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A b s t r a c t - - T h e  problem of deciding whether a polynomial of positive coefficients can be factored 
into polynomials of the same type is important  for studying many physiological processes. An efficient 
method to decide positive irreducibility is highly valuable. The known criteria for positive irreducible 
polynomials need to know root location first. Here, we present a new criterion for positive polynomials 
of degree 3 or 4, which can be expressed only by the coefficients of the given polynomials. (~) 1999 
Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Protein ligand binding is a process in which the ligand can become bound and interact at a number 
of sites of a protein macromolecule. It can be described by the binding polynomial introduced by 
Wyman [1]. If the molecule has n binding sites and x represents ligand activity, then the binding 
polynomial can be written as f ( x )  = 1 + j31x + . . .  + ~ x  n, t3i >_ O, 1 < i < n - 1, and f~  > 0. If 
f ( x )  can be factored into two polynomials with positive coefficients, then it is natural to interpret 
each factor as a binding polynomial for a subset of the binding sites. The binding polynomials 
which are positive irreducible are very important since they imply that  all sites are linked. It is of 
particular interest to determine whether a quartic polynomial be p-irreducible because it covers a 
large variety of classes of proteins including hemoglobin (see [2]). The problem has been discussed 
extensively in the literature [1-4], some criteria were established which require the computation 
of all roots of the polynomial. In this paper, we give a new criterion for polynomials of degree 3 
or 4. It only consists of a set of polynomial inequalities defined by the coefficients of f ( x ) .  

In the next section, we will present some basic facts about positive polynomials and a criterion 
for stability. In Section 3, we describe a criterion for positive irreducibility of polynomials with 
degree 3. Section 4 deals with positive irreducibility of polynomials with degree 4. The algorithm 
and some examples are included in Section 5. 
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2. P R E L I M I N A R Y  

DEFINITION 1. A positive polynomial is a real polynomial whose leading and constant coefficients 

are positive and whose remaining coefficients are nonnegative. 

DEFINITION 2. A positive factorization of a polynomial is a nontrivial factorization in which 

each factor is a positive polynomial. 

The positive factorization of a polynomial is not unique. For example: 

f l  -= x 4 + 4x 3 + 6x 2 + 19x + 30 

= ( x + 2 ) ( x  3 + 2 x  2 + 2 x + 1 5 )  (1) 

= (x + 3 ) (x  3 + x  2 + 3x + 10). 

DEFINITION 3. A p-irreducible polynomial is a positive polynomial which does not admit a 

positive factorization. 

One method determining a polynomia! to be p-irreducible is to t ry  all the possible combinations 
of factors over the real field. For example: 

f2 = X4 -~ 12X 3 + 34X 2 + 23X + 210 

= (X + 7)(X + 6) (X 2 -- X + 5 )  

= (X + 7) (X 3 + 5 2  -- X + 30) 

= (X + 6) (X 3 + 6X 2 -- 2X + 35),  

f3 ---= x4 '~ 8x3 + 14X 2 + 27X + 90 

= (X + 6)(X + 3) (X 2 -- X + 5) 

= (X + 3) (x 3 + 5x 2 - x + 30) 

= (x + 6) (x 3 + 2x 2 + 2x + 15). 

(2) 

(3) 

(4) 

is a polynomial with real coefficients, and that  co = 1. Then the Routh-Hurwitz conditions can 
be written in the form of the inequalities 

A1 > 0 ,  A2 > 0 , . . . , A n  > 0 ,  (5) 

where 
el 53 

co c2 

0 c l  

Ai = 0 co 

C 5 " o .  

C4 " ' "  

C 3 . . .  

