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ABSTRACT
We give a stability criterion for real polynomial inequal-
ities with floating point or inexact scalars by estimating
from below or computing the radius of semidefiniteness.
That radius is the maximum deformation of the polyno-
mial coefficient vector measured in a weighted Euclidean
vector norm within which the inequality remains true.
A large radius means that the inequalities may be con-
sidered numerically valid.

The radius of positive (or negative) semidefiniteness
is the distance to the nearest polynomial with a real
root, which has been thoroughly studied before. We
solve this problem by parameterized Lagrangian multi-
pliers and Karush-Kuhn-Tucker conditions. Our algo-
rithms can compute the radius for several simultaneous
inequalities including possibly additional linear coeffi-
cient constraints. Our distance measure is the weighted
Euclidean coefficient norm, but we also discuss several
formulas for the weighted infinity and 1-norms.

The computation of the nearest polynomial with a
real root can be interpreted as a dual of Seidenberg’s
method that decides if a real hypersurface contains a
real point. Sums-of-squares rational lower bound certifi-
cates for the radius of semidefiniteness provide a new ap-
proach to solving Seidenberg’s problem, especially when
the coefficients are numeric. They also offer a surprising
alternative sum-of-squares proof for those polynomials
that themselves cannot be represented by a polynomial
sum-of-squares but that have a positive distance to the
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nearest indefinite polynomial.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Al-
gorithms; G.1.6 [Numerical Analysis]: Global opti-
mization

General Terms
algorithms, experimentation

Keywords
numeric polynomial inequality, nearest polynomial with
a real root, sum-of-squares, approximate polynomial sys-
tems, semidefinite programming

1. INTRODUCTION

1.1 Motivation
Real polynomial or rational function global optimiza-

tion is equivalent to establishing a polynomial inequal-
ity: the infimum µ ∈ R of a polynomial f ∈ R[x1, . . . , xn]
satisfies f(ξ1, . . . , ξn) − µ ≥ 0 for all xi = ξi ∈ R. In
other words, the polynomial f − µ is positive semidefi-
nite. For univariate f (n = 1) Sturm sequences [9] yield
an efficient algorithm for deciding semidefiniteness. The
bivariate case n = 2 can be solved by Seidenberg’s [26]
algorithm (see also [9] and [11]), which is generalized
to arbitrarily many variables via Lagrangian multipli-
ers in [1, 25] or used in nonstandard decision methods
[29]. Alternatively, one can use Artin’s theorem of sum-
of-squares and semidefinite programming (see, e.g., [12,
14]).

Here we consider the more difficult situation when the
coefficients of f are not exactly known, which is the case
when f is the result of an empirical measurement or a
computation with floating point numbers. As a simple
example consider Figure 1 below.

The middle polynomial f(x) = 1
3
(x − 1)2 has a dou-

ble real root at x = 1. In fact, it is the nearest poly-
nomial with a real root to the polynomial x2 + 1 un-
der the infinity norm [8]: ‖f(x) − (x2 + 1)‖∞ = 2

3
,
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Figure 1: Root sensitivity

where for a polynomial g the norm ‖g‖∞ is the max-
imum of the absolute values of the coefficients of g (the
height of g). Small perturbations in the leading coef-
ficient (one could also perturb the constant coefficient)
make the polynomial f either indefinite (left polynomial
in Figure 1, the polynomial changes sign) or positive
definite (right polynomial). Therefore, the right poly-
nomial, although positive definite, as an approximate
polynomial is not numerically positive because a small
change in its coefficients can make the polynomial in-
definite. As in Kharitonov’s [16] interval polynomial
stability criterion, we seek to compute by how much
the coefficients in a polynomial can be deformed while
still preserving nonnegativity. This distance is the coef-
ficient vector norm distance to the nearest polynomial
with a real root, which we shall call the radius of posi-
tive semidefiniteness. Note that there may not exist an
affine optimizer—hence radius of positive semidefinite-
ness rather than distance to the nearest polynomial with
a real root: the polynomial (1− ε2)x2 + y2− 2xy+ 4 at-
tains for any ε > 0 negative values at x = y > 2/ε. Thus
the polynomial x2 +y2−2xy+4 has a radius of positive
semidefiniteness = 0 although its global minimum is 4.

1.2 Results and Used Approach
We follow the approach by Karmarkar and Lakshman

[15] (see also [3]) which first fixes a real root (α1, . . . , αn)
∈ Rn and gives a rational function N (α1, . . . , αn) in
the indeterminate α’s for the minimal distance from the
given f to the nearest polynomial f̃ with f̃(α1, . . . , αn) =
0. One then can compute the infimum of N (α1, . . . , αn)
over all real α’s. The case n ≥ 2 is from [27].

