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Abstract—The problem of deciding whether a polynomial of positive coefficients can be factored
into polynomials of the same type is important for studying many physiological processes. An efficient
method to decide positive irreducibility is highly valuable. The known criteria for positive irreducible
polynomials need to know root location first. Here, we present a new criterion for positive polynomials
of degree 3 or 4, which can be expressed only by the coefficients of the given polynomials. © 1999
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Protein ligand binding is a process in which the ligand can become bound and interact at a number
of sites of a protein macromolecule. It can be described by the binding polynomial introduced by
Wyman [1]. If the molecule has n binding sites and  represents ligand activity, then the binding
polynomial can be written as f(z) =1+ iz + -+ fpz™, 5;20,1<i<n—1,and B, > 0. If
f(x) can be factored into two polynomials with positive coefficients, then it is natural to interpret
each factor as a binding polynomial for a subset of the binding sites. The binding polynomials
which are positive irreducible are very important since they imply that all sites are linked. It is of
particular interest to determine whether a quartic polynomial be p-irreducible because it covers a
large variety of classes of proteins including hemoglobin (see [2]). The problem has been discussed
extensively in the literature [1-4], some criteria were established which require the computation
of all roots of the polynomial. In this paper, we give a new criterion for polynomials of degree 3
or 4. It only consists of a set of polynomial inequalities defined by the coefficients of f(r).

In the next section, we will present some basic facts about positive polynomials and a criterion
for stability. In Section 3, we describe a criterion for positive irreducibility of polynomials with
degree 3. Section 4 deals with positive irreducibility of polynomials with degree 4. The algorithm
and some examples are included in Section 5.
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2. PRELIMINARY

DEFINITION 1. A positive polynomial is a real polynomial whose leading and constant coefficients
are positive and whose remaining coefficients are nonnegative,

DEFINITION 2. A positive factorization of a polynomial is a nontrivial factorization in which
each factor is a positive polynomial.

The positive factorization of a polynomial is not unique. For example:

fi=a* + 423 + 62 + 192 4+ 30
= (z +2) (z* + 227 + 22 + 15) (1)
= (z+3) (¢° + 2% + 3z + 10) .
DEFINITION 3. A p-irreducible polynomial is a positive polynomial which does not admit a
positive factorization.

One method determining a polynomial to be p-irreducible is to try all the possible combinations
of factors over the real field. For example:

fo = z* +122° + 3422 + 232 + 210
=(z+7)(z+6)(z* -~z +5)

2
=(z+7)(z* +52% — = + 30) @)
= (z +6) (2 + 62% — 2z + 35),

fa =zt + 823 + 1422 + 272 + 90
=(z+6)(z +3)(z® —z+5) )

= (z + 3) (z® + 52% — z + 30)
= (z+6) (z° + 22% + 22 + 15) .

f2 is p-irreducible and f; has a positive factorization.

An important class of positive polynomials consists of stable polynomials whose roots all have
negative real parts. Binding polynomials which are stable can be factored uniquely into positive
linear and p-irreducible quadratic factors of the forms z+u, 22 +vz+w (u > 0,v > 0, w > 0) so
that the protein will have a number of independent sites corresponding to the linear factors and
will have the remaining sites linked in pairs corresponding to the p-irreducible quadratic factors.

Routh in 1875 and Hurwitz in 1895 provided a criterion for stability. Suppose

f@)=coz™ +erz™ P+ Hep (4)

is a polynomial with real coeflicients, and that ¢y = 1. Then the Routh-Hurwitz conditions can
be written in the form of the inequalities

A1>0, A2>0,...,An>0, (5)
where
Ci C3 Cs
Co Co2 C4
0 c1 c3 ce.
A= o ¢ Cs (ck =0, Yk > n). (6)
(&)

However, when all the coefficients of f(x) are positive, the inequalities (5) are not independent.
For example, for n = 3, the Routh-Hurwitz conditions reduce to A; > 0; for n = 4, reduce to
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A3 > 0. This circumstance was investigated by the French mathematicians Liénard and Chipart
in 1914 (see [5]).

