A Complete Symbolic-Numeric Linear Method for Camera
Pose Determination’

Greg Reid
Dept. of Applied Mathematics
University of Western Ontario
London, Canada N6A 5B7

reid@uwo.ca

ABSTRACT

Camera pose estimation is the problem of determining the
position and orientation of an internally calibrated camera
from known 3D reference points and their images. We briefly
survey several existing methods for pose estimation, then
introduce our new complete linear method, which is based on
a symbolic-numeric method from the geometric (Jet) theory
of partial differential equations. The method is stable and
robust. In particular, it can deal with the points near critical
configurations. Numerical experiments are given to show the
performance of the new method.
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1. INTRODUCTION

Given a set of correspondences between 3D reference points
and their images, pose estimation consists of determining
the position and orientation of the camera with respect to
the known reference points. It is also called space resection
in the photogrammetry community. It is a classical and
common problem in computer vision and photogrammetry
and has been studied in the past. Camera pose estimation
impacts many important fields, such as computer vision [15],
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automation, image analysis and automated cartography [8],
robotics [1].

With three points, the problem generically has four possible
solutions. Fischer and Boles characterize the problem using
a biquadratic polynomial in one unknown. Haralick et al.
[13] review many old and new variants of the basic 3-point
methods and carefully examine their numerical stability un-
der different order of substitution and elimination. Gao et
al. [9] use Wu-Ritt’s zero decomposition method to obtain
a complete solution classification. Three-point methods in-
trinsically give multiple solutions. If a unique solution is re-
quired, additional information must be given, and a fourth
point generally suffices. But there are certain degenerate
cases for which no unique solution is possible. These critical
configurations are known precisely and include the follow-
ing notable degenerate case: a 3D line and a circle in an
orthogonal plane touching the line. Many linear methods
have been presented for finding the solution in the unique
solution case [29]. Horaud et al. [15] obtain a fourth de-
gree polynomial equation and prove that the problem has
at most four possible solutions. In [29], Quan and Lan give
a special linear method which finds the unique solution in
the generic case. In [2] a method is presented that solves the
problem including the critical configurations, but the rela-
tive error and failure rate (backward error) are significantly
higher than one would like. In Gao & Tang [10], the authors
give the triangular decomposition and closed form solution
for this problem.

‘We present a new linear method which works well even in
the degenerate cases and obtain the following results:

1. In general, our method gives a linear and unique solu-
tion. The experiments show that the unique solution
is stable and the new method is robust.

2. For the well-known critical configurations, we first esti-
mate the number of solutions, and then find the linear
solutions according to that requirement. It is the first
method that can be used to solve the pose estimation
problem near critical configurations.

3. The method applies to the case n > 4, where n is the
number of reference points.

We briefly mention the origin and motivation for our meth-



ods. Exact elimination methods for exactly given polyno-
mial systems (e.g. Grébner Bases), usually employ Gaussian
Elimination (e.g. linear elimination of monomials). Such ex-
act methods usually depend on the ordering of input (e.g.
term ordering in the case of Grobner Bases), and so are co-
ordinate dependent. Since the order of elimination can force
division by small leading entries, such methods are gener-
ally unstable, when used on approximate systems. In con-
trast, exact elimination methods from the geometric theory
of PDE (Jet Space methods) are coordinate independent,
and this motivated our study of numerical versions of such
methods [4, 31, 38] which is continued in this paper (see
Tuomela and Arponen [36] for a jet space approach to nu-
merical DAE solving).

We exploit the well-known correspondence between poly-
nomial systems and systems of constant coefficient linear
homogeneous PDE. This equivalence has been extensively
studied and exploited in the exact case by Gerdt [11] and
his co-workers in their development of involutive bases. An
early example of its use is in [20] and it is heavily used
in [7, 22, 33]. This correspondence is used in our paper
to write the polynomial systems in the form of PDE sys-
tems, to which our new numeric methods are applied. The
method depends on viewing the polynomial systems as ma-
trix functions of their monomials, and applying Numerical
Linear Algebra (in particular the Singular Value Decompo-
sition), to the null spaces of these maps. Ultimately the
solutions are determined by applying eigenvalue-eigenvector
techniques to a related eigen-problem. We direct the reader
to the work of Stetter [3, 23], who in contrast to our ap-
proach, uses the method of border bases, and works directly
with the coefficient matrix, in a method which is closer to
a numerical translation of the idea of Grébner Bases. Ul-
timately Stetter also obtains solutions of zero dimensional
problems from a related eigen-problem (also see the work of
Mourrain [24, 22, 25, 26] and others [6, 7, 20, 21, 27]).