We rederive the multivariate formula forN (α1, . . . , αn)
in [27], for weighted `2 distance norms, by the method
of Lagrangian multipliers. The weighted norms subsume
the fixing of coefficients in [24] (see [4, Section 2.12.3.2.6]
and Remark 5 below). Our approach also allows us to

introduce linear constraints on the coefficients of f̃ , as is
done in [13] for the approximate GCD problem. Linear
equality constraints generalize sparsity, which are equa-
tions of the form ci = 0. Because the Jacobian of the
Lagrange function remains linear in the control variables
and multipliers, determinantal formulas parametric in
the real root coordinates can be computed. Linear in-
equality constraints on the coefficients of f̃ , for instance
nonnegativity (ci ≥ 0) can now be imposed via Karush-
Kuhn-Tucker (KKT) conditions (see, e.g., [5]) and the

arising systems solved via linear programming, at least
for a fixed real root. Parametric root coordinates or non-
linear constraints necessitate non-linear techniques on
the Lagrange and KKT conditions and are therefore in
general of much higher computational complexity. Our
approach allows multiple simultaneous f ’s and complex
coefficients without modification.

Our solution can be interpreted as a dual of Seiden-
berg’s test whether a real hypersurface f has a real
point. Seidenberg’s algorithm (and Safey El Din’s gen-
eralization) computes to a given real point in Rn the
nearest real point on f in terms of Euclidean distance.
If f has no real solution the tangent equations have no
real solutions. Our algorithm computes the nearest sur-
face (in terms of coefficient norm) that has a real point.
If f has a real point, the nearest surface is f itself. How-
ever, if a lower bound on the radius of semidefiniteness
for any weight vector is > 0, f has no real point, even
when the coefficients of f are approximate. The latter
can be certified by a sum-of-squares of rational func-
tions, which leads to an entirely new verification that f
is definite, i.e., has no real point, with possibly a very
short certificate.

Polynomials with a radius of positive semidefiniteness
> 0 are quite special. Our Example 6 below demon-
strates that a positive polynomial that is not a sum-
of-squares of polynomials can have a lower bound cer-
tificate for the radius of positive semidefiniteness that
is in fact a sum-of-squares of polynomials, which im-
plies positive semidefiniteness of the polynomial itself.
For such polynomials, sum-of-squares denominators in
Artin-style certificates may never become necessary (see
our conjecture at the end of Section 5).

1.3 Related Previous Results
Our method is conceptually that of hybrid symbolic-

numeric computation such as computing approximate
polynomial greatest common divisors and factorization.

Hitz and Kaltofen [7] derive Lakshman’s and Kar-
markar’s formula for univariate f by a least square fit
for the cofactor f(x)/(x−α) and introduce linear equal-
ity constraints on the deformed coefficients. Zhi, Wu,
Noda, Kai, Rezvan and Corless [31, 30, 23] generalize
the formula to roots with given multiplicities. In [8] `∞-
norm distances are introduced and Markus Hitz in the
Summer of 1999 considered dual `p-norms. Stetter [27]
then generalized Lakshman and Karmarkar’s formula to
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an arbitrary number of variables and dual `p norm dis-
tances via Hölders inequality.

In [24, 21] Stetter’s multivariate (complex) formula
is applied to the important problem of computing the
nearest consistent polynomial system, with zeros of a
minimum given multiplicity, and a different proof via
generalized Lagrangian interpolation is given. We ob-
serve that the `∞-norm formulas apply to the problem
of consistent systems as well (see Theorem 7 below).
In our setting, we determine the smallest deformation
where all inequalities are simultaneously violated.

A related result [8] computes the nearest matrix in
Frobenius norm that has a real eigenvalue. Sum-of-
squares rational lower bound certificates were introduced
in [12] to overcome the high algebraic degree in the exact
real algebraic minima.

2. RADIUS OF POSITIVE
SEMIDEFINITENESS

Definition 1 Let w ∈ Rn>0 be a vector of positive weights.
For x = [x1, . . . , xn]T ∈ Rn the weighted `2 norm is

‖x‖2,w =
√
w1x21 + · · ·+ wnx2n.

Definition 2 Let α = [α1, . . . , αn] ∈ Rn be a prescribed
real root and w ∈ Rn>0 a weight vector. The distance to
the nearest polynomial with a real root α is defined as

N [f ]
2,w(α) = inf

f̃∈R[x1,...,xn]
‖f − f̃‖22,w

s. t. f̃(α) = 0,

deg(f̃) ≤ deg(f).

 (1)

If f and the used norm is clear from the context, we may
write N (α) for the above infimum, which is actually a
minimum (see Theorem 1 below).