C2 C4 
(ck -=0, V k > n ) .  (6) 

Ci 

However, when all the coefficients of f ( x )  are positive, the inequalities (5) are not independent. 
For example, for n = 3, the Routh-Hurwitz conditions reduce to A2 > 0; for n = 4, reduce to 

f ( x )  = cox n + clx n-1 + . . .  +ca 

f2 is p-irreducible and f3 has a positive factorization. 
An important  class of positive polynomials consists of stable polynomials whose roots all have 

negative real parts. Binding polynomials which are stable can be factored uniquely into positive 
linear and p-irreducible quadratic factors of the forms x + u, x 2 + vx + w (u > 0, v > 0, w > 0) so 
that  the protein will have a number of independent sites corresponding to the linear factors and 
will have the remaining sites linked in pairs corresponding to the p-irreducible quadratic factors. 

Routh in 1875 and Hurwitz in 1895 provided a criterion for stability. Suppose 
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i 3 > 0. This circumstance was investigated by the French mathematicians Lidnard and Chipart  

in 1914 (see [5]). 

PROPOSITION 1. STABILITY CRITERION OF LIl~NARD AND CHIPART. Necessary and suff/cient 
condit ions for all the roots o f  the  real polynomial  f ( x )  = x n + c l x  "~-1 + . .  • + an to have negat ive 

real par ts  can be given i.n any one of the following four forms: 

1. Cn ~> 0, On_2 ~ 0, Cn-4 :> 0 , . . . ;  A1 > 0, A 3 ~ 0 , . . . ,  

2. cn >O, cn-2 >O, cn-4 > O , . . . ;  A2 >O, A4 > O , . . . ,  

3. Cn > O, cn-1 > O, c~-3 > 0 , . . .  ; A I  > O, A 3 > 0 , . . .  , 

4. C n > O, Cn-- I > O,c,n-- 3 > 0 , . . . ;  A 2 > O,A 4 > 0 , . . . .  

3.  T H E  C A S E  n = 3 

Consider the positive polynomial f ( x )  = x 3 + c l x  2 + c2x + c3. 

THEOREM 1. A posi t ive polynomial  of degree 3 is p - i r reduc ib le / f  and only i f  the coefiicients 

sat is fy  

ClC2 < C3. (7) 

PROOF. According to Proposition 1, f ( x )  will be stable if and only if clc2 > c3. In this case, 
f ( x )  can be factored into linear and quadratic p-irreducible factors. It  is obvious that  ClC2 = c3 
is the sufficient and necessary condition for f ( x )  = (x  + Cl)(X 2 + c2). Now suppose ClC2 < c3, 
f ( x )  is not stable and has no pair of conjugate pure imaginary roots. The roots of f ( x )  should 
be in the f o r m - u , v + w I ,  u > 0 ,  v > 0 ,  w > 0 ,  tha t i s ,  f ( x )  = ( x + u ) ( x  2 - 2 v x + v  2 + w  2) is 

p-irreducible. | 

4 .  T H E  C A S E  n - -  4 

Consider the positive polynomial f ( x )  = x 4 + c l x  3 + c2x 2 + c3x + c4. 

THEOREM 2. f is p-irreducible i f  and only if  one of the following seven conditions is satisfied. 