The rest of the paper is organized as follows. In Section 2,
we introduce the basic geometry of the camera pose and the
4-point pose estimation problem. In Section 3, we present
the method and provide an illustrative example. In Sec-
tion 4, the simulated experimental results are given. Our
conclusions are discussed in Section 5.

2. GEOMETRY OF CAMERA POSE FROM FOUR

POINTS
Given a calibrated camera centered at ¢ and correspon-
dences between four 3D reference points P; and their images
u;, each pair of correspondences ¢ and j gives a constraint
on the unknown camera-point distances z; = |pi — c|(cf.
Figure 1):

— .2 2 2
Pij(:L‘q;,CEj) =x; +2j +cijTiT; — dij =0
cij = —2cos b5

where d;; = |pi — pj| is the known inter-point distance be-
tween the i—th and j—th reference points and 6;; is the 3D
viewing angle subtended at the camera center by the i—th

C

Figure 1: The basic geometry of camera pose deter-
mination for each pair of correspondences

and j—th points. The cosine of this viewing angle is directly
computed from the image points and the calibration matrix
K of the internal parameters of the camera.

In the following, we will mainly discuss the case: n =4, i.e.,
the 4-point pose estimation problem. Let P be the calibrated
camera center, and A, B, C, D be the reference points
(see Figure 2). Let p = 2cos Z(BPC), q = 2cos L(APC),
r = 2cos Z(APB), s = 2cos Z(CPE), t = 2Z(APE), u =
2cos Z(BPE).

Figure 2: The 4-point pose estimation problem

From triangles PAB, PAC, PBC, PAE, PBE and PCE
we obtain the 4—point pose estimation equation system:

X+ X5 —rX1X2 —|AB)> =0
X7+ X3 —gX1Xs — |AC)> =0
X35 + X3 —pX2X3 — |BC|” =0 1
X7+ Xi —sX1Xa— |AE]> =0 (1)
X;+ X3 —tX3X4— |CE)>=0
X35+ X; —uX2Xs — |BE)> =0

The recovered camera-point distances X;, are used to esti-
mate the coordinates of the 3D reference points in a camera-
centered 3D frame: P; = X;K ™ u; (see [29]). The final step
is the absolute orientation determination [32]. The determi-
nation of the translation and the scale follow immediately
from the estimation of the rotation.

The system (1) is an overdetermined polynomial system of
six equations in 4 variables. The parameters p,q,r,s,t,u
and |AB|, |[AC|, |BC|, |AE|, |BE|, |CE| are data of limited
accuracy. It is still very difficult to use Grobner basis algo-
rithms [5] or Ritt-Wu’s characteristic algorithms [37, 39] to
solve such approximate polynomial systems. Linear meth-
ods in [2, 29] can solve problems in generic cases, but have
trouble near degenerate cases. In the following, we propose
a complete linear method which solves the above polynomial
system including cases where A, B, C, D are near critical
configurations.



3. LINEAR METHODS FOR POSE DETER-
MINATION FROM 4 POINTS
3.1 Symbolic-Numeric completion of polyno-

mial systems
Consider a general polynomial system S = {p1(z1,...,25) =
0,...,pm(x1,...,2,) = 0} of degree ¢q and its corresponding
vector of monomials of degree less than or equal to q. For
example, if ¢ = 2, n = 2, m = 2 then the monomial vector is
the transpose of [x%, T1T2, T3, T1, T2, 1]. In the general case
the system can be written as

q

T 0
z? ey 0
.2
) 5, _ 0
Mo o 0 (2)
Tn 0
1 0
in terms of its coefficient matrix My. Further, [€1,&2,. - ., &xn]

is one of the solutions of the polynomial system, if and only
if the transpose of

[ (1115(11_1523'"Jéiﬁ&la"'aénal] (3)

is a null vector of the coefficient matrix Mo.

Since the number of monomials is usually bigger than the
number of polynomials, the dimension of the null space can
be much bigger than zero. The aim of completion methods,
such as our method and Grobner Bases, is to include addi-
tional polynomials belonging to the ideal generated by S, to
reduce these dimensions to their minima.