Theorem 1 Let f ∈ R[x1, . . . , xn],

f(x1, . . . , xn) =

d∑
i1+···+in=0

fi1,...,inx
i1
1 · · ·x

in
n .

For τ = [1, α1, . . . , αn, . . . , α
i1
1 · · ·αinn , . . .]T , the vector

of possible term values in f̃ , the distance to the nearest
polynomial with a real root α is

N [f ]
2,w(α) =

f(α)2

τTD−1
w τ

. (2)

Furthermore, the coefficient vector
~̃
f , for the polynomial

f̃ as in (1) is

~̃
f = ~f − τT ~f

τTD−1
w τ

D−1
w τ, (3)

where ~f is the coefficient vector of f and Dw is a diago-
nal matrix of the weights. The polynomial f̃ is the only
polynomial that attains the infimum (2).

Remark 1 The infimum

ρ2,w(f) = inf
α∈Rn

N [f ]
2,w(α) (4)

is the unconstrained radius of positive semidefiniteness.
Within any ε of the radius (4) there is a polynomial
that attains negative values: for any ε > 0 there is an
f̃ε with a real root α and ‖f − f̃ε‖22,w < ρ2,w(f) + ε/2.

Then (f̃ε − δ)(α) < 0 for all δ > 0, and in particular if
w1δ

2 < ε/2 we have

‖f − (f̃ε − δ)‖22,w < ρ2,w(f) + ε.

In Section 4 we will permit constraints for the coef-
ficients of f̃ . Then a negative evaluation may be im-
possible: e.g., f̃(x, y) = f̃2,0x

2 + f̃0,2y
2 and f̃2,0 ≥ 0,

f̃0,2 ≥ 0.However, within less of the distance to the near-

est polynomial with a real root a deformed f̃ remains
positive definite.

Remark 2 If the weighted norm is the Euclidean norm
then the formula becomes

N2(α) =
f(α)2∑d

i1+···+in=0 α
2i1
1 · · ·α

2in
n

. (5)

Remark 3 Different degree conditions in (5) give dif-
ferent rational functions. For example, if the individual
variable degrees are bounded by d, degxj (f) ≤ d for all

j with 1 ≤ j ≤ n, then for the `2 norm

N2(α) =
f(α)2∑d

i1=0 ...
∑d
in=0 α

2i1
1 · · ·α

2in
n

.

Comparing the denominators, we have

d∑
i1=0

...

d∑
in=0

α2i1
1 · · ·α

2in
n ≥

d∑
i1+···+in=0

α2i1
1 · · ·α

2in
n ,

so

inf
f(α)2∑d

i1=0 ...
∑d
in=0 α

2i1
1 · · ·α

2in
n

≤ inf
f(α)2∑d

i1+···+in=0 α
2i1
1 · · ·α

2in
n

,

which must be since we optimize over a larger set of f̃ .

Remark 4 Theorem 1 can be generalized to a complex
root α and real/complex coefficients for f , which is the
original setting of [3, 15, 27, 24]. Let f ∈ C[x1, . . . , xn],
τ be as described in Theorem 1 then the distance to the
nearest polynomial with root α ∈ Cn is

N [f ]
2 (α) =

(f̄(ᾱ))(f(α))

τHτ
.

Here H denotes the Hermitian transposed and¯complex

conjugation. Furthermore, the coefficient vector
~̃
f , for

the polynomial f̃ as in (1) is

~̃
f = ~f − τT ~f

τHτ
τ̄ .

Our proof and possible inclusion of weights for the real
and imaginary parts is similar to the proof of Theorem 1.
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Remark 5 Theorem 1 is the real case of the theorems
in [24] and [21] for complex roots. However, they use
generalized Lagrangian interpolation for their proof. They
also allow keeping selected coefficients of f as their input
values and only deform the others in f̃ , thus preserving
sparsity or monicity, for instance. Our Theorem 1 has
theirs as an immediate corollary by setting the weights
of those coefficients to ∞ in the limit. However, the
problem may become ill-posed. If f has a nonzero con-
stant coefficient which is fixed, and α = 0, the set of
f̃ is empty. In Section 4 we generalize our approach
to handle arbitrary linear constraints on the coefficients
of f̃ .

If a weight wi → 0 in the limit then the corresponding
coefficient in f̃ becomes a “don’t care” deformation, i.e.,
any change in that coefficient is not taken into account in
the distance measure. The “nearest” polynomial f̃ with
α ∈ (R \ {0})n as a root then has distance 0, namely

f̃(x) = f(x) − (f(α)/αi)xi, unless there are additional

constraints on the coefficients of f̃ in effect.

Remark 6 The formulas in [7] and [15] use the weights
wi in the denominator of (2), not correctly their recip-
rocals 1/wi.