Pl P2 Pa P4 ~ P6 P7 Ps P9 Plo 
1 = 0  

2 < 0  > 0  

3 < 0  ~ 0  > 0  > 0  

4 < 0  ~ 0  > 0  < 0  < 0  

5 < 0  ~ 0  > 0  > 0  > 0  > 0  ~ 0  

6 <0 ~0 >0 >0 ~0 >0 >0 >0 ~0 

7 <0 ~0 >0 >0 ~0 >0 >0 >0 >0 <0 

Pll  P12 

---0 < 0  

Pl,P2,P3,P4,P5,P6,P7,Ps,Pg,Plo,Pl l ,P12 are 

Pl  = A 3 ( f )  : c1c2c3 -- c2c4 -- c2, 

P2 = D i s c r ( f ) =  -192C2CLC3 + 256c 3 - 128c2c42 -4c31 c3 + 16c4c4 

_ 4C2C 332 _ 27c41c2 -- 27C 4 -t- 144C2C2C 2 -t- 18CLC3C2 -b C2CLC 3222 

- 4ca2c~ca - 6c4c~c~ + 144cac~c2 - 80clcac~ca + 18calcac2c4, 

P3 = c 2 - 4c2, 

P4 = f ( - c l )  = c21c2 - clc3 + c4, 

Ps = f '  ( - c 0  = -c31 - 2CLC2 + c3, 

p6 = f (~1) f (as )  = c2c~ - clcac4 + c~, 

P7 = f (0~1) ~- f (0~2) • --C1C3 -}- 2C4, 
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( ) _ 1  4 1 P8 = f - -151 ---- 6 c4 if" 52C2 -- ~51C3 ~- 54, 

P9 ---- f '  (0/1) ~- f '  (a2) = 2c3 + 4CLC2 - c 3, 

Pl0  -~" f '  (O/1) f '  (0/2) = _ClC 222 _~_ 4C3 _ C3C3 + 4C152C 3 _.~ C 2' 

P l l  ~ C2-4-C 2 3' 

P12 = c~ - 4c4. 

Discr(f)  is the discriminant of f ,  a l ,  a2 are the roots of the polynomial x 2 + c l x  + c2. 

We will give several lemmas to prove the theorem. Clearly, by Proposition 1, if A3(f)  > 0, 
then f is stable and has a positive factorization. 

LEMMA 1. Suppose  A 3 ( f )  = 0, then f is p-irreducible i f  and only  i f  cl = c3 = 0 and c 2 - 4 c 4  < 0. 

PROOF. If A3(f)  = 0, there are only two possible cases: 

(1) (c3)  ( ClC4 ~ 
ClC3 # O, f ( x )  = x2 + -~1 x2 + c l x  + , 

c3 / 

(2) Cl ----C3 ----0, if c ~ -  4C4 _>0, 

= X 2 -f- . 

It is easy to check that  Aa( f )  = 0 is also a necessary condition for f to have a pair of conjugate 
pure imaginary roots. Now we suppose 

A 3 ( f )  < 0. (8) 

PROPOSITION 2. Let  F be a square-free real polynomial  with degree n, we have 

sign(Discr(F)) = (-1)*,  (9) 

where 2s is the n u m b e r  o f  nonreal roots o f  F.  

PROOF. See [7] for the proof. | 

LEMMA 2. I f A 3 ( f )  < 0 and Discr(f)  > 0, then f is p-irreducible. 

PROOF. If Discr(f)  > 0, according to Proposition 2, s = 0, 2. For s -- 0, f has four real 
roots. Since f is a positive polynomial, all roots must be negative. Hence, when A3(f )  < 0 and 
Discr(f)  > 0, f must have two pairs of nonreal roots of the forms a =i= bI, - c  ± dI,  a, b, c, d > 0, 
and f ( x )  = (x 2 - 2ax + a 2 + b2)(x 2 -f- 2cx + c 2 + d 2) is p-irreducible. II 

If Discr(f)  = 0, then f has one double real root or one double nonreal root or two double real 
roots . 'We have seen the last case is impossible when A3(f)  < 0. If f has a double nonreal root, 
then f ( x )  = (x 2 - 2ax + a 2 + b2) 2. Since f is a positive polynomial, one must have a = 0. It 
implies A3(f )  ---- 0. Thus, if A3(f)  < 0 and Discr(f) = 0, f will have one double negative real 
zeros and one pair of conjugate nonreal zeros with positive real parts. 

If Discr(f)  < 0, by Proposition 2, s = 1, i.e., f has one pair of conjugate nonreal roots and 
two negative real zeros. 