There are many ways to include new polynomials. For ex-
ample the authors of [2] suggest computing the null space
of the coefficient matrix corresponding to {z;p;, 1 < ¢ <
n, 1 < j < m}. If the null space is of dimension 1, then
the solution of S can be easily recovered from the null vec-
tor. The authors of [2] point out that the enlarged matrix of
the 4-point pose estimation problem should generically have
one dimensional null space. However they also show that
the failure rate of their method is undesirably high near sin-
gular cases. The main reason as shown by the example in
next subsection is that the dimension of the null space in
the singular case is bigger than 1.

The method we now describe is based on the geometric the-
ory of PDE [19, 28] which in the exact case has algorithms
described in [30, 34]. Symbolic-numeric completion meth-
ods for PDE based on this approach are described in [38].
This method uses a bijection to convert the given polyno-
mial system (1) into an equivalent PDE system, and then
solves the system stably (including the singular cases).

In particular the bijection

¢z & 1<i<n, (4)

(9337; ’
maps the system S to an equivalent system of linear homo-
geneous PDE denoted by R. These PDE can also be written
in matrix form:

9%y
33:‘11
9%y 0

3:0‘11_13:412 0
% 0

M 22 = 5
° b 0 )

L .
ou 0
Oxzn 0
u

The approach of Jet Geometry, is to study the above sys-
tem, by studying the properties of the linear mapping: R :
v = R(v) = Mov. Then v is regarded as a vector of formal
coordinates (no longer derivatives of solutions), in a complex
Euclidean space, whose dimension is the same as the total
number of derivatives (or equivalently monomials), less than
or equal to q. That space is called the jet space of order g,
is denoted by J? &~ C™? and is easily seen to have dimension
ng = n;-q ) In addition, we partition v into groups,
v = [u, Uy Uy u]T, where u denotes the formal jet coor-
q q— J

dinates corresponding to derivatives of order exactly j. Jet
space approaches are concerned with the study of the (jet)
variety

VR)={(u, v ,...,u,u) € J*: R(u, u ,...,u,u) =0},
q g—1 1 q q—1 1
(6)

a much easier task than directly studying the solutions of
the PDE system.

There are two major coordinate-independent operations in
the geometric theory of PDE: prolongation and projection.

A single prolongation (differentiation) of a system R of or-
der ¢ consists of augmenting the system with all possible
derivatives of its equations, so that the resulting augmented
systems, denoted by DR, has order g+ 1 [28, 34]. Under the
bijection ¢, the equivalent operation for polynomial systems,
to multiply by monomials, so that the resulting augmented
system has degree g+ 1. For the polynomial system S, in the
case where each equation has the same degree g, this yields
the equivalent system {pi,. .., pm, Z1p1,T1p2,.-.,TnPm}. The
monomial vectors are updated to

q+1 q 3 2 T
[17, zlze, ... 20, 21, 20, 1]

The prolonged system DR can also be written in matrix
form

u
q+1 0
u 0
q
M1 : = (7)
u 0
1 0
u

EI
0 Mo
it is a mapping on J9!. Successive prolongations DR, ...,
etc. can similarly be written using larger constant matrices
Mo, ..., etc.

using a constant matrix of form M; = ( ) Thus



A single geometric projection is defined as
ER):={(u,...,u,u) € J7' :Ju,R(u, u,...,u,u) =0}
q—1 1 q q 1

q—1
(8)
The projection operator E maps a point in J? to one in
J9=! by simply removing the jet variables of order q (i.e.
eliminating 1(.;) For polynomial systems of degree g, by the

bijection ¢, the projection is equivalent to eliminating the
monomials of the highest degree q.

The system R = 0 is said to be (exactly or symbolically)
involutive [28] at order k and projected order I, if E'(D*(R))
satisfies the projected elimination test

dim E'(D*R) = dim E'T'(D*"'R) (9)

and the symbol of E'(D*R) is involutive(see [28], [30] for de-
tails). An algorithm to obtain such a form with exact input
and exact intermediate computations is to compute D*R,
k=0,1,... until some projection E'D*R, 1 =0,1,...,k is
exactly involutive. This is the exact algorithm underlying
our numeric method.

