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Abstract. Camera pose estimation is the problem of determining the
position and orientation of an internally calibrated camera from known
3D reference points and their images. We introduce a new polynomial
equation system for 4-point pose estimation and apply our symbolic-
numeric method to solve it stably and efficiently. In particular, our algo-
rithm can also recognize the points near critical configurations and deal
with these near critical cases carefully. Numerical experiments are given
to show the performance of the hybrid algorithm.

1 Introduction

Given a set of correspondences between 3D reference points and their images,
4-point pose estimation consists of determining the position and orientation of
the camera with respect to four known reference points. It is a classical and
common problem in computer vision and photogrammetry and has been studied
in the past [1, 2, 6, 8, 11, 20, 23].

The well-known polynomial system (1) corresponding to the 4-point pose

estimation generically has a unique positive solution. It can be found successfully
by linear algorithms proposed in [20, 2, 23]. But there are certain degenerate cases
for which no unique solution is possible. These critical configurations are known
precisely and include the following notable degenerate case: a 3D line and a circle
in an orthogonal plane touching the line. In [2] an algorithm is presented that
solves the problem including the critical configurations, but the relative error
and failure rate (backward error) are significantly higher than one would like.
In [23], the authors present a new linear algorithm which works well even in the
degenerate cases. However, the matrices are much larger 70× 90 compared with
24× 24 matrices used in [2].

In this paper, we introduce a new variable and transform the polynomial
system for 4-point pose estimation to a new system with only five equations and
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three variables. Our symbolic-numeric method can also be applied to the new
system and find solutions in general or critical cases. The matrices we used in
the general or critical cases are of size 20 × 20; while in near critical cases, we
are using a matrix of size 35× 50 in order to recover the sensitive unique root.

The rest of the paper is organized as follows. In Section 2, we introduce the
basic geometry of the 4-point pose estimation problem. A new system of equations
is introduced. In Section 3, we briefly review the symbolic-numeric method for
polynomial system solving. Then, we illustrate how to apply this method to
solve the polynomial system corresponding to the critical or near critical cases.
In Section 4, the simulated experimental results are given. Some conclusions are
given in Section 5.

2 Geometry of camera pose from four points

In the following, we briefly introduce the geometry of camera pose from four
points. Let C be the calibrated camera center, and P1, P2, P3, P4 be the ref-
erence points (see Fig. 1). Let c12 = 2 cos 6 (P1CP2), c13 = 2 cos 6 (P1CP3),
c14 = 2 cos 6 (P1CP4), c23 = 2 cos 6 (P2CP3), c24 = 2 cos 6 (P2CP4), c34 =
2 cos 6 (P3CP4).

X2

X1

X3

X4

P2 P3

P1

C

P4

Fig. 1. The 4-point pose estimation problem

From triangles CP1P2, CP1P3, CP2P3, CP1P4, CP2P4 and CP3P4, we obtain
the 4−point pose estimation equation system:


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
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













X2
1 +X2

2 − c12X1X2 − |P1P2|2 = 0,
X2

1 +X2
3 − c13X1X3 − |P1P3|2 = 0,

X2
2 +X2

3 − c23X2X3 − |P2P3|2 = 0,
X2

2 +X2
4 − c24X2X4 − |P2P4|2 = 0,

X2
3 +X2

4 − c34X3X4 − |P3P4|2 = 0,
X2

1 +X2
4 − c14X1X4 − |P1P4|2 = 0.

(1)
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We are only interested in finding the positive solutions for X1, X2, X3, X4.
Since X4 = |P4C| is positive, we may make the following variable changes. Let

X1 = x1X4, X2 = x2X4, X3 = x3X4,

|P1P4| =
√
wX4, |P1P2| =

√
awX4, |P1P3| =

√
bwX4,

|P2P3| =
√
cwX4, |P2P4| =

√
dwX4, |P3P4| =

√
ewX4.

