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Nearest Singular Polynomials†
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The nearest singular polynomial with a multiple zero of multiplicity k ≥ 2 is considered
based on the minimization of a quadratic form. Some recursive relations between the
polynomials determining the multiple zeros for consecutive k’s are presented.
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1. Introduction

Some problems have been studied based on the minimization of a quadratic form (Corless
et al., 1995; Karmarkar and Lakshman, 1996a; Karmakar and Lakshman, 1996b; Zhi
Lihong and Wu Wenda, 1997). One of them is to find the nearest singular polynomial
with a double zero to a given polynomial. In this paper, we will consider the case of the
nearest singular polynomial with a multiple zero of multiplicity k for any positive integer
k ≥ 2. This is not only a natural generalization of Zhi Lihong and Wu Wenda (1997),
but we will also derive some recursive relations related to the determination of nearest
singular polynomials for consecutive k’s.

In Section 2, we will give a suitable expression for the quadratic form in terms of the
undetermined multiple zero c and its conjugate which leads to an easy factorization of
its derivatives with respect to c and c. The factored form of its first derivative is given
in Section 3. In Section 4, some recursive relations for the factors of the first derivative
are derived for consecutive k’s. In Section 5, we will determine which factor is useful for
our purpose. Numerical examples are given in Section 6.

2. Expressions for the Quadratic Form

The problem considered is the following: given a monic polynomial f

f = xm +
m∑
j=1

fjx
m−j , fj ∈ C,
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find a monic polynomial h(x) of the form

h = (x− c)k
(
xm−k +

m−k∑
j=1

φjx
m−k−j

)
, c, φj ∈ C,

such that

N := ‖ f − h ‖2

is minimized, where

‖ p(x) ‖2=
k∑
j=0

|pj |2

for any

p(x) =
k∑
j=0

pjx
k−j , pj ∈ C.

Since

f(x)− h(x) =
m∑
j=1

(
fj −

k∑
i=0

(
k

i

)
(−1)iciφj−i

)
xm−j ,

where φ−k+1 = φ−k+2 = · · · = φ−1 = 0, φ0 = 1, φm−k+1 = φm−k+2 = · · · = φm = 0, we
have

N =
m∑
j=1

∣∣∣∣fj − k∑
i=0

(
k

i

)
(−1)iciφj−i

∣∣∣∣2. (2.1)

Let r := f − g −Aφ, where

f = (f1, · · · , fm)T ,
g = (a21, · · · , ak1, 0, · · · , 0)T ,
φ = (φ1, · · · , φm−k)T ,
A = (aij)m×(m−k),

aij =
(

k

i− j

)
(−1)i−jci−j .

Here, as usual (
p

q

)
= 0 if q > p or q < 0.

It is easy to see that the jth component of r is the coefficient of xm−j in f(x) − h(x).
Thus

N = r∗r = (f − g −Aφ)∗(f − g −Aφ). (2.2)

For any c, N attains its minimum Nm when φ is the least squares solution of the equation

f − g −Aφ = 0,

i.e.

φ = A+(f − g), (2.3)

where A+ is the Penrose inverse of A.
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In the following, we assume φ = A+(f − g). Consequently

r = (I −AA+)(f − g),
Nm = (f − g)∗(I −AA+)(f − g). (2.4)

Note that Nm depends on c only. Our problem becomes finding c such that Nm is
minimized.

Since the columns of A are linearly independent, we have

A+ = (A∗A)−1A∗.

Let L be an m×m bi-diagonal Toeplitz matrix

L =


1
−c 1

−c 1
. . .
−c 1

 . (2.5)

It is easy to check that for any positive integer k, we have

Lk = (l(k)
ij ), l

(k)
ij =

(
k

i− j

)
(−1)i−jci−j .

L−k = (l(−k)
ij ), l

(−k)
ij =

(
i− j + k − 1

k − 1

)
ci−j .

The submatrix composed of the first m−k columns of Lk is A. We partition Lk and L−k

correspondingly:

Lk = (A B), L−k =
(
U

V

)
,

and let W := U(I − V ∗(V V ∗)−1
V ); then

A∗AW = A∗(I −BV )(I − V ∗(V V ∗)−1
V ) = A∗(I − V ∗(V V ∗)−1

V ) = A∗

and
W = (A∗A)−1A∗ = A+.

Now r and Nm become

r = (I −AA+)(f − g) = V ∗(V V ∗)−1V (f − g),
Nm = (f − g)∗V ∗(V V ∗)−1V (f − g). (2.6)

It is easy to see that

V (f − g) = [ψ1 · · ·ψk]T := ψ, ψi =
1

(k − 1)!
(ci−1f(c))(k−1).