We suppose in the following: 

A3(f)  < 0 ,  Discr(f) ~ 0 .  (10) 
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According to the above discussion, f has two negative real roots and a pair of conjugate nonreal 
roots denoted as ~, fl < O, a 5= bI, a, b > 0, respectively, and 

f ( x )  = (x - c~)(x - fl) (x 2 - 2ax + a s + b 2) 

z (X--O~) ( X 3 q - ( C l  Jf-O~)X2~- (Or2 q-ClO~'~-C2) X - -  C'~4) 
(11) 

If cl + c~ = 0, then c~ z + Cla + c2 = c2 > 0, f has a positive factorization; else if cl + c~ < 0, then 
~2 + elc~ + c2 > 0. In addition, if a 2 + c1~ + c2 = 0, then cl + ~ > 0. The same discussion is 
suitable to ft. Now it is clear that  f ( x )  is p-irreducible if and only if (Cl + c~)(c~ 2 + ClC~ + c2) < 0 
and (cl + fl)(fi2 + clfl + c2) < 0. So we have the following proposition. 

PROPOSITION 3. I f  c21 - 4c2 < 0, f(x) is p-irreducible if  and only i f  the real roots ~, fl • 
( - o o , - C l ) ;  otherwise, f ( x )  is p-irreducible if  and only if  c~,fl • ( - c ~ , - C l )  U (a l , a2 ) ,  where 
c~1, a2 are defined as in Theorem 2. 

Proposition 3 enables us to determine whether f is p-irreducible by the distribution of the real 

roots a and ft. 

PROPOSITION 4. Given a real polynomial 

f (x)  = 3g n -}- GlX n-1  -}- ' '"  q- C n ---- h (x 2) -[- xg  (x2) .  (12) 

I f  h(x 2) does not change sign for x > 0 and the last Hurwitz determinant A n 7£ O, n = 2m, then 
the number of roots of f ( x )  in the right half-plane is determined by the formula 

k = 2V (1, A1, A3 . . . .  , A n - l ) ,  (13) 

where V is the number of sign changes in the sequence (1, A1, A 3 , . . .  , A n _ l ) .  

The proof can be found in [6]. | 

PROPOSITION 5. Suppose f ( - c l )  > O. If  f ' ( - c l )  > O, then a, fl • ( - e o , - C l ) ;  otherwise, 
f ' ( - c l )  <<_ O, we have a, fl • ( - e l , 0 ) .  

PROOF. Letting y --- x + Cl, one has 

g(y)  = f (y - 
1 , 1 

= y 4 + ~ f  ( - c l ) y 2 + f ( - c l ) +  f ( 3 ) ( _ c l ) y 3 + f , ( _ c l ) y ,  

f (--el)  = 521C2 -- ClC 3 + C4, 

f '  ( - c I )  = - c  3 - 2CLC2 + c3, 

f "  (--Cl) = 6C 2 "}- 2C2 ~ 0, 

f(3) ( - c l )  = -18c l  < 0, 

Al(g)  = ~f(a) ( -Cl)  < 0, 
O 

1 
Aa(g) = l ~ f  (3) ( - c l )  f "  (-Cl)  f '  ( - c l )  - "~ 

If f ( - c l )  > 0 and f ' ( - C l )  > 0, then Aa(g) < 0. By Proposition 4, g(y) has two zeros in the 
right half-plane. It implies the two real zeros c~, fl of f ( x )  are in ( - c ~ , - c l ) .  If f ( - -Cl )  :> 0 and 
f~(-Cl) <_ 0, it is easy to see from the sign changes of coefficients tha t  g has no negative real 
zeros, i.e., c~ and fl must be in (--51,0).  II 

LEMMA 3. I f A 3 ( f )  < 0, Discr(f) < O, f ( - c l )  > 0, and f ' ( - C l )  > 0, then f ( x )  isp-irreducible. 
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PROOF. It can be directly deduced from Proposition 3 and Proposition 5. Moreover, if c 2 - 
4c2 _< 0, f ( x )  is p-irreducible if and only if f ( - c l )  > 0 and f ' ( - C l )  > O. | 

PROPOSITION 6. Let f be a polynomial with real coefficients, a and b be two real numbers, a < b, 
such that the values f (a )  and f(b)  are nonzero, then the number of roots o f f  in the open interval 
(a, b), counted with their multiplicities, is even or odd depending on the product f ( a ) f ( b )  being 
positive or negative. 