Equation system (1) become the following equivalent equation system:






























x2
1 + x2

2 − c12x1x2 − aw = 0,
x2

1 + x2
3 − c13x1x3 − bw = 0,

x2
2 + x2

3 − c23x2x3 − cw = 0,
x2

2 + 1− c24x2 − dw = 0,
x2

3 + 1− c34x3 − ew = 0,
x2

1 + 1− c14x1 − w = 0.

(2)

From x2
1 +1− c14x1−w = 0 and |c14| < 2 because c14 = 2 cos 6 (P1CP4), we

have

w = (|P1P4|/X4)
2 = x2

1 + 1− c14x1 = (x1 − c14/2)
2 + 1− c214/4 > 0.

X4 can be uniquely determined by X4 = |P1P4|/
√
w and the equivalent corre-

spondence is:

(x1, x2, x3,
√
w)

|P1P4|=
√

wX4← −−−−−− → (x1, x2, x3, X4)
X1=x1X4,X2=x2X4,X3=x3X4← −−−−−−−−−− → (X1, X2, X3, X4)

(3)

Substituting w into above equation system, we have the following equivalent
equation system:























(1− a)x2
1 + x2

2 − c12x1x2 − a(1− c14x1) = 0,
(1− b)x2

1 + x2
3 − c13x1x3 − b(1− c14x1) = 0,

(1− c)x2
2 + x2

3 − c23x2x3 − c(1− c14x1) = 0,
(1− d)x2

2 + 1− c24x2 − d(1− c14x1) = 0,
(1− e)x2

3 + 1− c34x3 − e(1− c14x1) = 0.

(4)

The equation system (4) is simpler than the original system (1), and from
the positive solution xi we can get the coordinates Xi according to the equiva-
lent correspondence. The recovered camera-point distances Xi are used to esti-
mate the coordinates of the 3D reference points in a camera-centered 3D frame:
P̄i = XiK

−1Ui (see [20]). The final step is the absolute orientation determina-
tion [21]. The determination of the translation and the scale follow immediately
from the estimation of the rotation.

The system (4) is still an overdetermined polynomial system of five equations
in 3 variables. The parameters cij(1 ≤ i, j ≤ 4) and a, b, c, d, e are data of limited
accuracy. It is still very difficult to use Gröbner basis algorithms [4] or Ritt-
Wu’s characteristic algorithms [29, 31] to solve such approximate overdetermined
polynomial systems. In the following, we briefly introduce our new developed
complete linear method [23] for solving such system stably.
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3 Linear methods for pose determination from 4 points

Consider a general polynomial system S in x1, . . . , xn of degree q and its corre-
sponding vector of monomials of degree less than or equal to q. The system can
be written as

M0 · [xq
1
, xq−1

1
x2, . . . , x

2

n, x1, . . . , xn, 1]
T = [0, 0, . . . , 0, 0, . . . , 0, 0]T (5)

in terms of its coefficient matrix M0. Here and hereafter, [...]T means the trans-
position. Further, [ξ1, ξ2, . . . , ξn] is one of the solutions of the polynomial system,
if and only if

[ξq
1
, ξq−1

1
ξ2, . . . , ξ

2

n, ξ1, . . . , ξn, 1]
T (6)

is a null vector of the coefficient matrix M0.
Since the number of monomials is usually bigger than the number of poly-

nomials, the dimension of the null space can be big. The aim of completion
methods, such as ours and those based on Gröbner bases and others [15, 12, 5,
14, 17, 18, 16, 25, 28], is to include additional polynomials belonging to the ideal
generated by S, to reduce the dimension to its minima.

The bijection

φ : xi ↔
∂

∂xi

, 1 ≤ i ≤ n, (7)

maps the system S to an equivalent system of linear homogeneous PDEs denoted
by R. Jet space approaches are concerned with the study of the jet variety

V (R) =

{(

u
q
, u
q−1

, . . . , u
1
, u

)

∈ Jq : R

(

u
q
, u
q−1

, . . . , u
1
, u

)

= 0

}

, (8)

where u
j
denotes the formal jet coordinates corresponding to derivatives of order

exactly j.
A single prolongation of a system R of order q consists of augmenting the

system with all possible derivatives of its equations, so that the resulting aug-
mented systems, denoted by DR, has order q + 1. Under the bijection φ, the
equivalent operation for polynomial systems is to multiply by monomials, so
that the resulting augmented system has degree q + 1.