Proof of Theorem 1. Let ~f , τ , and f be as above.
Denote the coefficients of f̃ in (1) by

f̃(x1, . . . , xn) =

d∑
i1+···+in=0

f̃i1,...,inx
i1
1 · · ·x

in
n .

Let
~̃
f be the coefficient vector of f̃ . Also, f̃(α1, . . . , αn) =

τT
~̃
f = 0. We have ‖f − f̃‖2,w = (~f − ~̃

f )TDw(~f − ~̃
f ),

the weighted `2 norm, where Dw is a diagonal matrix of
the weights. Let λ be the Lagrange multiplier and

L(α1, . . . , αn, λ) = (~f − ~̃
f )TDw(~f − ~̃

f ) + λτT
~̃
f

the Lagrange function of our constrained optimization
problem. We must check that α is a regular point (i.e.,
the gradient of the constraint is not 0 at α). Since

∇f̃(α) 6= 0 if τ 6= 0 then α is a regular point as long
as α 6= 0. In the case α = 0 the constant coefficient of f
is deformed to 0 and the formulas hold. The Jacobian

of L w.r.t.
~̃
f and λ is

JL =


...
∂L

∂(
~̃
f )i
...
∂L
∂λ

 =


−2Dw(~f − ~̃

f ) + λτ

τT
~̃
f

 .

Looking at the first block of the vector we have

−2Dw(~f − ~̃
f ) + τλ = −2Dw ~f + 2Dw

~̃
f + τλ = 0. (6)

Multiplying by τTD−1
w we have

−2τTD−1
w Dw ~f + 2τTD−1

w Dw
~̃
f + τTD−1

w τλ = 0.

Recalling that f̃(α1, . . . , αn) = 0 which means that τT
~̃
f =

0 then we have

−2τT I ~f +2τT I
~̃
f +τTD−1

w τλ = −2τT ~f +τTD−1
w τλ = 0.

Solving for λ we get λ = 2τT ~f

τTD−1
w τ

. Looking at (6), we

have ~f − ~̃
f =

D−1
w τλ

2
. Substituting in for λ we obtain

as the only solution ~f − ~̃
f = τT ~f

τTD−1
w τ

D−1
w τ . Finally,

N [f ]
2,w(α) = (

τT ~f

τTD−1
w τ

D−1
w τ)TDw(

τT ~f

τTD−1
w τ

D−1
w τ)

=
~f T ττTD−1

w ττT ~f

τTD−1
w ττTD−1

w τ
.

So N [f ]
2,w(α) =

f(α)2

τTD−1
w τ

.

Example 1 Here we give another example for the case
that the infimum in (4) is not always attainable. Our
first example was given at the end of Section 1.1. Con-
sider the polynomial

f(x, y) = 1− 2xy + x2y2 + x2 = (1− xy)2 + x2.

We have that

N2(α, β) =
((1− αβ)2 + α2)2∑4

i+j=0 α
2iβ2j

.

Then infα,β N2(α, β) = 0. Suppose now that there exists
α, β such that the numerator is 0. Then (1 − αβ) = 0
and α = 0. But if α = 0 then αβ = 0. Then 1−αβ 6= 0.
Contradiction. Thus f does not have a real root and the
infimum is not attainable.

We have

N2(ε,
1

ε
)=
ε4

δ
, δ=3+2ε2+

2

ε2
+2ε4+

2

ε4
+ε6+

1

ε6
+ε8+

1

ε8
,

and the nearest polynomial to f with (α, β) = (ε, 1/ε)
as its root is

f̃(x, y) =− ε
6

δ
x4− ε

4

δ
x3y+(1− ε

2

δ
)x2y2−1

δ
xy3− 1

ε2δ
y4

− ε
5

δ
x3− ε

3

δ
x2y− ε

δ
xy2− 1

εδ
y3+(1− ε

4

δ
)x2

−(2+
ε2

δ
)xy−1

δ
y2− ε

3

δ
x− ε

δ
y+1− ε

2

δ
.

Note that f(ε, 1/ε)−ε2 = 0 has squared distance ε4 from
f , which is larger than ε4/3 > ε4/δ for all ε 6= 0. 2

3. INFINITY AND ONE NORM
Theorem 1 can be generalized to include the `1-norm,

`∞-norm, and any `p-norm. We discuss in more detail
the results presented in [27, 4].

Definition 3 We consider Cn equipped with some norm
‖ . . . ‖. The associated dual norm or operator norm ‖ . . . ‖∗
for the column vector v ∈ Cn is defined by

‖vT ‖∗ = sup
u6=0

|vTu|
‖u‖ = sup

‖u‖=1

|vTu|.