The proof can be found in [7]. | 

REMARK 1. We have assumed f ( x )  has two real roots. Proposition 6 tells us that  there is only 
one root of f ( x )  in the open interval (a, b) if f ( a ) f (b )  < 0; otherwise, the number of roots of f ( z )  
in (a, b) must be 0 or 2. 

LEMMA 4. I f A 3 ( f )  < 0, Discr(f) _< 0, Cl 2 - 4 c 2  > 0 and f ( - c l )  < 0, then f ( x )  isp-irreducible 
i f  and only i f  f ( a l ) f ( a 2 )  < O. 

PROOF. If f ( - -c l )  < 0, by Remark 1, there is only one real root in the interval ( - c l , 0 ) ,  since 

f (0)  = c4 > 0. For this root, it is in (OLI,OL2) if and only if f ( a l ) f ( a 2 )  < 0. | 

Now let us suppose f ( - c l )  > 0. If f ( a l )  _< 0, f ( x )  has a root between ( - c l , a l ] ;  if f ( a2 )  _< 0, 
f ( x )  has a root between [a2, 0). By Proposition 3, f has a positive factorization. We suppose in 
the following that  

f ( - c l )  > 0, f (Oll)> 0, f (a2) > 0. (14) 

REMARK 2. The condition of f ( a l )  > 0 and f (a2)  > 0 is equivalent to p6 = f ( a l ) f ( a 2 )  = 
C 2 + C2 c2 -- ClC3C 4 > 0 and P7 = f ( a l )  + f (a2)  = -CLC3 ~- 2C4 > 0. 

LEMMA 5. I f  A3(f)  < 0, Discr(/)  _< 0, c 2 - 4 c 2  > 0, f ( - c l )  > 0, f ( a l )  > 0, f (a2)  > O, and 
f ( - ( 1 / 2 ) c l )  <_ O, then f ( x )  is p-irreducible. 

PROOF. If f ( a l )  > 0, f ( a2 )  > 0, and f ( - ( 1 / 2 ) C l )  < 0, then a , Z  • (c~1,-(1/2)Cl) Ij ( - ( 1 / 2 )  
Cl, OL2) ; otherwise, if f ( - ( 1 / 2 ) C l )  = 0 and f ( a l ) f ( a 2 )  > 0, the other real root of f ( x )  will also 
belong to the interval (OL1, O~2) according to Remark 1. | 

PROPOSITION 7. Suppose f ( a l )  > O. I f  f'(cel) > O, then a, t3 • ( - c ~ , a l ) ;  otherwise, f ' ( a l )  ~ 0, 
we have a, ~3 • (al,  0). 

The proof is similar to the proof of Proposition 5 and we only need to notice that  

f"(c~,) = - 6 c i a l  - 10c2 = 3c~ - 10c2 + 3clv/(c21 - 4 c 2 )  _> O, 

f(3)(~l)  = 24al + 60  = --6cl -- 12V/(Cl 2 - 4c2) < o. 
(15) 

| 

LEMMA 6. I f  Aa(f )  < 0, Discr(f) _< 0, Cl 2 - 4 c 2  > 0, f ( - c l )  > 0, f(o~l) > 0, f(oL2) > 0, 
f ( - ( 1 / 2 ) c l )  > O, and f ' ( - C l )  <_ O, then f is p-irreducible if and only if f ' ( a l )  <_ O. 