PROPOSITION 1. STABILITY CRITERION OF LIENARD AND CHIPART. Necessary and sufficient
conditions for all the roots of the real polynomial f(x) = ™+ c;z™~! + - - - + ¢, to have negative
real parts can be given in any one of the following four forms:

1. ¢, >0,ch-2>0,¢-4>0,...; A1 >0,A3>0,...,
2. ¢, >0,¢p-2>0,c,-4>0,...; Ay >0,A4>0,...,
3. cn>0,ch1>0,60-3>0,...; A1 >0,A3>0,...,
4. ¢, > 0,61 >0,60-3>0,...; A >0,A4>0,....

3. THE CASE n=3
Consider the positive polynomial f(z) = z* + ;2% + coz + 3.

THEOREM 1. A positive polynomial of degree 3 is p-irreducible if and only if the coefficients
satisfy
ci1C2 < C3. (7)

PRrooOF. According to Proposition 1, f(x) will be stable if and only if ¢;cp > ¢3. In this case,
f(z) can be factored into linear and quadratic p-irreducible factors. It is obvious that ¢jc2 = ¢3
is the sufficient and necessary condition for f(x) = (z + c¢1)(z? + c2). Now suppose cicy < c3,
f(z) is not stable and has no pair of conjugate pure imaginary roots. The roots of f(z) should
be in the form —u,v £ wl, u > 0, v > 0, w > 0, that is, f(z) = (z + u)(z? — 2vz + 0% + w?) is
p-irreducible. |

4. THE CASE n=4
Consider the positive polynomial f(z) = z* + ;23 + c22? + 3z + 4.

THEOREM 2. f is p-irreducible if and only if one of the following seven conditions is satisfied.

P P2 P3 P4 D5 D6 pr ps ‘P9 P10 P11 P12

1| =0 =0 | <0
2 | <0 | >0}

3 <0 <0 >0 >0

4| <0 | <0} >0] <o <0

51 <o <ol >0f>0 >0 | >0 <o

6 | <ol <o]>0|>0]<0]|>0]|>01>01] <0

7l <ol <o >0 >0l <0|>0]|>0}>0]3>0] <o

P1,P2,P3,P4,P5,P6, P7,D8, P9, P10, P11, P12 are

p1 = As(f) = ciccs — e — a3,

p2 = Discr(f) = —192c2cic3 + 256¢3 — 128c2c2 — 4c3cs + 16¢5cq
— 4c3ck — 27c]cd — 27ch + 144c2c3cl + 18¢yc3es + cicicl
- 4cgc§C4 - 6cz;c§c§ + 14404c§cz — 80cicacics + 18c3cscacy,

ps = ¢ — 4,

pa= f(—c1) = ciea — crc3 + 4,

ps = f'(—e1) = —¢} — 2c163 + cs,

pe = f (1) f (a) = ca} — creaca + ¢,

pr = f(a1) + f(o2) = —c1c3 + 2¢4,
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= 1c = 1c‘l—i-lczc ! c3 +
Pg = 1] =71ga 7 12 2613 Cq,
f

! (Ozz) = 263 + 46162 - C?,

' ' 2.2 3 3 2
pro = f'(a1) f' (a2) = —cic; +4c5 — cjes + 4ercacs + 3,
2, 2
P11 = ¢; + G5,
2
P12 = €5 — 4cy

Discr(f) is the discriminant of f, a1, a2 are the roots of the polynomial 2 + ¢;z + co.

We will give several lemmas to prove the theorem. Clearly, by Proposition 1, if Az(f) > 0,
then f is stable and has a positive factorization.
LEMMA 1. Suppose As(f) =0, then f is p-irreducible if and only if c; = c3 = 0 and c% —4cy < 0.
PrOOF. If As(f) =0, there are only two possible cases:

1
v cies # 0, f(z)=<x2+c—3> (as2+c1x+ﬂc—4>,
C1 c3
(2) €1 =0C3 = Oa if C% —dcy 2> Oa
_ —4 —
flw) = (ﬁ y2zvazta 7&*) (zz ; 2+_2_\/m> | i

It is easy to check that Az(f) = 0 is also a necessary condition for f to have a pair of conjugate
pure imaginary roots. Now we suppose

As(f) <. (8)
PROPOSITION 2. Let F be a square-free real polynomial with degree n, we have
sign{Discr(F)) = (—1)°, (9)

where 2s is the number of nonreal roots of F.