Since we are taking the supremum over a compact
domain, the maximum value is attained.

Proposition 1 (Proposition 1 in [27]) For each u ∈
Cn, with ‖u‖ = 1, there exist vectors v ∈ Cn, with
‖vT ‖∗ = 1, such that |vTu| = 1. 2
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It is well known that with 1
p

+ 1
q

= 1, 1 ≤ p, q ≤ ∞,

‖ . . . ‖ = `p-norm⇔ ‖ . . . ‖∗ = `q-norm.

Theorem 2 (see [27]) Let α = [α1, . . . , αn] ∈ Cn, τ =
[1, α1, . . . , αn, . . . , α

i1
1 · · ·αinn , . . .], the vector of possible

term values of f with norm ‖ . . . ‖, and ~f ,
~̃
f ∈ Cn, with

dual norm ‖ . . . ‖∗. f̃(α) = τT
~̃
f = 0 requires

‖~f − ~̃
f ‖∗ ≥ |f(α)|

‖τ‖ .

Theorem 2 shows that Theorem 1 can be extended to
any `p-norm. We extend the results from Theorem 2 to
the weighted `1 and `∞-norms. We prove Hölder’s in-
equality for weighted `1, `2 and `∞-norms, which allows
us to then follow the same proof as in [27] for Theorem 2.

We further give an explicit formula for
~̃
f .

Theorem 3 Let u, v ∈ Cn and weights wi. Then |vTu|
≤ ‖u‖∞,w‖v‖1,1/w, where 1/w is the vector of reciprocals
of entries of w.

Proof. Looking at |vTu|:
|vTu| =

∣∣∣∑
i

viui

∣∣∣ =
∣∣∣∑

i

wivi
1

wi
ui

∣∣∣
≤ (max

j
wj |vj |)

∑
i

1

wi
|ui| = ‖v‖∞,w‖u‖1,1/w.

Corollary 1 Let u, v ∈ Cn, and weights wi. Then

|vTu| ≤ ‖u‖1,w‖v‖∞,1/w.

Theorem 4 Let u, v ∈ Cn and weights wi. Then |vTu|
≤ ‖u‖2,w‖v‖2,1/w

Proof of Theorem 4. Let ûi =
√
wiui, v̂i = vi√

wi
.

Using the Cauchy-Schwartz inequality, we have:

|vTu| = |v̂T û| ≤
(∑

i (
√
wiui)

2
)1/2(∑

i ( vi√
wi

)2
)1/2

.

Therefore, |vTu| ≤ ‖u‖2,w‖v‖2,1/w.

Now that we have proven Hölder’s inequality for the
weighted `1, `2 and `∞-norms, we can follow the proof
of Theorem 2 to extend Theorem 1 to weighted `1 and
`∞-norms. Theorem 4 would also yield an alternative
proof of Theorem 1.

Theorem 5 For τ , f , and f̃ as described in Theorem
2, v = [1, sgn(τi), . . .], where v ∈ Rκ, κ is the dimension
of f and sgn(τi) = 1 if τi > 0, sgn(τi) = −1 if τi < 0,
and sgn(τi) = 0 if τi = 0 with weighted `∞-norm and
weights wi then

N [f ]
∞,w(α) =

|f(α)|
‖τ‖1,1/w

and
~̃
f = ~f − f(α)

‖τ‖1,1/w
D−1
w v.

Proof of Theorem 5. From [27] and Theorem 3 we

know that |f(α)| = |( ~̃f − ~f )T τ | ≤ ‖ ~̃f − ~f ‖∞,w‖τ‖1,1/w.
Therefore, |f(α)|

‖τ‖1,1/w
≤ ‖~f − ~̃

f ‖∞,w. For all j choose

(
~̃
f )j such that f(α)

‖τ‖1,1/w
= wj(~f − ~̃

f )j . From this we

get that wj(
~̃
f )j = wj(~f )j − f(α)

‖τ‖1,1/w
. Therefore,

~̃
f =

~f − f(α)
‖τ‖1,1/w

D−1
w v, which yields equality in the above in-

equality. This gives 0 = f̃(α) = τT ~f− f(α)
‖τ‖1,1/w

τTD−1
w v.

In the same way we obtain the following theorem.

Theorem 6 For τ , f , f̃ , and sgn(τi) as described in
Theorem 5 with weighted `1-norm and weights wi ≥ 0
then

N [f ]
1,w(α) = |f(α)|

‖τ‖∞,1/w
and

~̃
f i =

{
~f i for i 6= j

~f i − sgn(τi)
f(α)

‖τ‖∞,1/w

1
wi

for i = j

where
|τj |
wj

= max
i

|τi|
wi

.