PROOF. By Proposition 5, if f ( - c l )  > 0 and f ' ( - e l )  <_ 0, then a,13 c ( - c l , 0 ) .  Further, if 
f ( - ( 1 / 2 ) c l )  > 0, the number of roots of f in [-(1/2)Cl,0] must be 0 or 2 since f ( - ( 1 / 2 ) C l )  
f (0)  > 0. If a,  j3 > - (1 /2 )c i ,  then - c l  -- a + / 3 + a + b I + a -  bI > - c 1 + 2 a .  It is 
contradictory to the hypothesis a > 0. So there are no roots in [-(1/2)c1,0],  that  is a,/3 E 
( - c l , - ( 1 / 2 ) C l ) .  Moreover, if f ( a l )  > 0 and f ' ( a l )  _< 0, then c~,~ E ( a i , - ( 1 / 2 ) c l ) ,  f is p- 
irreducible by Proposition 3; otherwise, if f ' ( a l )  > 0, then a, ~3 E ( - c l ,  a l )  which implies f ( x )  
has a positive factorization. | 

The condition f ' ( a l )  _< 0 in Lemma 6 can be replaced by P9 = f l ( a l )  + f ' ( a2 )  = 2e3 + 4elc2 - 
c 3 < 0 or P9 > 0 and Pl0 = f ' (a l)f ' (c~2) = -c~c 2 + 4c 3 - c3c3 + 40c2c3 + c 2 <_ O. 

By now, one can easily prove Theorem 2 and get the following facts. 
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REMARK 3. 

(1) The conditions in Theorem 2 can be checked one by one from left to right and top to 

bottom. 
(2) If c~ - 4c2 ~_ 0, then the last two inequalities in Condition 3 are sufficient and necessary. 
(3) The last inequality in Condition 4 is sufficient and necessary. 

(4) The inequalities P6 > 0, P7 > 0 in Conditions 5-7 are necessary. 

5. T H E  A L G O R I T H M  A N D  E X A M P L E S  

The algorithm based on Theorem 2 is constructed so that  it gives an efficient decision procedure 
and avoids unnecessary computations. We choose the computer algebra system MAPLE to 
implement the algorithm and treats several examples. 

# Input: Monic polynomial f=x^4+cl*x^3+c2*x^2+c3*x+c4# 

# Output: 1, if f is p-irreducible; O, otherwise # 

ispirr:=proc(f) 

local cl.c2.c3.c4.pi.p2.p3.p4.p5.p6.p7.p8.p9.pl0.pll. 

p12. ispirr0; 

ispirr0:=0; 

cl:=coeff(f.x.3); 

c2:=coeff(f.x.2); 

c3:=coeff(f.x.l); 

c4:=coeff(f.x.0); 

# check for the first condition # 

pI:=ci,c2.c3-cI^2.c4-c3^2; 

if pl > 0 then 

RETURN(ispirr0); 

elif pl = 0 then 

if cl = 0 and c3 = 0 then 

p11:=c2^2-4.c4; 

if pll < 0 then 

ispirr0:=l; 

RETURN(ispirr0); 

fi 

fi 

# check for the second condition # 

else 

p2:=-27,cI^4.c4^2-80,ci,c3,c2^2,c4+18,ci^3,c3,c2,c4 

-4,cI^3,c3^3-128,c2^2,c4^2+16,c2^4.c4-4,c2^3,c3^2 

-6,c1^2,c3^2,c4-192,cl,c3,c4^2+18,cl,c3^3,c2 
+t44,c2,c1^2,c4^2+c2^2,c1^2,c3^2-4,¢2^3,c1^2,c4 
+144,c4,c3^2,c2+256,c4^3-27,c3^4; 

if p2 > 0 then 

ispirr0:=l; 

RETURN(ispirr0); 

# check for the third condition # 

else 

p4:=c2,cI^2-ci,c3+c4; 

if p4 =0 then 

RETURN(ispirr0); 
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else 

p5:=-c1^3-2.c1.c2+c3; 
if p4 > 0 and p5 > 0 then 

ispirr0:=1; 