PRrROOF. See [7] for the proof. 1

LEMMA 2. If A3(f) < 0 and Discr(f) > 0, then f is p-irreducible.

Proor. If Discr(f) > 0, according to Proposition 2, s = 0,2. For s = 0, f has four real
roots. Since f is a positive polynomial, all roots must be negative. Hence, when As(f) < 0 and
Discr(f) > 0, f must have two pairs of nonreal roots of the forms a + bI, —c+dI, a,b,c,d > 0,
and F(z) = (2% — 2az + a® + b?)(x? + 2cx + 2 + d?) is p-irreducible. ]

If Discr(f) = 0, then f has one double real root or one double nonreal root or two double real
roots. We have seen the last case is impossible when Az(f) < 0. If f has a double nonreal root,
then f(z) = (22 — 2az + a® + b%)2. Since f is a positive polynomial, one must have a = 0. It
implies A3{f) = 0. Thus, if A3(f) < 0 and Discr(f) = 0, f will have one double negative real
zeros and one pair of conjugate nonreal zeros with positive real parts.

If Discr(f) < 0, by Proposition 2, s = 1, i.e., f has one pair of conjugate nonreal roots and
two negative real zeros.

We suppose in the following:

As(f) <0, Diser(f) < 0. (10)
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According to the above discussion, f has two negative real roots and a pair of conjugate nonreal
roots denoted as o, 3 < 0, a + bl,a,b > 0, respectively, and
f(z) = (z — a)(z - B) (z° — 2az + a? + b2)

=(r—-a) ($3+(cl+a)x2+(a2+c1a+02)$—%4) (11)

=(z—0) <x3+(c1+ﬁ)m2+(ﬂ2+c1ﬂ+c2)x—%“>.

If ¢; + @ = 0, then o + c;a + ¢y = ¢ > 0, f has a positive factorization; else if ¢; + a < 0, then
a? + c1o + ¢z > 0. In addition, if o2 +cate = 0, then ¢; + a > 0. The same discussion is
suitable to 5. Now it is clear that f(x) is p-irreducible if and only if (¢; + a)(a® +cia+¢3) <0
and (¢; + B)(8% + e18 + c2) < 0. So we have the following proposition.

PROPOSITION 3. If ¢? — 4c; < 0, f(z) is p-irreducible if and only if the real roots o, €
(—o00, —c1); otherwise, f(x) is p-irreducible if and only if o, € (—00, —¢1) U (a1, a2), where
oy, g are defined as in Theorem 2.

Proposition 3 enables us to determine whether f is p-irreducible by the distribution of the real
roots o and (.

ProprosITION 4. Given a real polynomial
fl@)=z"+ex” '+ e = h(2?) + 29 (27). (12)

If h(x?) does not change sign for z > 0 and the last Hurwitz determinant A, # 0, n = 2m, then
the number of roots of f(x) in the right half-plane is determined by the formula

k=2V(1,A1As ..., An1), (13)

where V' is the number of sign changes in the sequence (1,A1,Agz,...,8,_1).

The proof can be found in [6]. ]

PROPOSITION 5. Suppose f(—ci) > 0. If f'(-¢y) > 0, then o, € (—o00,—c1); otherwise,
f'(—c1) €0, we have a, 3 € (—¢;,0).

PrOOF. Letting y = x + c1, one has
9y)=f(y—c1)
1 1
= y4 + §f” (=e))y? + f(—e1) + gf(a) (—e)) ¥ + f' (—e1) y,

f(—a1 ¢y — €103 + ¢4,
' (—a —2ci1c2 + c3,

)
)
' (—c1) = 6c1+2(:2 >0,
)
) =

f(B) ( Ci1) = —18C1 < 0

Ailg —f‘3’ (—e1) <0,

1

Bale) = 757 (=en) 1" (=en) ' (=) = 55 (7O (=en))” F (=) = ( (=en))*

If f(—ci) > 0 and f'(—c1) > 0, then Az(g) < 0. By Proposition 4, g(y) has two zeros in the
right half-plane. It implies the two real zeros o, 8 of f(z) are in (—o0, —¢1). If f(—c1) > 0 and
f'(—c1) <0, it is easy to see from the sign changes of coefficients that g has no negative real
zeros, i.e., a and § must be in (—c1,0). ]