4. GENERALIZATIONS
Our method can be further generalized to include prob-

lems with linear constraints of the form H
~̃
f = p, where

H ∈ Rt×s, p ∈ Rt, on the coefficient vector
~̃
f of f̃ . We

define

N [f ;H]
2,w (α) = inf

f̃∈R[x1,...,xn]
‖f − f̃‖22,w

s. t. f̃(α) = 0, H
~̃
f = p,

deg(f̃) ≤ deg(f).

 (7)

We note that the Jacobian of the Lagrange function cor-
responding to (7) constitutes a linear system in the un-

known coefficients of f̃ and the multipliers, hence a de-
terminantal formula parameterized by the real root for
the solution can be computed, which one can minimize.

Example 2 Given a polynomial f(x, y) = x2 + y2 + 1

find the nearest polynomial f̃(x, y) = f̃2,0x
2 + f̃0,2y

2 +

f̃1,1xy + f̃1,0x + f̃0,1y + f̃0,0 with f̃1,1 = f̃0,0 and f̃0,1 =
0 and with the root (α, β). The Lagrangian function is

L(α, β, λ) =(~f − ~̃
f )T (~f − ~̃

f )

+ λ0τ
T ~̃f + λ1(f̃1,1 − f̃0,0) + λ2f̃0,1,

where the term vector τ = [α2, β2, αβ, α, β, 1]. The Ja-

cobian of L in
~̃
f and λ is zero for

~̃
f =



f̃2,0
f̃0,2
f̃1,1
f̃1,0
f̃0,1
f̃0,0

 =



−−α
2−2β4+α2β2−2αβ−1+α3β

2α2+2β4+2α4+α2β2+2αβ+1
2α2+2α4−α2β2+2αβ+1−β2−αβ3

2α2+2β4+2α4+α2β2+2αβ+1
β4+α4−αβ3−α3β−β2

2α2+2β4+2α4+α2β2+2αβ+1

− α(1+2β2+αβ+2α2)

2α2+2β4+2α4+α2β2+2αβ+1

0
β4+α4−αβ3−α3β−β2

2α2+2β4+2α4+α2β2+2αβ+1


,

λ0 =
2(2α2 + αβ + 2β2 + 1)

2α4 + 2α2 + α2β2 + 2αβ + 1 + 2β4
,

λ1 =
−2(α4 + α3 β + α2 β2 + αβ + β3α+ β4 − β2)

2α4 + 2α2 + α2β2 + 2αβ + 1 + 2β4
,
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λ2 =
−2(2α2 + αβ + 2β2 + 1)β

(2α4 + 2α2 + α2β2 + 2αβ + 1 + 2β4)
.

The minimum perturbation is

N2 = 3α4+2α3β+5α2β2+3α2+2αβ+2αβ3+1+3β4+2β2

2α2+2α4+2β4+α2β2+2αβ+1
(8)

Running the Minimize procedure in Maple 13 we ob-
tain min(α,β)N2 = 1 at the root (0, 0) and f̃ = x2 + y2.
That is the same deformed polynomial as for the un-
constrained problem but derived from a different norm
expression (8).

Note that before minimizing (8) one could restrict
(α, β) to lie on a parametric curve, thus constraining
the variables rather than the coefficients, as is done in
[7]. 2

Our method can be generalized even further to include

inequalities, G
~̃
f ≤ q with G ∈ Rm×s. Then

N [f ;H;G]
2,w (α) =

inf
f̃∈R[x1,...,xn]

‖f − f̃‖22,w

s. t. f̃(α) = 0, G
~̃
f ≤ q,H ~̃

f = p,

deg(f̃) ≤ deg(f).

 (9)

Note that our constraint functions, being linear, are
always convex. We can use the Karush-Kuhn-Tucker
(KKT) conditions and the quantities as defined in The-
orem 1. Using the KKT conditions in equation (9) with
the Lagrange function

L = (~f − ~̃
f )TDw(~f − ~̃

f )

+ λ0τ
T ~̃f + λT (H

~̃
f − p) + µT (G

~̃
f − q).

The KKT conditions (for a regular point) are then

∂L

∂(
~̃
f )i

= 0, i = 1, . . . , s,

τT
~̃
f = 0,

H
~̃
f = p,

G
~̃
f ≤ q,

µi ≥ 0, i = 1, . . . ,m,

µT (G
~̃
f − q) = 0.


(10)

The last orthogonality conditions constitute branching:

µi = 0 or (G
~̃
f − q)i = 0, and (10) form linear programs.

