξ in each Fi.

S5. Return F ← F1(η, x) · · ·Fs(η, x).
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Algorithm SFactorC. Given a monic minimal polynomial m(y) of α and
a squarefree polynomial F ∈ Q(α)[x], the algorithm compute the irreducible
factorization of F over Q(α).

S1. Choose a positive integer s and set

G(α, x) ← F (α, x − sα),
R(x) ← res(G(y, x),m(y), y).

S2. If R(x) is squarefree, then go to S3. Otherwise, compute over Q an
irreducible factorization

R(x)/gcd(R(x), R′(x))← F1(x) · · ·Fk(x).

If k = 1 then go to S1, else set

Gi ← gcd(F (x), Fi(x + sα))

and apply SFactorC to F/(G1 · · ·Gk) and G′
is :

Gi ← Gi1(α, x) · · ·Gimi
(α, x), 1 ≤ i ≤ k,

F/(G1 · · ·Gk)← G01(α, x) · · ·G0m0
(α, x);

then return
F ←

∏

1 ≤ j ≤ mi

0 ≤ i ≤ k

Gij(α, x)

and the algorithm terminates.

S3. Factorize R over Q:

R(x)← H1(x) · · ·Hl(x).

If l = 1, then return F and the algorithm terminates.

S4. For i = 1, . . . , l do:

Hi(α, x) ← gcd(Hi(x), G(α, x)),
G(α, x) ← G(α, x)/Hi(α, x),

Hi(α, x) ← Hi(α, x + sα)

over Q(α).
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S5. Return F ← H1(α, x) · · ·Hl(α, x).

Example 5 Factorize F = x2 − y + 1 over K = Q(y, a) defined by AS =
[a2 − (y − 1)3].

Pick the substitution value 0 for y; then F and AS are mapped to

F (0) = x2 + 1 and AS(0) = [a2 + 1]

respectively. The ascending set AS(0) is still irreducible. Applying UFactorA

to F (0), one gets

F ≡ (x− a)(x + a) mod (y,AS(0)).

Hensel lifting AS(0) and the two factors of F (0) proceeds as follows:

F ≡ (x− a− ay)(x + a + ay) mod (y2, AS),
AS ≡ [a2 − 3y + 1] mod (y2),
F ≡ (x− a− ay − ay2)(x + a + ay + ay2) mod (y3, AS),

AS ≡ [a2 + 3y2 − 3y + 1] mod (y3),
F ≡ (x− a− ay − ay2 − ay3)(x + a + ay + ay2 + ay3) mod (y4, AS),

AS ≡ [a2 − y3 + 3y2 − 3y + 1] mod (y4).

Now begin the true factor test. The discriminant of K is dis(a2 − (y −
1)3) = −4(y − 1)3. Let D be the greatest factor whose square divides the
discriminant; clearly D = y − 1. Take one of the above two factors, e.g.,

F1 = (x− a− ay − ay2 − ay3).

Then, we have

F ∗
1 = DF1 = (y − 1)F1 ≡ x(y − 1) + a mod (y4, AS).

A simple test shows that F ∗
1 /D = x + a/(y − 1) can divide x2 − y + 1.

Therefore, we obtain the following factorization

F =

(

x−
a

y − 1

) (

x +
a

y − 1

)

over K.
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1.5 GCD Computation over Algebraic Fields

Using the same notations, we consider the problem of finding the greatest
common divisor (GCD) of two polynomials F and G over the algebraic
extension field Kr = Q(u,η). Corresponding to the above three algebraic
factorization algorithms, there are three methods for determining the GCD
of multivariate polynomials over algebraic extension fields. For the modular
method of computing the GCD over an algebraic number field, we refer to
Langemyr and McCallum (1989).