The symbol space of a system is the jacobian matrix of the
system with respect to its highest order jet coordinates. The
definition of the symbol space implies that

dim(Symbol E'(D* R)) = dim E'(D*R) — dim E'*" (D*R)
Rank(Symbol E'(D* R)) = n, — dim Symbol E'(D* R)(10)

When dim(Symbol E'(D*R)) = 0, or equivalently when
that the symbol has full rank, it is easily shown that the
symbol of E'(D*R) is involutive [28], so that the projected
involutive symbol test amounts to test:

dim E'(D*R) = dim E'"'(D*R) (11)

in this case (which occurs in this paper). The cases in which
the dimension of the symbol is not zero, need a finer analysis
of the structure of the symbol space and involve the deter-
mination of the dimensions of certain subspaces (the Cartan
Characters).

By the famous Cartan-Kuranishi Theorem [19], after appli-
cation of a finite number of prolongations and projections,
the algorithm above terminates with an involutive or an in-
consistent system. Involutive systems are locally solvable
and contain all their integrability conditions. They allow
an existence and uniqueness theorem for local analytic so-
lutions of the original system R by Cartan-K&hler Theorem
[18]; which via the bijection ¢ gives us information on the
number and existence of solutions of the corresponding poly-
nomial system.

Exact involutive form algorithms, use symbolic differenti-
ation to compute the prolongations of a system of PDE,
and exact polynomial elimination methods to compute the
eliminations (e.g. Grobner basis algorithms [5] or Ritt-Wu’s
characteristic algorithms [37]). However, they are usually
unstable when applied with approximate data, such as the
application considered in this paper.

To numerically implement an approximate involutive form
method, in [4, 38], we proposed a numeric projection op-
erator E. First, a singular value decomposition [12] of M}

is computed to find the numeric rank of My and a basis
for its null space. Then, the components corresponding to
the highest order jet coordinates are deleted, which yields
an approximate projected basis. This generates an approxi-
mate spanning set for E(D*R) (and similarly for E'(D*R)).
Application of the singular value decomposition to the span-
ning yields the approximate null space of F(D*R). In this
way we obtain the dimensions of which allowing us to de-
termine the dimensions needed in the elimination test (9).
Discussion of the involutive symbol test is given in [4, 38].

Suppose R is involutive at prolonged order k£ and projected
order I, and by the bijection ¢ has corresponding system of
polynomials S. Then the dimension of E'(D*R) allows us
to determine the number of approximate solutions of S up
to multiplicity. In particular these solutions approximately
generate the null space of E'(D*R). We can compute eigen-
values and eigenvectors to find these solutions. The details
are discussed in the following example.

3.2 An example for pose estimation from 4

points
The following example corresponds to the third singular case
as pointed in [2]. In the example the coordinate of the cam-
era point is (1,1, 1), and the coordinates of the four control
points are (—1,1,0), (—1,-1,0), (1,—1,0) and (1,1,0) re-
spectively. The corresponding 4-point pose estimation equa-
tion system is:

m% + x% —1.49071x122 — 4

=
pr = i+ 23— .400000z1x3 — 8
ps = m% + xﬁ — .804427x124 — 4
_ a5 _ (12)
ps = x5+ x5 — 1.49071x223 — 4
ps = z%+ 22— .666667r224 — 8
pe = m% + xﬁ — .894427x3x4 — 4
‘We show how our symbolic-numeric method can be used to

solve (12). Under the bijection ¢ : z; > % where i =

1,2, 3,4, the system is equivalent to the PDE s!ystem R:
( B(p1)u= 2% + 2u 149071 L% _ 4y

dz12 dzo? Ox10xo

_ 9% ou fonk")
¢(p2)’u, = 3212 + 3:0232 — 400000m — 8’LL
_ 0%u %u ot
¢(p3)u = 6m212 + 6m242 - 894427m —4u (13)
B(pa)u = 59%2’; + ot — 149071 502 — du
oshu= 2.5 + ;mzfg — 666667 52— — 8u
d

[ P(pe)u = 2% + % — 894427 52— — du

Applying the symbolic-numeric completion method to R
with tolerance 10~°, we obtain the table of dimensions be-
low:

Table 1: dim E'D*R for (13)

k=0 k=1 k=2 k=3 k=4
=0 9 7 4 4 4
=1 5 7 4 4 4
=2 1 3 4 4 4
=3 1 3 4 4
=4 1 3 4
=5 1 3
=6 1

We seek the smallest k& such that there exists an I =0, ..., k



with E'D*R approximately involutive (choosing the largest
such [ if there are several such values for the given k). Pass-
ing the approximate projected elimination test (9), amounts
to test looking in the table for the first column with an equal
entry in the next column on the downwards sloping diago-
nal (with both entries being on or above the main diagonal
k =1). This first occurs for k =2 and [ =0, 1, 2.

