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Abstract

Consider a general polynomial system S in x1, . . . , xn of degree q and its corre-
sponding vector of monomials of degree less than or equal to q. The system can be
written as

M0 · [xq
1, x

q−1
1 x2, . . . , x

2
n, x1, . . . , xn, 1]T = [0, 0, . . . , 0, 0, . . . , 0, 0]T (1)

in terms of its coefficient matrix M0. Here and hereafter, [...]T means the transposi-
tion. Further, [ξ1, ξ2, . . . , ξn] is one of the solutions of the polynomial system, if and
only if

[ξq
1 , ξq−1

1 ξ2, . . . , ξ
2
n, ξ1, . . . , ξn, 1]T (2)

is a null vector of the coefficient matrix M0.
Since the number of monomials is usually bigger than the number of polynomials,

the dimension of the null space can be big. The aim of completion methods, such as
ours and those based on Gröbner bases and others [4, 5, 6, 7, 8, 10, 16, 18, 17, 12, 9, 20],
is to include additional polynomials belonging to the ideal generated by S, to reduce
the dimension to its minima.

The bijection

φ : xi ↔ ∂

∂xi
, 1 ≤ i ≤ n, (3)

maps the system S to an equivalent system of linear homogeneous PDEs denoted by
R. Jet space approaches are concerned with the study of the jet variety

V (R) =

{(
u
q
, u

q−1
, . . . , u

1
, u

)
∈ Jq : R

(
u
q
, u

q−1
, . . . , u

1
, u

)
= 0

}
, (4)

where u
j

denotes the formal jet coordinates corresponding to derivatives of order

exactly j.
A single prolongation of a system R of order q consists of augmenting the system

with all possible derivatives of its equations, so that the resulting augmented systems,
denoted by DR, has order q + 1. Under the bijection φ, the equivalent operation for
polynomial systems is to multiply by monomials, so that the resulting augmented
system has degree q + 1.

A single geometric projection is defined as

E(R) :=

{(
u

q−1
, . . . , u

1
, u

)
∈ Jq−1 : ∃ u

q
, R

(
u
q
, u

q−1
, . . . , u

1
, u

)
= 0

}
. (5)
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The projection operator E maps a point in Jq to one in Jq−1 by simply removing
the jet variables of order q (i.e. eliminating u

q
). For polynomial systems of degree q,

by the bijection φ, the projection is equivalent to eliminating the monomials of the
highest degree q. To numerically implement an approximate involutive form method,
we proposed in [19, 13, 14, 1] a numeric projection operator Ê based on singular value
decomposition.

The system R = 0 is said to be (exactly or symbolically) involutive [11] at order
k and projected order l, if El(DkR)) satisfies the projected elimination test

dim El
(
DkR

)
= dim El+1

(
Dk+1R

)
(6)

and the symbol of El(DkR) is involutive.
The symbol space of a system is the Jacobian matrix of the system with respect

to its highest order jet coordinates. The definition of the symbol space implies that

dim
(
Symbol El

(
DkR

))
= dim El

(
DkR

)
− dim El+1

(
DkR

)
. (7)

By the famous Cartan-Kuranishi Theorem [3, 11], after application of a finite
number of prolongations and projections, the algorithm above terminates with an
involutive or an inconsistent system.

Suppose that R is involutive at prolonged order k and projected order l, and
by the bijection φ has corresponding system of polynomials S. Then the dimension
of Êl(DkR) allows us to determine the number of approximate solutions of S up
to multiplicity. In particular these solutions approximately generate the null space
of Êl(DkR). It should be noticed that for polynomial system of finite number of
solutions, if El(DkR) is involutive, then dim

(
Symbol El

(
DkR

))
= 0 [15]. Hence,

the projected involutive symbol test amounts to verifying whether:

dim El
(
DkR

)
= dim El+1

(
DkR

)
(8)

in this case. Moreover, we can form the multiplication matrices from the null space of
El

(
DkR

)
and El+1

(
DkR

)
. The solutions can be obtained by computing eigenvalues

and eigenvectors. The details are discussed in the following example given by Stetter
in [18].

p1 := −3.8889 + 0.078524 x + 0.66203 y + 2.9722 x2 − 0.46786 xy + 1.0277 y2,

p2 := −3.8889 + 0.66203 x− 0.078524 y + 1.0416 x2 + 0.70179 xy + 3.9584 y2.

