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ABSTRACT
Approximate symbolic computation problems can be for-
mulated as constrained or unconstrained optimization prob-
lems, for example: GCD [3, 8, 12, 13, 23], factorization [5,
10], and polynomial system solving [2, 25, 29]. We exploit
the special structure of these optimization problems, and
show how to design efficient and stable hybrid symbolic-
numeric algorithms based on Gauss-Newton iteration, struc-
tured total least squares (STLS), semidefinite programming
and other numeric optimization methods.

Categories and Subject Descriptors: I.2.1 [Comput-
ing Methodologies]: Symbolic and Algebraic Manipulation
—Algorithms; G.1.6 [Mathematics of Computing]: Numeri-
cal Analysis—Optimization;

General Terms: algorithms, experimentation

Keywords: symbolic/numeric hybrid methods, numerical
optimization.
Numerical Optimization. Optimization is the minimiza-
tion or maximization of a function subject to constraints on
its variables. It can be written as:

min
x∈Rn

f(x) subject to

{

ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I.

(1)

Here f and ci are scalar-valued functions of the variables x,
and E ,I are sets of indices. We call f the objective func-
tion, while ci, i ∈ E are the equality constraints and ci, i ∈ I
are the inequality constraints. Constrained optimization
problems can be reformulated as unconstrained optimiza-
tion problems by eliminating the constraints or replacing
the constrains by penalty terms in the objective function.
Global solutions are desirable, but they are usually diffi-
cult to compute, and can be unattainable sometimes [12].
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Local solution is a point at which the objective function is
smaller than at all other feasible points in its neighborhood.
Numerical optimization algorithms usually converge to local
solutions fast if they begin with a good initial guess of the op-
timal values of the variables. A comprehensive description
of powerful numerical techniques for solving optimization
problems is given in the book [24] by Nocedal and Wright.
In the talk, we describe how to apply some numerical op-
timization methods to solve problems arise in approximate
computer algebra.
Gauss-Newton Iterations. The Gauss-Newton method
is used to solve nonlinear least squares problems where the
objective function f has the following special form:

f(x) =
1

2

m
∑

j=1

r
2
j (x), (2)

where each rj is a smooth function from R
n to R.

The Gauss-Newton iteration is given by

xk+1 = xk + αkpk, (3)

where the positive scalar αk is the step length, the search
direction pk is computed by solving

J
T
k Jkpk = −J

T
k r(xk), (4)

where Jk is the Jacobian of r(xk) = [r1(xk), . . . , rm(xk)]T .
The Gauss-Newton method has been applied to refine the

approximate factorization [10] and the approximate GCD
in [3, 33]. For example, the optimization version of the
approximate factorization problem is finding a least squares
solution to the non-linear system of the form

min
v1,...,vr

‖F (v1, . . . ,vr) − f‖2
2,

where

F (v1, . . . ,vr) = C[tdeg(v2···vr)](v1) · · ·C
[tdeg(vr)](vr−1)vr.

Here vi and f denote the coefficient vectors of polynomials
vi and f respectively, and C[k](v) denotes the matrix of the
linear map multiplication with polynomials of total degree
k as described in [10]. The Jacobian of F is a block matrix
of the form:

[C[tdeg(v1)](v2 v3 · · · vr), C[tdeg(v2)](v1 v3 · · · vr), . . .

. . . , C[tdeg(vr)](v1 v2 · · · vr−1)].



The Gauss-Newton iteration converges at a quadratic rate
if the nearby local minimum is an exact factorization of f .
As shown in [10], the iteration can refine the factorization
significantly in very few steps. Björck [26] gives a compre-
hensive survey on different approaches for nonlinear least
squares problems.
Structured Total Least Squares. The STLS problem
can be formulated as follows:

min∆A,∆b,x ‖∆A ∆b‖2
F (5)

such that (A + ∆A)x = b + ∆b

[A + ∆A, b + ∆b] has the same structure as [A, b]

A brief overview of existing approaches for solving STLS
problem is given in [17]. Various matrices appeared in com-
puter algebra such as: Sylvester matrix, Bezout matrix and
Ruppert matrix are all structured matrix which can be pa-
rameterized by the coefficients of polynomials. The STLS
approaches in [17, 21, 27, 28] have been used to solve var-
ious problems in approximate polynomial compuations [1,
11, 12]. As an example, we illustrate the STLS approach for
the Bezout matrix [30].

The Bezout matrix B(f1, . . . , fm) can be parameterized
by a vector ζ which contains the coefficients of polynomials
f1, . . . , fm. By applying Theorem 3.2 in [4], we can transfer
the GCD problem into solving the following minimization
problem:

min
∆s∈Rd

‖∆s‖2 with dim(KerB(s + ∆s)) ≥ k, (6)

where s = [f10, . . . , f1d1
, . . . , fm0, . . . , fmdm

], fij stands for
the coefficient of xj in polynomial fi, d1 ≥ d2 ≥ · · · ≥ dm

for di = deg(fi), and d = m +
∑m

i=1 di.
Let Bk(ζ) = [D1(ζ), b(ζ), D2(ζ)] be the first d1 − k + 1

columns of B(ζ) and let A(ζ) = [D1(ζ), D2(ζ)]. According
to Theorem 3.3 in [4], the minimization problem (6) can
be transferred into the following structured nonlinear total
least squares problem:

min
∆s∈Rd

‖∆s‖2
2 with A(s + ∆s) x = b(s + ∆s). (7)