ψ can also be expressed as the following:

ψ = ΩJη,

where

Ω = (Ωij), Ωij =
1

(k − j)!

(
i− 1
j − 1

)
ci−j , J = (δi,k+1−j)
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η = [f(c)f ′(c) · · · f (k−1)(c)]T . (2.7)

Therefore,
Nm = η∗JΩ∗(V V ∗)−1ΩJη = η∗(JΩ−1V V ∗(Ω−1)

∗
J)−1η. (2.8)

Let
Λ := JΩ−1V V ∗(Ω−1)

∗
J =

(
λij

)
, (2.9)

then

λij =
∂i+j−2

∂ci−1∂cj−1
q, q =

m−1∑
j=0

(cc)j . (2.10)

Hence
Nm = η∗Λ−1η. (2.11)

which is true for any k. We will write it with index k as

N (k)
m = η∗kΛ

−1
k ηk. (2.12)

Equation (2.12) is the expression for the quadratic form used in the following discussion.

3. First Derivative

For any matrix or vector M = (mij), we will use the notation ∂M
∂c =

(
∂mij
∂c

)
.

Theorem 1.

∂N (k)
m

∂c
=

1
(det Λk)2

Pk+1Pk, (3.1)

where

Pi := det
(

Λi−1 ηi−1

ω∗i−1 f (i−1)

)
, i = k, k + 1, (3.2)

and ω∗i−1 is the ith row of Λi upon deletion of its last element.

Proof. Let ξk := Λ−1
k ηk, i.e. ηk = Λkξk. Now

∂Λk
∂c

ξk + Λk
∂ξk
∂c
− ∂ηk

∂c
= 0,

Λk
∂ξk
∂c

= −∂Λk
∂c

Λ−1
k ηk +

∂ηk
∂c

.

For i < k, the ith row of ∂Λk
∂c is the (i+1)th row of Λk; the kth row of ∂Λk

∂c is the (k+1)th
row of Λk+1 (upon deletion of its last element) which we denote by ω∗k. Therefore,

Λk
∂ξk
∂c

= −


0 1

1
. . .

1
ω∗kΛ

−1
k

 ηk +
∂ηk
∂c

= −[f ′(c) · · · f (k−1)(c) ω∗kΛ
−1
k ]T + [f ′(c) · · · f (k−1)(c) f (k)(c)]T

= [0 · · · 0 f (k)(c)− ω∗kΛ−1
k ηk],
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∂N (k)
m

∂c
=

∂

∂c
(η∗kξk) = η∗kΛ

−1
k [0 · · · 0 f (k)(c)− ω∗kΛ−1

k ηk]T

= (f (k)(c)− ω∗kΛ−1
k ηk)

det Λk−1

det(Λk)
(f (k−1)(c)− ω∗k−1Λ

−1
k−1ηk−1)∗

=
1

(det Λk)2
det
(

Λk ηk
ω∗k f (k)(c)

)(
det
(

Λk−1 ηk−1

ω∗k−1 f (k−1)(c)

))∗
=

1
(det Λk)2

Pk+1Pk.

So we have equation (3.1). 2

4. Recursive Relations

In the following, we will prove some recursive relations between Λk and Pk.

Theorem 2.

det Λk
∂2

∂c∂c
det Λk −

∂

∂c
det Λk

∂

∂c
det Λk = det Λk−1 det Λk+1. (4.1)

Proof. We have

det Λk+1 = det

Λk−1 u1 u2

u∗1 α ξ
u∗2 β η

 = det Λk−1

((
α ξ
β η

)
−
(
u∗1
u∗2

)
Λ−1
k−1(u1 u2)

)
= det Λk−1(α− u∗1Λ−1

k−1u1)(η − u∗2Λ−1
k−1u2)

−det Λk−1(β − u∗2Λ−1
k−1u1)(ξ − u∗1Λ−1

k−1u2)

det Λk = det
(

Λk−1 u1

u∗1 α

)
= det Λk−1(α− u∗1Λ−1

k−1u1).

In det Λk, the partial derivative of the ith row with respect to c is the (i+ 1)th row for
i < k, and the kth row of ∂ det Λk

∂c is the (k + 1)th row of det Λk+1 upon deletion of its
last element; similarly for the derivatives of the columns with respect to c. Hence,

∂

∂c
det Λk = det

(
Λk−1 u1

u∗2 β

)
= det Λk−1(β − u∗2Λ−1

k−1u1),

∂

∂c
det Λk = det

(
Λk−1 u2

u∗1 ξ

)
= det Λk−1(ξ − u∗1Λ−1

k−1u2),

∂2

∂c∂c
det Λk = det

(
Λk−1 u2

u∗2 η

)
= det Λk−1(η − u∗2Λ−1

k−1u2).