LEMMA 3. If A3(f) < 0, Discr(f) <0, f(—c1) >0, and f'(—c1) > 0, then f(x) is p-irreducible.
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PROOF. It can be directly deduced from Proposition 3 and Proposition 5. Moreover, if ¢3 —
deq < 0, f(x) is p-irreducible if and only if f(—¢;) > 0 and f/(—¢;) > 0. ]

PROPOSITION 6. Let f be a polynomial with real coefficients, a and b be two real numbers, a < b,
such that the values f(a) and f(b) are nonzero, then the number of roots of f in the open interval
(a, b), counted with their multiplicities, is even or odd depending on the product f(a)f(b) being
positive or negative.

The proof can be found in (7). [
REMARK 1. We have assumed f(z) has two real roots. Proposition 6 tells us that there is only

one root of f(x) in the open interval (a,b) if f(a)f(b) < 0; otherwise, the number of roots of f(z)
in (a,b) must be 0 or 2.

LEMMA 4. If As(f) < 0, Discr(f) <0, ¢? — 4cp > 0 and f(—c1) < 0, then f(z) is p-irreducible
if and only if f(a1)f(a2) < 0.
PrROOF. If f(—c1) < 0, by Remark 1, there is only one real root in the interval (—e¢;,0), since
f(0) = ¢4 > 0. For this root, it is in (a1, ) if and only if f(aq)f(a2) < 0. ]
Now let us suppose f(—c¢;1) > 0. If f(a;) <0, f(z) has a root between (—ci, a1]; if f(a2) <0,
f(z) has a root between [ay,0). By Proposition 3, f has a positive factorization. We suppose in
the following that
f(=e1)>0,  f(o1)>0,  f(az)>0. (14)

REMARK 2. The condition of f(a1) > 0 and f(az) > 0 is equivalent to ps = f(oa)f(az) =
c% + cac — ciczcq > 0 and pr = f(aq) + f(a2) = —cics + 2¢4 > 0.

LEMMA 5. If A3(f) < 0, Discr(f) <0, ¢2 —dep > 0, f(—c1) > 0, f(ay) > 0, f(az) > 0, and
f(—(1/2)c1) €0, then f(z) is p-irreducible. .

PROOF. If f(a1) > 0, f(ag) > 0, and f(—(1/2)c1) < 0, then a, 8 € (a1, —(1/2)c1) U (—(1/2)
c1,a); otherwise, if f(—(1/2)c1) = 0 and f(a1)f(az) > 0, the other real root of f(z) will also
belong to the interval (ay, ag) according to Remark 1. ]

PROPOSITION 7. Suppose f(ay) > 0. If f/(a;) > 0, then o, 3 € (—00, av1); otherwise, f/'(a;) <0,
we have o, B € (a3, 0).

The proof is similar to the proof of Proposition 5 and we only need to notice that

(@) = —6c1a; — 10cy = 3¢2 — 10cy + 3e1y/(c? — 4e2) > 0, 5)

f(3)(a1) = 240 + 61 = —6c1 — 124/(c2 — dez) < 0. i

LEMMA 6. If Ag(f) < 0, DiSCI‘(f) <0, C% — 4ca > 0, f(—Cl) > 0, f(al) > 0, f(ag) > 0,
Ff(—=(1/2)e;) > 0, and f'(—c1) <0, then f is p-irreducible if and only if f'{(ay) < 0.

ProOF. By Proposition 5, if f(—¢;) > 0 and f'(—¢;) < 0, then o, 8 € (—¢1,0). Further, if
f(=(1/2)c;) > 0, the number of roots of f in [—(1/2)c1,0] must be 0 or 2 since f(—(1/2)c1)
flO) > 0. Ifa,B > —(1/2)c;, then —¢; = a+B8+a+bl+a—bl > —c; +2a. It is
contradictory to the hypothesis @ > 0. So there are no roots in [—(1/2)e, 0], that is o, 8 €
(—e1,—(1/2)e1). Moreover, if f(on) > 0 and f'(a1) < 0, then o, 8 € (a1,—(1/2)c1), f is p-
irreducible by Proposition 3; otherwise, if f/(21) > 0, then a, 8 € (—¢1, ;) which implies f(x)
has a positive factorization. |

The condition f'(a1) < 0 in Lemma 6 can be replaced by pg = f'(a1) + f/(a2) = 2¢3 +4cic2 —
¢3 <0orpy>0and pio = f/(a1)f(a2) = —c2c2 + 43 — c3cs + 4ejcacs + ¢ < 0.