A single geometric projection is defined as

E(R) :=

{(

u
q−1

, . . . , u
1
, u

)

∈ Jq−1 : ∃ u
q
, R

(

u
q
, u
q−1

, . . . , u
1
, u

)

= 0

}

. (9)

The projection operator E maps a point in J q to one in Jq−1 by simply removing
the jet variables of order q (i.e. eliminating u

q
). For polynomial systems of degree

q, by the bijection φ, the projection is equivalent to eliminating the monomials
of the highest degree q. To numerically implement an approximate involutive
form method, we proposed in [30, 23] a numeric projection operator Ê based on
singular value decomposition.
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By the famous Cartan-Kuranishi Theorem [10, 19, 27], after application of a
finite number of prolongations and projections, the algorithm above terminates
with an involutive or an inconsistent system.

Suppose that R is involutive at prolonged order k and projected order l, and
by the bijection φ has corresponding system of polynomials S. Then the dimen-
sion of Êl(DkR) allows us to determine the number of approximate solutions
of S up to multiplicity. In particular these solutions approximately generate the
null space of Êl(DkR). We can compute eigenvalues and eigenvectors to find
these solutions. It should be noticed that the above symbolic prolongation and
numeric projection method works only for solving the polynomial systems with
finite number of solutions.

The following example corresponds to the third singular case as pointed in
[2, 23]. In the example the coordinate of the camera point is (1, 1, 1), and the
coordinates of the four control points are (−1, 1, 0), (−1,−1, 0), (1,−1, 0) and
(1, 1, 0) respectively. The corresponding 4-point pose estimation equation system

is:






















p1 := x2
2 − 2.0x1

2 − 0.666667x2 + 1.78885x1 − 1.0,
p2 := x3

2 − x1
2 − 0.894427x3 + 0.894427x1,

p3 := x2
2 − 1.49071x1 x2 + 0.894427x1 − 1.0,

p4 := −x1
2 + x3

2 − 0.4x1 x3 + 1.78885x1 − 2.0,
p5 := x2

2 + x3
2 − 1.49071x2 x3 − x1

2 + 0.894427x1 − 1.0.

(10)

We show how our symbolic-numeric method can be used to solve (10). Under
the bijection φ : xi ↔ ∂

∂xi
where i = 1, 2, 3, the system is equivalent to the PDE

system R:































φ(p1)u := ∂2u
∂x2

2 − 2.0 ∂2u
∂x1

2 − 0.666667 ∂u
∂x2

+ 1.78885 ∂u
∂x1
− 1.0u,

φ(p2)u := ∂2u
∂x3

2 − ∂2u
∂x1

2 − 0.894427 ∂u
∂x3

+ 0.894427 ∂u
∂x1

,

φ(p3)u := ∂2u
∂x2

2 − 1.49071 ∂2u
∂x1 ∂x2

+ 0.894427 ∂u
∂x1
− 1.0u,

φ(p4)u := − ∂2u
∂x1

2 + ∂2u
∂x3

2 − 0.4 ∂2u
∂x1 ∂x3

+ 1.78885 ∂u
∂x1
− 2.0u,

φ(p5)u := ∂2u
∂x2

2 + ∂2u
∂x3

2 − 1.49071 ∂2u
∂x2 ∂x3

− ∂2u
∂x1

2 + 0.894427 ∂u
∂x1
− 1.0u.

(11)

Applying the symbolic-numeric completion method to R with tolerance 10−9,
we obtain the table of dimensions below:

Table 1: dim(ÊlDkR) for (11)

k = 0 k = 1 k = 2 k = 3 k = 4
l = 0 5 2 2 2 2
l = 1 4 2 2 2 2
l = 2 1 2 2 2 2
l = 3 1 2 2 2
l = 4 1 2 2
l = 5 1 2
l = 6 1
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We seek the smallest k such that there exists an l = 0, ..., k with ÊlDkR
approximately involutive. Passing the approximate projected elimination test
amounts to test looking in the table for the first column with an equal entry in
the next column on the downwards sloping diagonal (with both entries being on
or above the main diagonal k = l). This first occurs for k = 1 and l = 0, 1, 2.