Thus, we get equation (4.1). 2

In an analogous fashion, we derive Theorems 3 and 4.

Theorem 3.

Pk
∂2

∂c∂c
Pk −

∂

∂c
Pk

∂

∂c
Pk = Pk−1Pk+1. (4.2)
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Theorem 4.

det Λk
∂

∂c
Pk − Pk

∂

∂c
det Λk = det Λk−1Pk+1. (4.3)

5. The Useful Factor

Let c = a+ ib, where a and b are real, and consider N (k)
m as a real rational function of

the real variables a and b. The problem is to find the real solutions of the system

∂N (k)
m

∂a
= 0,

∂N (k)
m

∂b
= 0. (5.1)

Because

∂N (k)
m

∂c
=

1
2

(
∂N (k)

m

∂a
− i∂N

(k)
m

∂b

)
,

∂N (k)
m

∂c
=

1
2

(
∂N (k)

m

∂a
+ i

∂N (k)
m

∂b

)
, (5.2)

it is sufficient to consider
∂N (k)

m

∂c
= 0 (5.3)

for determining c. The trace T and determinant D of the Hessian matrix can be expressed
as

T = 4
∂2N (k)

m

∂c∂c
, D = 4

(∂2N (k)
m

∂c∂c

)2

− ∂2N (k)
m

∂c2
∂2N (k)

m

∂c2

 . (5.4)

By Theorem 1, we consider Pk = 0 and Pk+1 = 0 separately.

Theorem 5. N (k)
m attains its local minimum at c satisfying Pk = 0 if

(det Λk−1)4Pk+1Pk+1 − (det Λk)4Pk−1Pk−1 > 0. (5.5)

Proof. If Pk = 0, we have:

∂Pk
∂c

=
det Λk−1Pk+1

det Λk
,
∂Pk
∂c

= −Pk−1Pk+1/
∂Pk
∂c

= − det Λk
det Λk−1

Pk−1,

T = 4
Pk+1

(det Λk)2

∂Pk
∂c

= 4
Pk+1

(det Λk)2

det Λk−1Pk+1

det Λk
= 4

det Λk−1

(det Λk)3
Pk+1Pk+1 ≥ 0,

D = 4

((
det Λk−1

(det(Λk))3
Pk+1Pk+1

)2

− Pk−1Pk−1Pk+1Pk+1

(det Λk)2(det Λk−1)2

)

= 4
Pk+1Pk+1

(det Λk−1)2(det Λk)6
((det Λk−1)4Pk+1Pk+1 − (det Λk)4Pk−1Pk−1).

So N (k)
m attains its local minimum at c satisfying Pk = 0 if D > 0, i.e.,

(det Λk−1)4Pk+1Pk+1 − (det Λk)4Pk−1Pk−1 > 0. 2

For Pk+1 = 0 we have the following conclusion.

Theorem 6. For c satisfying Pk+1 = 0, the trace is non-positive.
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Table 1. Nm = 0.1763296120.

Zeros of h Zeros of f
0.580 685 7529 (double) 0, 1
−1.050 883 646 −1

−0.0747 216 6958 + 0.9804 509 313i i
−0.0747 216 6958− 0.980 450 9313i −i

Table 2. Nm = 0.5075634529.

Zeros of h Zeros of f
0.3642294253 + 0.3642294253i ( triple ) 0, 1, i
−0.9744637807 + 0.03279153516i −1
0.03279153516− 0.9744637807i −i

Proof. If Pk+1 = 0 then

∂2N (k)
m

∂c∂c
=

Pk
(det Λk)2

∂Pk+1

∂c
,

∂Pk+1

∂c
det Λk−1 =

∂ det Λk
∂c

∂Pk
∂c

+ det Λk
∂2Pk
∂c∂c

−∂Pk
∂c

∂ det Λk
∂c

− Pk
∂2 det Λk
∂c∂c

,

∂ det Λk
∂c

∂Pk
∂c
− Pk

∂2 det Λk
∂c∂c

=
Pk

det Λk
∂ det Λk
∂c

∂ det Λk
∂c

− Pk
∂2 det Λk
∂c∂c

= −Pk
det Λk+1 det Λk−1

det Λk
,

det Λk
∂2Pk
∂c∂c

− ∂Pk
∂c

∂ det Λk
∂c

= det Λk
∂2Pk
∂c∂c

− det Λk
Pk

∂Pk
∂c

∂Pk
∂c

=
det Λk
Pk

Pk−1Pk+1 = 0.