By now, one can easily prove Theorem 2 and get the following facts.
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REMARK 3.

(1) The conditions in Theorem 2 can be checked one by one from left to right and top to

bottom.

(2) If ¢? — 4cp < 0, then the last two inequalities in Condition 3 are sufficient and necessary.
(3) The last inequality in Condition 4 is sufficient and necessary.
(4) The inequalities pg > 0, pr > 0 in Conditions 5-7 are necessary.

5. THE ALGORITHM AND EXAMPLES

The algorithm based on Theorem 2 is constructed so that it gives an efficient decision procedure
and avoids unnecessary computations. We choose the computer algebra system MAPLE to

implement the algorithm and treats several examples.

# Input: Monic polynomial f=x"4+cl*x"3+c2*x 2+c3*kx+cd#
# Output: 1, if f is p-irreducible; O, otherwise #

ispirr:=proc(f)
local c1,c2,c3,c¢4,pl,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,
pl2, ispirroO;
ispirr0:=0;
c1:=coeff (f,x,3);
c2:=coeff(f,x,2);
c3:=coeff(f,x,1);
cd:=coeff (f,x,0);
# check for the first condition #
pl:=c1*c2%c3-c1™2%c4-c3"2;
if p1 > 0 then
RETURN (ispirr0);
elif pl = O then
if ¢1 = 0 and ¢3 = 0 then
pll:=c2"2-4%c4;
if pil < O then
ispirr0:=1;
RETURN (ispirr0);
fi
fi
# check for the second condition #
else
p2:=-27*c14*c4"2-80*Ccl%c3*c2"2xc4+18%c1"3*c3%c2*c4
—4*%Cc1"3%c3"3~128+c2 2% c4"2+164Cc2"4*c4~4*c2"3%c3"2
-6*Cc1"2*%c3 2% c4-192%c1*xc3*c4d"2+18%c1*%c3 3*c2
+144%c2%c1"24c4™2+c2"2%c1"24c32-4%¢c2 3% c1"2+c4d
+144%c4*c3"2+c2+256*c4"3-27*c374;
if p2 > O then
ispirr0:=1;
RETURN(ispirr0Q) ;
# check for the third condition #
else
p4:=c2%c1"2-cl*c3+c4;
if p4 =0 then
RETURN (ispirr0) ;
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else
p5:=-c1"3-2%cl*c2+c3;
if p4 > 0 and p5 > O then
ispirr0:=1;
RETURN (ispirr0) ;
else
.p3:=c1"2-4xc2;
if p3 <= 0 then
RETURN (ispirr0);
# check for the fourth condition #
else
p6:=c2%c3"2-c1xc3*cd+cd"2;
if p4 < 0 then
if p6 < O then
ispirr0O:=1;
RETURN (ispirr0Q) ;
else
RETURN (ispirr0);
fi
# check for the fifth condition #
elif p6 <= 0 then
RETURN(ispirr0) ;
else
p7:=-cl*c3+2x%c4;
if p7 <= 0 then
RETURN (ispirr0) ;
else
p8:=-1/16%c174+1/4%c2*c1"2-1/2*c1*xc3+c4;
if p8 <= 0 then
ispirr0:=1;
RETURN (ispirr0);
# check for the sixth condition #
else
p9:=2%c3+4*cl*c2-c1°3;
if p9 <= 0 then
ispirr0O:=1;
RETURN(ispirr0);
# check for the seventh condition #
else
p10:=-c1"2%c2"2+4%¢c2"3-c1"3%c3+4*c1*c2*c3
+c3°2;
if p10 <= 0O then
ispirr0:=1;
RETURN (ispirr0);
fi
fi
fi
fi
fi
fi
fi
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fi

fi
fi;

RETURN (ispirr0);
end:

Let us apply the algorithm to experimental data obtained by Imai [8] for stripped native human
hemoglobin. The values obtained for overall equilibrium constants are 8; = 0.456, 3, = 0.113,
B3 = 0.088, B4 = 0.089. It amounts to determining the p-irreducibility of the polynomial:
f(z) = 2440.9892341.270x2+5.1242+11.236. Compute p; = —30.804 < 0, p; = 263842.244 > 0,
so f is p-irreducible according to the inequality Condition 2 in Theorem 2. Thus, all four sites
are linked and positive cooperativity occurs everywhere.