Applying the approximate version of the projected involu-
tive symbol test to the example, shows that it is passed for
k=2,1=0,and ! =1, so we choose the largest I (I = 1),
yielding ED?R as the sought after approximately involutive
system.

The involutive system has dim E(D?R) = 4 and so by the
bijection the polynomial system (12) has 4 solutions up to
multiplicity, and the monomial bases for these spaces should
include the second degree monomials in order to recover all
solutions. In the following, we apply an eigenvalue method
to solve (12).

1. Compute an approximate basis of the null space of
D’R, denoted by a 4x 70 matrix B. Since dim(D’R) =
dim(ED?R) = dim(E*>D?R) = 4, the 4 x 15 submatrix
B, and 4 x 35 submatrix By of B by deleting entries
corresponding to the third and fourth degree mono-
mials are bases of null spaces of E2D?R and ED?R
respectively.

2. Consider the set of all monomials of degree less than
or equal to 2:

2 2
Mons = [z], %122, L1Z3,L1L4, "+ , Ty, L1, T2, T3, T4, 1]

For numerical stability, we choose 4 random linear
combinations of Mons obtained by multiplying Mons
by a 15 x 4 random matrix A,anga and obtain the poly-
nomial basis B = {Q1,QQ, qs, Q4}:

q = —0.5$12+---—0.9.’[)11‘2—0.4.’[)1(133
—0.9z2% +--- —0.9z4”> — 0.5

g = 0.7.’[)124—---—0.91‘3$2—0.2$3$4
+0.322% +--- +0.8x3 — 0.4 4,

g3 = 0.7.’[)124—---+0.2:L‘3$2—0.1.’L‘3(E4
0.5z2% +---+0.1z4 + 0.7,

qa = —0.2$12+---—0.4.’[)31‘2+0.6.’L‘3(E4

05222 —0.723+---+0.7.

We note that it is impossible to randomly choose any
four distinct monomials in Mons to form a stable mono-
mial basis. The random matrix A;ang 1S necessary to
guarantee a stable polynomial basis for the multiplica-
tion matrix.

3. The multiplication matrix of z; with respect to B can
be formed as My, = (B1 - Arand) "B21 - Arand:

—9.60694 —4.22074 5.69427 —4.71943
4.22540 3.30275  —2.42708 1.78735

—1.22749 —6.83466 —2.93355 1.01883 )
13.2366  —2.60838 —12.9602 9.23773

where Bo; is the submatrix of By with columns cor-
responding to monomials z1 - Mons (and in detail con-

sists of the columns numbered 1, - - - , 10, 21, 22, 23,24, 31
in B21).

Since Bji is of rank four, we always can choose the
random matrix A;ang ensure that By - Arang 1s well-
conditioned.

The eigenvalues of M, are:

2.236067977, 2.236067993, —2.236067977, —2.236067955.

(15)
Thus there is a pair of positive and a pair of negative eigen-
values coincident up to 8 digits. Form the multiplication
matrices w.r.t. z2,x3,z4 independently, and compute the
eigenvalues. The similar phenomena as that in (15) can be
observed. This tells us that (12) has one positive and one
negative double root. We choose one set of positive real
eigenvalues which correspond to the distances |PA|, |PB|,
|PC, |PE]:

& = 2.236067977
& = 3.000000000 (16)
£ = 2.236067961
& = 1000003584

Substituting the solution into (12), we find |p; (€1, €2, €3, €4)| <
107" fori=1,2,...,6.