So we have

T = 4
∂2N (k)

m

∂c∂c
= −4

det Λk+1

(det Λk)3
PkPk ≤ 0. 2

We conclude that it is sufficient to consider those zeros of Pk = 0 which are not zeros
of Pk+1 = 0. As for zeros of Pk+1 = 0, they are candidates for c with a multiplicity
higher than k. By a repeated use of Theorems 3 and 4, the common zeros of Pk = 0 and
Pk+1 = 0 are zeros of Pj = 0 for all m ≥ j > k.

6. Numerical Examples

Example 1. f = x5 − x.

For k = 2 (cf. Zhi Lihong and Wu Wenda (1997)), there are four nearest singular poly-
nomials due to the geometry of the zeros of f ; one of them is

h ≈ x5 + 0.03895547966x4 + 0.06708530296x3 + 0.1155277233x2

−0.8010494959x+ 0.3426130279.
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The zeros of h are shown in Table 1. The other three cases can be obtained by rotation
with an angle π/2, π and 3π/2 respectively.

For k = 3, there are four nearest singular polynomials; one of them is

h ≈ x5 + (−0.1510160305− 0.1510160305i)x4 − 0.311275054ix3 + (0.3858582928
−0.3858582928i)x2 − 0.5746952045x+ 0.09187090467 + 0.09187090467i

with the roots shown in Table 2. c = 0 is the common zero of P4 and P5, for k = 4, 5;
the nearest singular polynomial is

h = x5, and Nm = 1.

Example 2.

f = (x− 0.89− 0.03i)(x− 0.88 + 0.02i)(x− 0.87)(x− 1)
= x4 + (−3.64− 0.01i)x3 + (4.9637 + 0.0273i)x2 + (−3.005606− 0.024782i)x

+0.681906 + 0.007482i.

For k = 2 (cf. Zhi Lihong and Wu Wenda (1997)), the nearest singular polynomial of f
is unique:

h ≈ x4 + (−3.639999897− 0.01000012076i)x3 + (4.963700115 + 0.02729986094i)x2

+(−3.005605870− 0.02478216008i)x+ 0.6819061456 + 0.007481815756i,

with these roots shown in Table 3.
For k = 3, the nearest singular polynomial with a zero of multiplicity 3 is also unique:

h ≈ x4 + (−3.639968566− 0.01002119406i)x3 + (4.963698969 + 0.02730077333i)x2

+(−3.005622319− 0.02477096306i)x+ 0.6819004541 + 0.007485892787i.

The zeros of h are shown in Table 4. For k = 4, the nearest singular polynomial with
a zero of multiplicity 4 is:

h ≈ x4 + (−3.637528548− 0.009999075252i)x3 + (4.961817732 + 0.02727894127i)x2

+(−3.008080147− 0.02480691942i))x+ 0.6838580852 + 0.007519618582i.

The zeros of h are shown in Table 5.

Table 3. Nm = 0.1552760144× 10−12.

Zeros of h Zeros of f
0.8768135619− 0.01006779565i (double) 0.88− 0.02i, 0.87

0.8866786823 + 0.02982563187i 0.89 + 0.03i
0.9996940915 + 0.0003100788900i 1

Table 4. Nm = 0.3311925673× 10−8.

Zeros of h Zeros of f
0.8817735725 + 0.002337412033i (triple) 0.89 + 0.03i, 0.88− 0.02i, 0.87

0.9946478484 + 0.003008957959i, 1

Table 5. Nm = 0.004425554008.

Zeros of h Zeros of f
0.9093821369 + 0.002499768813i 0.89 + 0.03i, 0.88− 0.02i, 0.87, 1



Nearest Singular Polynomials 675

Acknowledgement

The authors thank Professor H. J. Stetter for valuable suggestions.

References

——Corless, R. M., Gianni, P. M., Trager, B. M., Watt, S. M. The singular value decomposition for polynomial
systems. In Proc. Int. Symp. Symbolic and Algebraic Computation, July 1995, Montreal, Canada,
pp. 195–207.

——Karmarkar, N., Lakshman, Y. N. Approximate polynomial greatest common divisors and nearest singular
polynomials. In Proc. Int. Symp. on Symbolic and Algebraic Computation, July 1996a, Zurich,
Switzerland, pp. 35–39.

——Karmarkar, N., Lakshman, Y. N. On approximate polynomial greatest common divisors. In Proc. Work-
shop on Symbolic-Numeric Algebra for Polynomial, July 1996b, France, pp. 25.

——Zhi Lihong, Wu Wenda (1997). Nearest singular polynomials. MM Research Preprints, 15, 155–163,
Institute of Systems Science, Academia Sinica.

Originally Received 23 July 1997
Accepted 12 December 1997