Applying the approximate version of the projected involutive symbol test to
the example, shows that it is passed for k = 1, l = 0, and l = 1, so we choose
the largest l (l = 1), yielding ÊDR as the sought after approximately involutive
system.

The involutive system has dim(ÊDR) = 2 and so by the bijection the poly-
nomial system (10) has 2 solutions up to multiplicity. In the following, we apply
an eigenvalue method to solve (10).

1. Compute an approximate basis of the null space of DR, denoted by a 20× 2
matrix B. Since dim(DR) = dim(ÊDR) = dim(Ê2DR) = 2, the 4 × 2
submatrix B1 and 10×2 submatrix B2 of B by deleting entries corresponding
to the second and third degree monomials are bases of null spaces of Ê2DR
and ÊDR respectively.

2. Consider the set of all monomials of degree less than or equal to 1:

N = [x1, x2, x3, 1].

For numerical stability, we compute the singular value decomposition of B1

U, S, V := SingularValues(B1).

The first two columns of U form the 2×4 matrix Us, and guarantee a stable
linear polynomial set Np = UT

s · N T for computing multiplication matrices.
3. The multiplication matrix of xi with respect to Np can be formed as

Mxi
= UT

s ·Bxi
· V T · Si

where Bx1
, Bx2

, Bx3
are the [1, 2, 3, 7], [2, 4, 5, 8] and [3, 5, 6, 9] rows of B2

respectively, and Si is a diagonal matrix with elements which are inversions
of the first two elements of S: 1.95588, 111.524.

4. The coordinates xi of the double root can be found as the average of the
eigenvalues of Mxi

for i = 1, 2, 3:

x1 = 2.23607, x2 = 3.0, x3 = 2.23607. (12)

Substituting the solution (12) into (10), we find |pi(ξ1, ξ2, ξ3)| < 0.42 · 10−7

for i = 1, 2, . . . , 5. If one substitutes the positive solution (12) to the Jacobian
matrix













∂p1

∂x1

∂p1

∂x2

∂p1

∂x3
∂p2

∂x1

∂p2

∂x2

∂p2

∂x3

...
...

...
∂p5

∂x1

∂p5

∂x2

∂p5

∂x3













(13)
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then the singular values of the transpose of the Jacobian matrix are

11.8865, 5.42001, 0.109804 · 10−8.

The Jacobian matrix is near singular. This tells us that the solution is quite
unstable for any small perturbations. Suppose we perturb (10) by errors of or-
der 10−6, the number of solutions read from the dimension table will generally
become 1.

In general, we obtain the following table:

Table 2: dim(ÊlDkR) for near critical case

k = 0 k = 1 k = 2 k = 3 k = 4
l = 0 5 2 1 1 1
l = 1 4 2 1 1 1
l = 2 1 2 1 1 1
l = 3 1 1 1 1
l = 4 1 1 1
l = 5 1 1
l = 6 1
Applying the projected elimination and involutive symbol tests shows that

Ê2D2R is approximately involutive. The computed positive root has backward
error of order 10−6 ∼ 10−9 in general.

In order to compare the difference between general cases, critical cases and
near critical cases, in the below, we also show the dimension table corresponding
to the general cases.

Table 3: dim(ÊlDkR) for general case

k = 0 k = 1 k = 2 k = 3 k = 4
l = 0 5 1 1 1 1
l = 1 4 1 1 1 1
l = 2 1 1 1 1 1
l = 3 1 1 1 1
l = 4 1 1 1
l = 5 1 1
l = 6 1

From the three different dimension tables, it is easy to deduce the following
conclusions. Firstly, in the general case, the unique solution can be recovered
from the null vector of the 20× 20 matrix generated by pi, xi pj for i, j = 1, 2, 3.
Secondly, if the four points are on the critical configuration, we have to deal
it with eigenvalue method after forming the multiplication matrix with respect
to x1, x2, x3 separately. Finally, if the points are near the critical configuration,
then the solution should be found stably from the null vector of the 35 × 50
matrix generated by pi, xipj , xixjpk for i, j, k = 1, 2, 3. The main reason is due
to that the dimension of the null space of the 20 × 20 matrix is two from table
2 in near degenerate cases.
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4 Experimental Results

Based on the linear symbolic-numeric method, we may have the following algo-
rithm for the 4-point pose estimation problem:

– Compute the cij from the image points and the camera calibration matrix
K.