If one substitutes the positive solution (16) to the Jacobian
matrix
9p1 Op1 9p1  Opy
aml Bmg 6m3 3$4
Op2  9p2 Op2  9p2
aml 3$2 axg 3%4

(17)
9ps  Ops 9ps  Ope
aml amg 6m3 3E4

then the singular values of the Jacobian matrix are
6.5319707, 6.1967714, 3.5777055, 0.92618581 - 107°,0,0

The Jacobian matrix is near singular. This tells us that the
solution is quite unstable for any small perturbations. But
our method can deal with this singular case well. Suppose we
perturb (12) by errors of order 107°, the number of solutions
read from the dimension table will generally become 2.

In detail, we obtain the following table:

Table 2: dim E'D*R for perturbation of (13)

k=0 k=1 k=2 k=3 k=4
=0 9 7 3 2 2
=1 5 7 3 2 2
=2 1 3 3 2 2
=3 1 3 2 2
=4 1 2 2
l=5 1 2
l=6 1

Applying the projected elimination and involutive symbol
tests shows that E®D®R is approximately involutive. The
computed positive root has backward error of order 10~ ¢ ~
10™° in general.

Since the null space of the 24 x 24 matrix in [2] has di-
mension 2, their linear method has difficulty dealing with



this degenerate case. From the dimension table, using the
approximate involution test, the system becomes approxi-
mately involutive after 3 prolongations and 3 projections.
The matrix we used to solve for the example is of order
70 x 90 which is quite large compared with the matrices in
[2]. Since the polynomial system (12) is of symmetric struc-
ture, both z; and —x; are solutions. But only positive roots
are meaningful as they corresponding to the distances. We
will try to reduce the size of our matrices in future using
such symmetries.

4., EXPERIMENTAL RESULTS

We first demonstrate the accuracy and stability of the new
linear method for the generic cases. Then, we also check
our method for points near the critical configurations. The
following experiments are done with Maple 8 in the default
setting of digits (Digits=10).

The first experiment is to show the stability of the method
in predicting the number of solutions. The optical center
is located at the origin and the matrix of camera’s intrinsic
parameters is assumed to be the identity matrix. At each
trial, four noncoplanar control points are generated at ran-
dom within a cube centered at (0,0,50) and of dimension
60 x 60 x 60. The orientation Euler angles of the camera
are positioned randomly. The control points are projected
onto an image plane using the camera pose and internal pa-
rameters. One hundred trials are carried out and 100 sets
of control points are generated for each trial. For each set
of control points, two results are computed: one with the
original control points; the other with the control points
perturbed by random noise at a certain level. In trial i,
let m; be the number of the control points such that the
two results are the same and let WL;W (here n = 100) be
the relative error. The following Figure 3 gives the relative
errors with respect to varying noise. We observe that the
computation is robust to variation in noise.

Relative error vs. noise level
T T T T T

0.045

0.04

0.035

o
9
5]

0.025

Relative error

0.02

0.015

25 3
Noise level

Figure 3. The relative error w.r.t. varying noise

The second experiment is to show the accuracy and stability
of the method for the general 4-point pose estimation equa-
tion system. We carry out one hundred trials and generate
100 sets of control points randomly for each trial. For a set
of solutions, we substitute them into (1) and check the back-
ward error. The backward error of the experimental results

is generally less than 1078,

In order to check the stability of the method, for each set
of control points, two results are computed: one with the
original control points X; the other with the control points

perturbed by random noise at a certain level X. Figure. 4
IX—x||
: B

We also check the failure rate defined as the percentage of
total trials where the absolute solution error is over 0.5 (Fig-

ure 5).

shows the relative solution errors w.r.t. noise level.

Relative solution error vs. noise level
0.12 T T T T T T

.08

.06 -

Relative  sglution  error
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0 0.5 1 15 2 25 3 35 4 45 5

Noise level

Figure 4. Relative solution errors vs. noise level

Failure rate vs. noise level
0.25 T T T T T

0.2r

0.15-

Failure rate
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0.051
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0 0.5 1 15 2 25 3 35 4 45 5