Example 3 Given a polynomial f(x, y) = x2 + y2 −
2y+1 and constraint f̃0,1 ≥ 0, we determine the nearest

polynomial f̃(x, y) = f̃2,0x
2 + f̃0,2y

2 + f̃1,1xy + f̃1,0x

+ f̃0,1y + f̃0,0 with real root (0, 0). The term vector for
the root is τ = [0, 0, 0, 0, 0, 1]. The Lagrangian function

is L(α, β, λ, µ) = (~f − ~̃
f )T (~f − ~̃

f ) + λτT
~̃
f + µ(−f̃0,1).

We can formulate the KKT conditions as solving two
linear programs:

Minimize 1

subject to ∂L/∂(
~̃
f )i = 0, i = 1, . . . , 6

f̃0,0 = 0,

−f̃0,1 ≤ 0,
µ = 0,

and

Minimize 1

subject to ∂L/∂(
~̃
f )i = 0, i = 1, . . . , 6,

f̃0,0 = 0,

−f̃0,1 = 0,
µ ≥ 0.

The first linear program is infeasible; for the second lin-
ear program we obtain:

f̃ = x2 + y2, λ = 2, µ = 4, andN [f ;G]
2 = 5.

The minimum perturbation can also be obtained by run-
ning the Minimize procedure in Maple 13 on the original
optimization problem (9). 2

The above result can be extended to systems. The dis-
tance to the nearest system with k equations and com-
mon root α is defined as

inf
f̃1,...,f̃k

‖f1 − f̃1‖22 + · · ·+ ‖fk − f̃k‖22

s. t. f̃i(α) = 0, i = 1, . . . , k
fi ∈ R[x1, . . . , xn], i = 1, . . . , k

deg(f̃i) ≤ deg(fi), i = 1, . . . , k

 (11)

Applying Theorem 1 and Theorem 5 to each individual
f̃k easily yields the following.

Theorem 7 Let f1, . . . , fk ∈ R[x1, . . . , xn], with di =
deg(fi), The distance to the nearest system with a com-
mon root α ∈ Rn is in `2-norm

N {f1,...,fk}2 (α) =
f1(α)2∑d1

i1+···+in=0 α
2i1
1 · · ·α

2in
n

+ · · ·

+
fk(α)2∑dk

i1+···+in=0 α
2i1
1 · · ·α

2in
n

, (12)

and in `∞-norm

N {f1,...,fk}∞,w (α) = max
1≤j≤k

|fj(α)|
‖τ‖1,1/w

.

The nearest polynomials, if they exist (see Example 1)
are again determined by (3). Theorem 7 easily gener-
alizes to include weighted norms. Linear equality and
inequality constraints on the coefficients as described
in (7) and (9) can also be applied.

Example 4 Given polynomials

f1(x, y) = x4 +y4 +1 and f2(x, y) = x2 +x2y2−2xy+1

we shall determine the minimum perturbation such that
the deformed system of 2 equations has a real root.

For that, we compute the Gröbner basis of the nu-
merators of the partial derivatives of (12) (cf. [2]). In
Section 5 we present an alternative approach based on
sum-of-squares certificates. The first equation in the
obtained Gröbner basis is a polynomial in terms of β of
degree 195. Next, we find all real roots of this polyno-
mial and plug all 9 choices into a second polynomial in
the Gröbner basis. We compute the norm of each possi-
ble point and select the minimum value. The minimum
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perturbation obtained by solving the Gröbner basis of
(12) in Maple is

Ñ 2 = 0.64597306998078277667 (13)

for

(α, β) = (−0.9138289555225176138,
−1.1947071766554875688).

Note that for this example at least 25 mantissa digits
must be used in Maple 13 in order to obtain the correct
minimum.

We can then find the nearest polynomial system by
plugging the root into equation (3) for each of the two
polynomials:

f̃1 = 0.83448994938 + 0.15028000318x +
0.19773604528 y − 0.17954059831xy −
0.13645140747x2 − 0.23623667238 y2 +
0.12389530347x3 + 0.21449844130xy2 +
0.16301947576x2y + 0.28223364788 y3 +
0.88750540206x4 − 0.14801860821x3y −
0.19476053763x2y2 − 0.25626282720xy3 +
0.66281343538 y4,

f̃2 = 0.96296934167 + 0.03362313909x +
0.04424079327 y − 2.04016980557xy +
0.96947082410x2 − 0.05285479322 y2 +
0.02771991571x3 + 0.04799115499xy2 +
0.03647342555x2y + 0.06314600078 y3 −
0.02516916045x4 − 0.03311718223x3y +
0.95642493674x2y2 − 0.05733537729xy3 −
0.07544098031 y4. 2

5. LOWER BOUND CERTIFICATES
The minimization of the rational function N [f ]

2,w =
f(α)2

g(α)
where g = τTD−1

w τ defined in (2) can be reformu-

lated as maximizing r such that f(α)2−rg(α) is nonneg-

ative. We compute a lower bound of infα∈Rn N [f ]
2,w(α) by

solving the SOS program [10, 19, 12, 14]:

r∗ := sup
r∈R,W

r

s. t. f(X)2−rg(X) = md(X)T W md(X)
W � 0, WT = W

 (14)

where md(X) is the column vector of all terms in X1,
. . ., Xn up to degree d. The dimension of md(X) is(
n+d
d

)
.