We test several more examples and the first three are given in Section 2.

EXAMPLE 1. f; = x* + 423 + 622 + 19z + 30.
p1 = —385 < 0, P2 = —6644411 < 0, p3 =—-8<0, P4 = 50 > 0, ps = —-93 <0.

f1 is not p-irreducible according to inequality Condition 3 and Remark 3.
EXAMPLE 2. fy =z 4+ 1223 + 3422 + 23z + 210.

p1 = —21385 < 0, p2 = —156174091 < 0, p3=8>0, pg = 483 > 0,
ps = —2521 < 0, pe = 4126 > 0, pr =144 > 0, ps = 0.

f2 is p-irreducible because it satisfies inequality Condition 5.
EXAMPLE 3. f3 = z* + 823 + 1422 + 27z + 90.

p1 = —3465 < 0, py = —109166571 < 0, ps=8>0,
p4 = 770 > 0, pg = —1134 < 0.

By Condition 5 and Remark 3, f3 has a positive factorization.
EXAMPLE 4. f; = z* 4 0.1134x2 + 0.00642978.

p1=0, i =0, p12 = —0.0129 < 0.

fa is p-irreducible according to inequality Condition 1.
EXAMPLE 5. fs = x* + 4.1112% + 3.21222 4 2.001z + 9.123.

pr=—131.763 <0, py=-19142.373<0, ps=4.052> 0,
ps = 55.181 > 0, ps = —93.885 < 0, pe = 21.043 > 0,
pr = 10.020 > 0, ps = 0.730 > 0, po = —12.657 < 0.

f5 is p-irreducible since it satisfies inequality Condition 6.
EXAMPLE 6. fg = z% + 1.3422°% + 2.02122 + 2.9827 + 4.214.

pL=-8383<0,  po=9624.935> 0.

fs is p-irreducible according to inequality Condition 2.
EXAMPLE 7. f; =2+ 523 + 2% + 62 + 2.

pr=-56<0, pp=—175800<0, p3=21>0, ps=-3<0, pg=—20<0.
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fr is p-irreducible according to inequality Condition 4.
EXAMPLE 8. fg = z* + 5.11212% + 6.3684x2 + 3.0871z + 9.1450.

pL=—148018 <0,  p,=—6202.283<0, p3=0.660>0, ps=159.792 > 0,
ps = —195.622 <0,  pg = 0.000662 < 0, pr=2508>0, pg=0176>0,
po = 2.800 > 0, P10 = —27.651 < 0.

fs is p-irreducible according to inequality Condition 7.
EXAMPLE 9. fg = 2% +5.112123 + 6.3683z2 + 3.0871z + 9.1450.

p1 = —148.020 <0, p, =—6217.067<0, ps=0.660>0,
pa = 159.790 > 0, pe = —0.000291 < 0.

li
|

By inequality Condition 5 and Remark 3, fy has a positive factorization.

By comparing Examples 8 and 9, one can see that small perturbation of the coefficients will
affect the p-irreducible property. By the criterion in [2], if the roots all computed to five correct
digits, one will find that the roots of fg and fy all satisfy the set of inequalities that imply they
are p-irreducible.

6. CONCLUDING REMARKS

We have given an approach to determine whether positive polynomials of degree 3 or 4 are
p-irreducible. The inequality conditions consist of polynomials with the coefficients of the given
polynomial. Previous criteria (see [1,2]) need to find all zeros of a polynomial, then check if
zeros satisfy a set of inequalities combined by rational functions. It is well known that roots of a
polynomial are highly sensitive to even slight variation of coefficients. So it is not stable to check
by roots, especially for ill-condition polynomials. Our criterion can be computed without error.
It is exact and can easily be checked. Finally, we would like to point out that for the binding
polynomials of higher degrees (> 4), the criterion based on coefficients will be more useful because
there is no general root-finding formulas. We hope to proceed further by some advance tools in
computer algebra such as CAD (see [9]).
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