RETURN(ispirr0); 

else 

.p3:=c1^2-4,c2; 
i f  p3 <= 0 then 

RETURN(ispirrO); 

# check for the fourth condition # 

else 

p6:=c2,c3^2-c1.c3,c4+c4^2; 
if p4 < 0 then 

if p6 < 0 then 

ispirr0:=l; 

RETURN(ispirr0); 

else 

RETURN(ispirr0); 

fi 

# check for the fifth condition # 

elif p6 <= 0 then 

RETURN(ispirr0); 

else 

p7:=-cI*c3+2.c4; 

if p7 <= 0 then 

RETURN(ispirr0); 

else 

p8:=-1/16,c1^4+1/4.c2,c1^2-1/2,c1,c3+c4; 
i f  p8 <= 0 then 

ispirrO:=l; 

RETURN(ispirrO); 

# check for the sixth condition # 

else 

p9:=2.c3+4.ci*c2-ci^3; 

if p9 <= 0 then 

ispirr0:=l; 

RETURN(ispirr0); 

# check for the seventh condition # 

else 

p10:=-c1^2.c2^2+4,c2^3-c1^3,c3+4.cl,c2.c3 
+c3^2; 

if pl0 <= 0 then 

ispirr0:=l; 

RETURN(ispirr0); 

fi 

fi 

fi 

fi 

fi 

fi 

fi 
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f i  

f±  

f i ;  

RETURN ( i s p i r r 0 )  ; 

end :  

Let  us a p p l y  the  a lgo r i t hm to  expe r imen t a l  d a t a  o b t a i n e d  by  Ima i  [8] for s t r i p p e d  na t ive  h u m a n  

hemoglobin .  T h e  values ob t a ined  for overall  equ i l ib r ium cons tan t s  are/31 = 0.456, /32 = 0.113, 

/~3 = 0.088, Ha = 0.089. I t  amoun t s  to  de t e rmin ing  the  p - i r reduc ib i l i ty  of  the  po lynomia l :  

f ( x )  = x4+O.989x3+l.270x2+5.124x+ll .236. C o m p u t e  Pl = - 3 0 . 8 0 4  < 0, P2 = 263842.244 > 0, 

so f is p - i r reduc ib le  accord ing  to  t he  inequa l i ty  Cond i t ion  2 in T h e o r e m  2. Thus ,  all  four si tes  

are  l inked and  pos i t ive  c o o p e r a t i v i t y  occurs  everywhere.  

We tes t  several  more  examples  and  the  first t h ree  are given in Sect ion 2. 

EXAMPLE 1. f l  = x 4 ÷ 4X3 W 6x 2 -]- 19X + 30. 

p~ = --385 < 0, P2 = --6644411 < 0, P3 = --8 < 0, P4 = 50 > 0, P5 = --93 < 0. 

f l  is not  p - i r reduc ib le  according  to  inequa l i ty  Cond i t i on  3 and  R e m a r k  3. 

EXAMPLE 2. f2 = x 4 q- 12X3 if- 34X 2 + 23x + 210. 

p~ = --21385 < 0, 

P5 = --2521 < 0, 

P2 = --156174091 < 0, P3 = 8 > 0, P4 = 483 > 0, 

P6 = 4126 > 0, P7 = 144 > 0, PS = 0. 

f2 is p - i r reduc ib le  because  i t  satisfies inequa l i ty  Cond i t i on  5. 

EXAMPLE 3. f3 = x4 q- 8x3 -b 14x 2 + 27x + 90. 

Pl  = --3465 < 0, 

P4 = 770 > 0, 

P2 = --109166571 < 0, 

P6 = : 1 1 3 4  < 0. 

P3 = 8 > 0 ,  

By  C o n d i t i o n  5 and  R e m a r k  3, f3 has  a posi t ive  fac tor iza t ion .  