Noise level

Figure 5. Failure rate vs. noise level

The third experiment is to show the accuracy and the stabil-
ity of the method in determining the solutions for the crit-
ical configurations. As mentioned in the introduction, the
pose problem has some computationally troublesome sin-
gular cases. Most methods [10, 29] do not consider these
singular cases. The only method we found dealing with
the singular cases is [2], but the relative error and the fail-
ure rate (backward error) reported in that paper are higher
than one would like. Figure 6 shows the relative error and
the failure rate for one such critical configuration using our
symbolic-numeric linear method. The data is 4 coplanar
points in a square [—1,1] x [—1,1] and the camera starts



at position=0, at a singular point directly above their cen-
ter (0.5 < h < 1.5), where h is the height of the camera.
The camera then moves sideways parallel to one edge of
the square. At position=+/2 units it crosses the side of the
vertical circular cylinder through the 4 data points, where
another singularity occurs. From Figure 6, the relative error
and especially the failure rate of the method are significantly
lower compared with the method in [2]. The failure rate here
is defined as the percentage of total trials where the solution
errors are over 10”8, The relative error and the failure rate
of our method are also acceptable. It is natural that the
error and failure rate near the position 0 and V2 are a little
higher than at other positions.

Relative solution error vs. position of camera
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Figure 6. Experimental results for the critical configurations

5. CONCLUSION

In this paper, we present a stable method to find the nu-
meric solutions for pose estimation determination. The lin-
ear method gives a linear and unique solution whenever the
control points are not sitting on one of the known critical
configurations. When the control points are sitting on or
near some known critical configurations, the method also
obtains reliable solutions. Compared with other methods,
the main advantages of our linear method are: it is more sta-
ble and for critical configurations, the method still can find
the solutions up to certain accuracy. The method developed
in this paper can be easily applied to other problem in com-
puter vision with overconstrained polynomial systems. The

matrices in our approach are larger than those used in other
approaches. In the future we shall try to reduce the size of
the matrices by exploiting the structure of the problems and
making use of structured singular value decomposition.

This paper represents a beginning step in the applications
of the new area of Numeric Jet Geometry. It illustrates the
potential usefulness of such methods by giving a complete
problem to solution treatment of a problem of practical in-
terest. An experimental analysis (including backward error
analysis) of the method is given. Much remains to be done,
for example an analytical backward error analysis in terms
of an appropriate error metric is an important future task.

Our differential-algebraic method is easily reformulated and
implemented by the bijection ¢ in terms of pure linear alge-
bra on monomials (this correspondence is well-known going
back at least to [20] and also see [7, 22, 33]). Such an imple-
mentation would be more efficient than our current differen-
tial method in Maple since it does not have the additional
overhead for differentiation.

The algebraic method which has a close relation to our
method is the method of H-bases [21], which also focuses on
the dimensions of the vector spaces of generated by mono-
mials. Example 2.4 of [21] is an H-basis of degree 4, but can
be shown to become involutive only after prolongation to
degree 7 (when it also becomes a Grébner Basis). However
this H-basis is minimally formally integrable, in the sense de-
fined in [30, Appendix A]. In future work we will investigate
the relation between H-bases and minimal formal integra-
bility which unlike H-bases applies to the more general case
of differential system.

Under-determined systems (i.e. positive dimension systems)
can be treated by extracting their Hilbert polynomial from
their Cartan Characters (e.g. see [34]). This allows the
determination of the top dimensional positive dimensional
components, and the construction of an appropriate random
linear subspace, which when intersected with these compo-
nents, cuts out generic points on those components (i.e. by
using a variation of the methods of Sommese, Verschelde
and Wampler [35]). Such generic points can be calculated
with the eigen-method of this paper.

In addition to the application of numerical linear algebra,
the other major direction we are taking in our exploration
of Numeric Jet Geometry, is in the extension of the Ho-
motopy Continuation Methods of Sommese, Verschelde and
Wampler [35] to polynomially nonlinear systems of PDE (see
the works [31, 14]). Even in that nonlinear case, analysis of
linear homogenous PDE, such as by the methods of this
paper, are needed for determination of the property of invo-
lutivity of the symbol of the nonlinear systems.

Further, the innocuous fact that the derivative of a non-
linear PDE becomes linear in its highest derivative, lies at
the heart of theory and completion methods for systems
of PDE and sets them apart from purely algebraic equa-
tions. Exploiting this structure with efficient linear meth-
ods in the leading derivatives, and consequently shrinking
the size of the nonlinear systems that must be reduced, has
been at the centre of the efforts of a number of authors in



the developement of efficient symbolic algorithms the exact
case. We expect this dichotomy to continue in the numerical
case, with numerical linear algebra being exploited for lead-
ing derivatives, and smaller nonlinear systems being treated
with nonlinear methods such as homotopy methods.
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