Using the methods of [18], this is a difficult problem which required about 30
Digits of precision to obtain 10 correct digits for the y-component if we are using a
generic normal set {1, x, x2, x3}.

The method we now describe does not use a normal set, and only needs Digits =
10 for success in Maple 9. Under the bijection φ, the system is equivalent to the PDE
system R. Applying the symbolic-numeric completion method to R with tolerance
10−9, we obtain the table of dimensions of Êl(DkR) below:

k = 0 k = 1 k = 2 k = 3

l = 0 4 4 4 4
l = 1 3 4 4 4
l = 2 1 3 4 4
l = 3 1 3 4
l = 4 1 3
l = 5 1

Applying the approximate version of the involutive test to the example shows that
the system involutive after one prolongation and no projection, i.e. k = 1, l = 0,
yielding DR as the sought approximately involutive system.
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The involutive system has dim(DR) = 4 and so by the bijection the polynomial
system has 4 solutions up to multiplicity, and the monomial bases for these spaces
should include the second degree monomials in order to recover all solutions. In the
following, we show how to find the solutions without computing normal set w.r.t. a
specified order of variables. It is a key improvement on [14] since there a type of
normal set was used.

1. Compute an approximate basis of the null space of DR, denoted by a 4 × 10
matrix B. The 4×6 submatrix B1 of B by deleting entries corresponding to the
third degree monomials is a basis of null space of Ê(DR) since dim(Ê(DR)) =
dim(DR) = 4.

2. Let N =
[
x2, xy, y2, x, y, 1

]
be the set of all monomials of degree less than or

equal to 2. For numerical stability, instead of selecting four monomials as the
normal set fromN , we compute the SVD of B1 = U ·S·V . The first four columns
of U form the 6× 4 submatrix Us, and guarantee a stable polynomial set Np =
UT

s · N T (including four quadratic polynomials) for computing multiplication
matrices.

3. The multiplication matrices of x, y with respect to Np can be formed as Mx =
UT

s ·Bx ·V T ·Si and My = UT
s ·By ·V T ·Si, where Bx, By are the 1, 2, 3, 5, 6, 8 and

2, 3, 4, 6, 7, 9 rows of B corresponding to monomials x3, x2y, xy2, x2, xy, x and
x2y, xy2, y3, xy, y2, y respectively, and Si is a well-conditioned diagonal matrix
with elements which are inversions of the first four elements of S: 0.99972,
0.95761, 0.64539, 0.58916.

4. Compute the eigenvectors vp of Mx −My(or any random linear combination of
Mx, My), and recover the eigenvector corresponding to the monomial set N by
v = Us ·vp. Since x, y, 1 appear as the last three components in N , the solutions
of p1, p2 can be obtained as x = v[4, i]/v[6, i], y = v[5, i]/v[6, i]:

{x = 1.04972, y = −0.80689} ; {x = 1.04972, y = 0.64062} ;

{x = −1.20441, y = −0.78652} ; {x = −0.76039, y = 1.05888} .

Substituting these solutions back to p1, p2, we found that the errors are smaller
than 10−8. It should be noticed that, for this example, although the first two solutions
have the same x values, there is no sincere multiple root. So the step 4 is success-
ful. Otherwise, we could apply a reordered Schur factorization method in [2] to the
multiplication matrices Mx, My, ... to recover all roots including the multiplicities.

The method has been applied successfully to solve some over-determined problems
such as camera pose determination in singular positions [14]. At present, the method
can only be used to solve zero-dimensional polynomial systems. Our test suit and
Maple implementation are available by request.
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