– Compute the inter-point distances |PiPj | from the reference points.
– Compute the solution x1, x2, x3 of the polynomial system (4) using the

symbolic-numeric method [23].
– Recover the camera-point distances X1, X2, X3, X4 from the equivalence cor-

respondence (3).
– Estimate the coordinates of the 3D reference points in a camera-centered 3D

frame: P̄i = XiK
−1Ui.

– Compute the camera rotation and translation using the absolute orientation
[9, 20, 21].

The following experiments are done with Maple 8 in the default setting of
digits (Digits=10).

The first experiment is to show the accuracy and stability of the algorithm for
the general 4-point pose estimation. The optical center is located at the origin and
the matrix of camera’s intrinsic parameters is assumed to be the identity matrix.
At each trial, four noncoplanar control points are generated at random within a
cube centered at (0, 0, 50) and of dimension 60× 60× 60. The orientation Euler
angles of the camera are positioned randomly. The control points are projected
onto an image plane using the camera pose and internal parameters. We carry
out one hundred trials and generate 100 sets of control points randomly for each
trial. For a set of solutions, we substitute them into (1) and check the backward
error. The backward error of the experimental results is generally less than 10−8.

We check the stability of the algorithm. The relative error of the estimated
translation ti w.r.t. the true t is measured by 2|ti − t|/(|ti| + |t|). The relative
error of the estimated rotation Ri w.r.t. the true R is measured by the sum of
the absolute values of the three Euler angles of the relative rotation RiR

T (Fig.
2). We also check the failure rate defined as the percentage of total trials where
either the rotation error or the translation error is over 0.5 (Fig. 3).

The second experiment is to show the accuracy and the stability of the algo-
rithm in determining the solutions for the critical configurations. As mentioned
in the introduction, the pose problem has some computationally troublesome
singular cases. Fig. 4 and Fig. 5 show the relative error and the failure rate for
one such critical configuration using our symbolic-numeric linear method.

The data is 4 coplanar points in a square [−1, 1]×[−1, 1] and the camera starts
at position=0, at a singular point directly above their center (0.5 < h < 1.5),
where h is the height of the camera. The camera then moves sideways parallel to
one edge of the square. At position=

√
2 units it crosses the side of the vertical

circular cylinder through the 4 data points, where another singularity occurs.
From Fig. 4 and Fig. 5, the relative error and especially the failure rate of the
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Fig. 2. Relative errors vs. noise level
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Fig. 4. Relative translation errors vs. noise level for the critical configurations
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Fig. 5. Failure rate for the critical configurations

algorithm are significantly lower compared with the algorithm in [2]. The relative
error and the failure rate of our algorithm are also acceptable. It is natural that
the error and failure rate near the position 0 and

√
2 are a little higher than at

other positions.

It is clear that the experimental results are very similar to those we have
presented in [23]. However, the computation is simpler due to smaller size of the
polynomial system.

5 Conclusion

In this paper, we present a stable algorithm to find the numeric solution for
4-point pose estimation. The algorithm gives a unique solution whenever the
control points are not sitting on one of the known critical configurations. When
the control points are sitting on or near some known critical configurations, the
algorithm also obtains reliable solutions. Compared with other algorithms, the
main advantage of our linear algorithm is that it can recognize the critical and
near critical cases and deal with different cases in different ways. The matrices
in our approach are only bigger than those used in other approaches when the
points are near critical configurations. The experiments show that the new simple
polynomial system for 4-point pose estimation is well solvable by our symbolic-
numeric method.
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