1.5.1 Method A

For the undetermined coefficients method, Wu (1994) supposed that

F (x) = f0x
n + f1x

n−1 + · · ·+ fn,
G(x) = g0x

m + g1x
m−1 + · · · + gm

with fi, gj ∈Kr already known. Let

Cn−e(x) = c0x
n−e + c1x

n−e−1 + · · ·+ cn−e,
Dm−e(x) = d0x

m−e + d1x
m−e−1 + · · ·+ dm−e

be two polynomials satisfying prem(Dm−eF − Cn−eG,AS) = 0 and

ci =
∑

0≤kl≤ml−1

1≤l≤r

cik1···kr
y1

k1 · · · yr
kr ,

dj =
∑

0≤kl≤ml−1

1≤l≤r

djk1···kr
y1

k1 · · · yr
kr .

Proceeding as in Section 1.2, we get a linear system of polynomial equations:

W1(u, z1, . . . , zN1
) = 0,

W2(u, z1, . . . , zN1
) = 0,

· · · · · ·
WN (u, z1, . . . , zN1

) = 0,

where N = (m+n−e+1)m1m2 · · ·mr and N1 = (m+n−2e+1)m1m2 · · ·mr.
Owing to the linearity in cik1···kr

and djk1···kr
, it is easy to see whether or

not the system has solutions for (ci, di) ∈Kr for any given e. We start now
from e = min(m,n). If there exists no solution, then we proceed to the case
of e− 1. Proceeding in the same way further and further, we will ultimately
get the GCD of F and G as required.

It is very interesting that the above algorithm has been also used for
computing the approximate GCD for polynomials whose coefficients have
errors (see Corless 1995 and Karmarkar and Lakshma 1996).



16 CHAPTER 1. FACTORIZATION

Example 6 Find the GCD in Q[u, y] of

F = x2 − u, G = x2 + 2u2yx + u

with y defined by A = u3y2 − 1.

Suppose
C1 = x + (c1y + c2), ci ∈ Q(u),
D1 = x + (d1y + d2), di ∈ Q(u)

such that
R = prem(D1F − C1G,A) = 0.

Expanding R and equating the coefficients to zero, we get

d1 − c1 − 2u2 = 0,
d2 − c2 = 0,
−2u3c2 = 0,

−2u2 − 2c1 = 0,
d1 + c1 = 0,
d2 + c2 = 0.

Computing a characteristic set of the above equation system, one gets a set
of solutions {c1 = −u2, c2 = 0, d1 = u2, d2 = 0}. Hence

C1 = x− u2y, D1 = x + u2y,

and the GCD is given by

H =
F

C1
=

G

D1
= x + u2y ∈ Q[u, y, x].

1.5.2 Method B

Generalizing the Euclidean algorithm for computing the GCD of F (x) and
G(x) over Q to algebraic extension filed K r = Q(u,η), we form a polynomial
remainder sequence (prs) f1, f2, . . . , fk+1 as follows:

f1 = F, f2 = G, suppose deg(F, x) ≥ deg(G, x)
fi = prem(prem(fi−2, fi−1, x), AS), for 3 ≤ i ≤ k + 1,
fi 6= 0, for 1 ≤ i ≤ k and fk+1 = 0.

The above procedure is similar to computing a characteristic set of the poly-
nomial set AS ∪ {F,G} and the last polynomial in the characteristic set
corresponds to the GCD of F and G over Kr.
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Let us look at Example 2 again. During the execution of algorithm
FactorB , we need to compute the GCD of F and G1 over K. Computing a
characteristic set of AS ∪ {F,G} with respect to the ordering y1 ≺ y2 ≺ x,
we obtain

CS = [y2
1 + 2, − 2y3

2 + y1y2 + y1, 139696xy1y
2
2 + 144205xy1y2

−87277x + 66440y1x− 180960y1y2 − 98706y1 − 61437y2

−103091xy2 − 121347y1y
2
2 − 176301y2

2 + 22858xy2
2 + 6816].

Normalizing the last polynomial in CS, we get

CS1 = [y2
1 + 2,−2y3

2 + y1y2 + y1, x + y1 − y2].

The last polynomial in CS1 is the GCD of F and G1 over Kr.