The SOS program (14) can be solved efficiently by al-
gorithms in GloptiPoly [6], SOSTOOLS [22], YALMIP
[17] and SeDuMi [28]. One can use GloptiPoly as de-
scribed in [6] to extract the solutions α which achieve the
global minimum. However, since we are running fixed
precision SDP solvers in Matlab, we can only obtain a
numerical positive semidefinite matrix W and floating
point number r∗ which satisfy approximately

f(X)2 − r∗g(X) ≈ md(X)T ·W ·md(X), W v 0. (15)

So r∗ is a lower bound of infα∈Rn N [f ]
2,w(α) approximately!

The lower bound r̃ is certified if r̃ and W̃ hold the
following conditions exactly:

f(X)2 − r̃g(X) = md(X)T · W̃ ·md(X), W̃ � 0. (16)

We can use Artin’s theorem of sum-of-squares and
semidefinite programming (see, e.g., [20, 12, 14]) to cer-
tify the computed minimum. We have done so for the
minimum 1 of (8) of Example 2 and the rational lower

bound Ñ 2 = 64597306998078108/100000000000000000
of the real algebraic optimum (13) of Example 4.

Example 5 ([29]) Given a polynomial

f = x2y2 + x2 − xy + y4 − y2 + 1

= (xy − 1/2)2 + (y2 − 1/2)2 + x2 + 1/2,

decide the minimum perturbation such that the per-
turbed polynomial has a real root.

If we allow dense perturbations, after running solvesos

in Matlab, we get the lower bound

Ñ 2 = 2.453484553428391600× 10−15.

This is caused by the assumption that we can perturb f
by any monomial terms with degree bounded by 4. In
general, for f(x, y)− εx4 one has for x = y2 that g(y) =
f(y2, y) − εy8. Notice that g(y) always has a real root,
because g(0) = 1 and g(∞) = −∞. We see that f has
a radius of positive semidefiniteness that is 0. Hence, it
would be more interesting to consider a weighted norm.
For instance, if we only allow terms which appear in
f to be perturbed, then the lower bound computed by

solvesos in Matlab is Ñ 2 = 0.2469160193369205900.
After applying the certification algorithm in [12, 14], we
obtain the certified lower bound

Ñ 2 = 24691601933692029/100000000000000000. 2

This means that f is positive since f(0, 0) = 1 > 0.

Example 6 (see [18]) Consider the polynomial

f(x, y) = 2− 3x2y2 + x2y4 + x4y2.

Notice that f is the result of adding one to the Motzkin
polynomial. It is well-known that f is positive semidefi-
nite but not an SOS, as seen in [18]. In fact f ≥ 1 for all
x, y ∈ R. First, we consider using a dense perturbation
to obtain a lower bound for N2. We use Matlab to com-
pute the approximate lower bound of N2 and obtain 0
as the minimum, which is easily proven by considering
f(x, y)− εx5. Hence, we consider a weighted norm. We
use infinite weights on the terms that have zero coeffi-
cients in f . Thus, we only allow the terms which appear
in f to be perturbed (sparse deformation). The lower
bound computed by solvesos in Matlab is

Ñ 2 = 0.1285480262594671800.

After applying the certification algorithm in [12, 14], we
obtain the certified lower bound

Ñ 2 = 12854802625942833/100000000000000000.

We have computed an exact rational certificate (as in
(16)) f(x, y)2−12854802625942833/100000000000000000
×(1+x4y8+x8y4+x4y4) = SOS (10 polynomial squares).

This means that the non-zero coefficients of f need
to be perturbed (by at least 0.128 in `2-norm squared)
for f to have a real root. Since f(0, 0) = 2, we have
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proven that f(x, y) > 0 for all real x, y via a polynomial
sum-of-squares certificate. 2

Example 6 answers a question by one of the refer-
ees. In fact, we conjecture that such polynomial sums-
of-squares always exist. More precisely, if for a real pol-
ynomial f(x1, . . . , xn) there exists a vector w of positive
and infinite weights (excluding an infinite weight for the
constant coefficient) such that ρ2,w(f) > 0 then in (14)
r∗ > 0. We have seen that ρ2,w(f) easily is no larger
than 0, provided f has a projective root at infinity, and
the condition ρ2,w(f) > 0 makes f and w quite special.
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