EXAMPLE 4. f4 = x4 q- 0.1134x2.+ 0.00642978. 

Pl = 0, P l l  = 0, P12 = --0.0129 < 0. 

f4 is p - i r r educ ib le  accord ing  to  inequa l i ty  Cond i t i on  1. 

EXAMPLE 5. f5  = x4  + 4-111x 3 + 3.212x 2 + 2.001x + 9.123. 

Pl  = -131 .763  < 0, 

P4 = 55.181 > 0, 

P7 = 10.020 > 0, 

P2 = -19142 .373  < 0, 

P5 = - 9 3 . 8 8 5  < 0, 

Ps = 0.730 > 0, 

P3 = 4.052 > 0, 

P6 = 21.043 > 0, 

P9 = - 1 2 . 6 5 7  < 0. 

f5 is p - i r reduc ib le  since i t  satisfies inequa l i ty  Cond i t i on  6. 

EXAMPLE 6. f6  = x4  q- 1.342X 3 + 2.021x 2 + 2.982X + 4.214. 

Pl  = --8.383 < 0, P2 = 9624.935 > 0. 

f6 is p - i r reduc ib le  accord ing  to  inequa l i ty  Cond i t ion  2. 

EXAMPLE 7. f7 = X 4 + 5X3 -~- X2 q- 6X + 2. 

Pl  = --56 < 0, P2 = --175800 < 0, P3 = 21 > 0, P4 = --3 < 0, P6 = --20 < 0. 
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f 7  is p-irreducible according to inequality Condit ion 4. 

EXAMPLE 8 .  fs  ---- x 4 ÷ 5.1121x 3 + 6.3684x 2 + 3.0871x ÷ 9.1450. 

Pl = -148 .018  < 0, 

P5 = -195 .622  < 0, 

P0 = 2.800 > 0, 

P2 = -6202.283 < 0, 

P6 = 0.000662 < 0, 

Pl0 --- -27 .651 < 0. 

P3 = 0.660 > 0, 

P7 -~ 2.508 > 0, 

P4 = 159.792 > 0, 

Ps = 0.176 > 0, 

fs  is p-irreducible according to inequality Condit ion 7. 

EXAMPLE 9. f 9  --~ X4 ÷ 5.1121X 3 + 6.3683X 2 + 3.0871x + 9.1450. 

Pl = --148.020 < 0, 

P4 = 159.790 > 0, 

P2 : --6217.067 < 0, 

P6 = --0.000291 < 0. 

P3 = 0.660 > 0, 

By  inequali ty Condi t ion 5 and Remark  3, f9 has a positive factorization. 

By  compar ing  Examples  8 and 9, one can see tha t  small per turba t ion  of  the coefficients will 
affect the p-irreducible property. By  the  criterion in [2], if the roots  all computed  to five correct  

digits, one will find tha t  the roots of fs  and f9 all satisfy the set of  inequalities t ha t  imply  they  

are p-irreducible. 

6. C O N C L U D I N G  R E M A R K S  

We have given an approach to determine whether  positive polynomials  of  degree 3 or 4 are 

p-irreducible. The  inequali ty conditions consist of  polynomials  with the  coefficients of  the  given 

polynomial .  Previous criteria (see [1,2]) need to find all zeros of a polynomiall  then  check if 

zeros satisfy a set of  inequalities combined by rat ional  functions. I t  is well known tha t  roots  of  a 

polynomial  are highly sensitive to even slight variat ion of coefficients. So it is no t  stable to  check 

by roots, especially for ill-condition polynomials.  Our  criterion can be computed  wi thout  error. 

I t  is exact  and can easily be checked. Finally, we would like to point  out  t h a t  for the  binding 

polynomials  of  higher degrees (>  4), the criterion based on coefficients will be more  useful because 

there  is no general root-finding formulas. We hope to  proceed further  by some advance tools in 

compute r  algebra such as CAD (see [9]). 
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