1.6 Implementations and Applications

The described algorithms FactorA and FactorB for polynomial factorization
have been implemented by Wang (1992a,1995) in his charsets package in the
Maple system; the algorithm FactorC was implemented by Zhi (1996) also in
the Maple system. The algorithms for computing the GCD by methods A
and B were implemented by Zhi (1996) and Wang (1992a,1995), respectively,
in Maple. A large set of examples is chosen to compare the performances
between these different methods as well as the Maple built-in functions.
See the timings in Wang (1992a) and Zhi (1996, 1997). According to these
experimental results, our three methods seem to be efficient in different
cases. If the degrees of the polynomial and the ascending set are less than 4,
then FactorA works well; FactorB is relatively faster when the transcendental
elements u do not appear in the AS; FactorC is very powerful for factorizing
multivariate polynomials over algebraic function fields. Combining these
three methods and some criteria for irreducibility test in Wang (1992a), a
hybrid factoring algorithm is given by Zhi (1996).

As we have pointed out at the beginning of this chapter, our motivation
for studying algebraic factorization comes from geometry theorem proving.
Following Wu (1984), one may express a theorem in elementary (unordered)
geometry by means of a set HS of polynomials for its hypothesis and, with-
out loss of generality, a single polynomial C for its conclusion. Proving the
theorem amounts to deciding whether any zero of HS is a zero of C, and if
not, which parts of the zeros of HS are zeros of C. An elementary version of
Wu’s method proceeds by computing first a characteristic set CS of HS and
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then the pseudo-remainder R of C with respect to CS. If R ≡ 0, then the
theorem is proved to be true under the subsidiary condition J 6= 0, where
J is the product of the initials of the polynomials in CS. A large number
of geometric theorems can be proved effectively in this way. However, if R
happens to be non-zero, one cannot immediately tell whether the theorem
is false or not; in this case, one has to examine the reducibility of CS and
perform further decompositions. See Wu (1984), Chou and Gao (1990) and
Wang (1994, 1999). CS is reducible often when some geometric ambiguities
such as bisection of angles and contact of circles are involved in the theorem
(see Wu 1987). To test the irreducibility of CS or to decompose CS into
irreducible ascending sets, it is necessary to factorize polynomials over suc-
cessive algebraic extension fields. Wang (1994) presented a set of geometric
theorems whose automated proofs may require algebraic factorization. For
example, when we prove Poncelet’s theorem, the following factorization is
necessary (see Wang and Zhi 1998):

f = (x4x
2
3R

2 − x4
3 − (x2

2 + x2
1)x

2
3 − x2

1x
2
2

= (2x3R− 2x2
4 + 2x2x4 + 2x1x4 + x2

3 − x1x2)
(2x3R + 2x2

4 − 2x2x4 − 2x1x4 − x2
3 + x1x2)

over the algebraic field K = Q(x1, x2, x3, x4) defined by

A = 4x4
4 − 8(x2 + x1)x

3
4 − 4(x2

3 − x2
2 − 3x1x2 − x2

1)x
2
4

+4(x2 + x1)(x
2
3 − x1x2)x4 − (x2 + x1)

2x2
3.

Algebraic curves and surfaces are geometric objects defined by zeros of
systems of algebraic equations in 2- or 3-dimensional space. In modern
geometry engineering, like computer-aided geometric design and geometric
modeling, it is desirable to decompose such objects into simpler and smaller
sub-objects. In the language of algebraic geometry, the problem is to decom-
pose arbitrary algebraic curves and surfaces into irreducible components. In
fact, there are several algorithmic methods based on characteristic sets and
Gröbner bases for carrying out such decompositions. See Wang (1992b) for
instance. In these methods, algebraic factorization is indispensable. Other
applications of algebraic factorization include verification of geometric con-
ditions and implicitizations of curves and surfaces. See Wang and Zhi (1998)
for more examples and timings.

Polynomial factorization over algebraic fields is one of the most difficult
problems in computer algebra. Until now, we only can factor polynomials
of low degree. Further study and improvement are necessary.



1.6. IMPLEMENTATIONS AND APPLICATIONS 19

Reference

Abbott, J. A. (1989): On the factorization of polynomials over algebraic
fields. Ph.D thesis. School of Math. Sci., Univ. of Bath, England.
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