By introducing the Lagrangian multipliers, and neglecting
the second-order terms in ∆s, the constrained minimization
problem can be transformed into an unconstrained optimiza-
tion problem [18, 28]:

L(∆s, x, λ) =
1

2
∆s

T ∆s − λ
T (b − Ax − X∆s), (8)

where X(ζ, x) is the Jacobian of r(ζ, x) = A(ζ)x − b(ζ)
with respect to ζ. Applying the Newton method on the
Lagrangian L yields:

M





∆s̃
∆x̃

∆λ̃



 = −





∆s + X(s + ∆s, x)T λ

A(s + ∆s)T λ
A(s + ∆s)x − b(s + ∆s)



 , (9)

where

M =





Id 0d×(d1−k) X(s + ∆s, x)T

0(d1−k)×d 0(d1−k)×(d1−k) A(s + ∆s)T

X(s + ∆s, x) A(s + ∆s) 0(m−1)d1×(m−1)d1





The iterative update x = x+∆x̃, λ = λ+∆λ̃, ∆s = ∆s+∆s̃
is stopped when ‖∆x̃‖2 and/or ‖∆s̃‖2 and/or ‖∆λ̃‖2 be-
comes smaller than a given tolerance. The overall compu-
tational complexity of the algorithm depends on the num-
ber of iterations needed for the first order update. If the

starting values are good, then the iteration will converge
quickly. Moreover, since the matrix involved in the mini-
mization problem has low displacement rank [9]. It would
be possible to apply fast algorithm to solve these minimiza-
tion problems as in [18, 19].
Semidefinite Programming. Semidefinite program con-
siders the problem of minimizing a linear function of a vari-
able x ∈ R

m subject to a matrix inequality:

minimize cT x (10)

subject to F (x) � 0,

where

F (x) = F0 +

m
∑

i=1

xiFi,

F0, . . . , Fm ∈ R
n×n are symmetric matrices. The linear ma-

trix inequality(LMI) F (x) � 0 means that F (x) is positive
semidefinite. A semidefinite program is a convex optimiza-
tion problem since its objective and constraint are convex.
There is an associated dual problem:

maximize −TrF0Z (11)

subject to TrFiZ = ci, i = 1, . . . , m,

Z � 0.

Here Tr denotes the trace of matrix and the symmetric
semidefinite matrix Z ∈ R

n×n is subject to m equality con-
straints. Any feasible solution Z of the dual problem is a
low bound of the optimal value of the primal problem (10)
since

c
T
x + TrF0Z =

m
∑

i=1

TrZFixi + TrF0Z = TrF (x)Z ≥ 0.

The inequality above is called weak duality. If the pri-
mal problem is strictly feasible, i.e., there exists an x with
F (x) � 0 or the dual problem is strictly feasible, i.e., there
exists a Z with Z = ZT � 0, and TrFiZ = ci, then the
strong duality also holds: the optimal value of the primal
and the dual problems coincide.

Semidefinite programs can be solved very efficiently by
primal-dual interior-point methods [22]. A worst-case anal-
ysis of interior-point methods for semidefinite programming
shows that the number of operations required to solve a
semidefinite program to a given accuracy grows no faster
than O(m2n5/2). We refer to [20, 32] for a broad overview
on semidefinite programming.

Many approximate symbolic computation problems can
be formulated as finding global optimum of polynomial or
rational functions with or without constraints. For simplic-
ity, let us consider the following unconstrained polynomial
minimization over R

n:

minimize f(x) (12)

subject to f(x) =
∑

α fαxα, α ≤ 2m

By introducing a nonnegative measure µ on R
n, we call

the quantity yα =
∫

xαµ(dx) its moment of order α. The
minimization problem (12) is closely related to following
convex LMI optimization problem:

minimize fT y (13)

subject to Mm(y) � 0,



where f is the coefficient vector of the polynomial f(x), y =
{yα} is the vector of moments up to order 2m, Mm(y) is the
moment matrix of dimension

(

n+m
m

)

, with rows and columns
labelled by

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

m
1 , . . . , x

m
n .

Suppose f∗ is the global minimum of f(x). If the non-
negative polynomial f(x) − f∗ is a sum of squares(SOS) of
polynomials, then f∗ is also the global minimum of the prob-
lem (13). Moreover, if x∗ is a global minimizer of f(x), then
the vector

y
∗ = [x∗

1, . . . , x
∗

n, (x∗

1)
2
, (x∗

1)(x
∗

2), . . . , (x
∗

1)
2
, . . . , (x∗

n)2m]T

is a minimizer of (13).
The general case, that is, when f(x) − f∗ is not a sum of

squares, or the minimization is over a semialgebraic set de-
fined by polynomial equations and inequalities, the global
minimum can be approximated by solving hierarchies of
semidefinite relaxations based on positive semidefinite mo-
ment matrices and the dual theory of sums of squares of
polynomials [15, 25]. A survey on optimization over poly-
nomials is given by Laurent [16]. SDP techniques have been
used to solving polynomial systems [2, 25, 29] and comput-
ing real radical ideals [14]. Two abstracts in this conference
proceedings also describe how to apply SDP for comput-
ing approximate GCD and factorization of polynomials. Al-
though SDP is a powerful tool for finding global optimum,
the size of the problems can be solved by SDP is still lim-
ited. It is necessary to investigate the sparsity and structure
of the problems arising from approximate polynomial com-
putations [31].
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