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We describe algorithms for computing the greatest common divisor of two mul-
tivariate polynomials with inexactly known coefficients. We focus on extending
standard exact EZ-GCD algorithm to an efficient and stable algorithm in approx-
imate case. Various issues related to the implementation of the algorithms and
some preliminary test results are also presented.

1 Introduction

Given two polynomials F' and G in R[z1,...,2,], we are going to find the
nontrivial approximate GCD C' and polynomials F', G’ € R[z1,...,z,] such
that ||[F — CF'|| < € and ||G — CG'|| < ¢, for some ¢ and some well defined
norm. Many papers 123:2810,1L13,15 haye already discussed the problem in
the case n = 1. Few of them ?'%!! mentioned the case n > 1. Approximate
GCD computation of univariate polynomials provides the basis for solving
multivariate problem. But it is nontrivial to modify the techniques used in
symbolic computation such as interpolation and Hensel lifting to compute the
approximate GCD of multivariate polynomials.

In section 2, we briefly review two methods 2% for computing GCD of
polynomials with floating-point coefficients. In section 3, we focus on extending
the Hensel lifting technique to polynomials with floating-point coefficients. The
method involves the QR decomposition of a Sylvester matrix. We propose an
efficient new algorithm which exploits the special structure of Sylvester matrix.
A local optimization problem is also been proposed to improve the candidate
approximate factors obtained from Hensel lifting.

In order to compare the performance of the different methods, we imple-
ment all three methods in Maple. In section 4, we summarize the special prob-
lems we encounter when they are applied to polynomials with floating-point
coefficients. A set of examples are given to show the efficiency and stability of
the algorithms.

2 Review of GCD algorithms

Modular Algorithm: Multivariate polynomial GCD problems are reduced to
univariate problems by using(repeatedly) evaluation homomorphisms to elim-

1



inate variables, and reconstruct the GCD of the original inputs from these
“images” using interpolations. For the dense modular algorithm, the number
of homomorphisms is exponential in the number of variables. If the multivari-
ate polynomials and their non-trivial GCD are sparse, then sparse modular
method needs much less number of homomorphisms. Corless et al. 2 modified
the sparse modular algorithm to compute approximate GCD in the case of
bivariate polynomials.

1. Choose random evaluations «, §; of = and y to compute T, nonzero terms
in GCD(F (z, 8;), G(z, 8;)) and T, nonzero terms in GCD(F(a, y), G(c, y)).

2. Solve M monic GCD(F(z, 8;), G(z, 8;)) for randomly chosen (3;, where
M > T,T,/(T, — 1).

3. Interpolate all coeflicients simultaneously.

Subresultant PRS: The Subresultant PRS algorithm calculates the PRS
{PP=F,P,=G,...,P. #0,P.y1 =0.} (1)
by the iteration formula
B:Piy1 = remainder(o; P,—1, P;), 1 = 2,3,.... (2)

where,
a; = le(P)4*, d; = deg(P;—1) — deg(P);
62 = 17 Y2 = 17 (3)
Bi =1o(Pis), 7 =lo(Piy)% 1y 0 i > 3.

le(P) denotes the leading coefficient of P. The above algorithm has been ex-

tended to polynomials with floating-point coefficients !°. There are two critical
steps:

1. Normalization of remainders in PRS. Let R and @ be pseudo-remainder
and pseudo-quotient of polynomials F' and G, i.e.,

R=1c(G)"™F - QG, d=deg(F)— deg(Q). (4)
The normalized pseudo-remainder R is defined as
~ R
R= : ()
max([| le(G)*+ ||, || @ ])
2. Rounding of Pj. Normalize Py as || P ||= 1, where || - || denotes the
maximum norm of the coefficient vector. Round off the coefficients of Py
at O(e).



3 Hensel Lifting Algorithm

For polynomials with exact coefficients, the main steps compute GCD using
Hensel lifting are summarized below %14,

1. Choose a main variable, suppose x1, find lucky evaluation homomorphism
I=(x2—ag,...,Tn —an).

2. Ff = F mod I,G; = G mod I. Compute C; = GCD(F7,Gy) and co-
factors F7,Gr.

3. If there is one of the cofactors which is prime to Cy, then use multivariate
Hensel construction to lift C; and the cofactor. Otherwise perform a
square-free decomposition for either F' or G.

The last step is critical. Suppose P is a polynomial in z1,...,z, with
leading coefficient py,(as, . ..,a,) # 0. Let £ = x1,u = {29,...,2,}, GO ()
and H©)(z) be relatively prime polynomials satisfying

P(z,u) = GO(z)H® (z) mod I. (6)

The multivariate Hensel construction calculates polynomials G*)(x,u) and
H®) (x,u) satisfying

P(z,u) = G® (z,u) H® (2,u) mod I**1, (7)

The main calculation involved in multivariate Hensel construction is to
solve polynomial Diophantine equations for the fixed polynomials G©)(z) and
HO(z). If GO (z) and H®(x) are relatively prime, then for any polyno-
mial R(z) with deg(R(z)) < deg(G® (x)) + deg(H*)(z)), there exist unique
polynomials A(z), B(z) such that

A(2)G () + B(x)H" (z) = R(x) (8)

and
deg(A(z)) < deg(H© (x)), deg(B(x)) < deg(G(x)).

Solving (8) is equivalent to solving the linear equations with fixed co-
efficient matrix M, where M is Sylvester matrix of polynomial G©)(z) and
H®O (x). There are several ways to solve the linear equations. LU decomposi-
tion is the fastest but may be unstable in some cases, especially when M is close
to singular; SVD method can detect nearly rank-deficiency in the presence of
roundoff error and give satisfactory results while LU decomposition fails, but
it is notoriously computational-intensive; QR decomposition with Householder
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transformations or Given rotations is very stable although it costs double time
than LU decomposition. We prefer QR decomposition as it is easy to exploit
the structure of the Sylvester matrix M for the purpose of finding a computa-
tionally efficient and stable algorithm.

Since the Sylvester matrix M consists of two Toeplitz matrices, we start
the QR decomposition with the Given rotation and to eliminate the elements
below the diagonal of the first ¢ columns, and then apply the Householder
transformations to the low s x s submatrix (suppose s >=t).

The advantage of combining Given rotations with Householder transfor-
mations can be seen clearly from comparing complexity in the case s =t = n.
The flops used in general LU, QR and SVD decomposition are %(271)3, %(271)3
and 12(2n)3; while using the above strategy, the flops we used are 6n? + %n3.

For Hensel construction, it is also very important to decide when to stop
the lifting. Obviously, the procedure will stop as soon as | AP®) ||=| P —
GHF H®) ||= O(e). However, it is also possible that AP*) still has some coeffi-
cients whose absolute values are not O(e) when k is larger than the total degree
of the variables u in P. In this case, we have to decide if it is caused by error
accumulation or P has no approximate factors indeed. If many coefficients of
AP®) are relatively much larger than e, it is believed that F and G have no
approximate GCD. Otherwise, we can use the optimization method !! to im-
prove the initial approximate univariate GCD and its cofactor G(*) and H(®,
or increase the number of digits carried in floating-point computations. But
it is possible that both techniques are inefficient. Then we have to apply the
correction method that was given in a separate paper by author and others©.

When AP®) is reasonable small, we round off G®) and H®*) to G and H
respectively. G and H are supposed to be candidate factors of P. If || P—GH ||
is not very large, we formulate a local minimization problem:

min || P—-GH - GAH - AGH | . 9)
AG,AH

Notice that it is not necessary to actually solve the minimization problem.
We are only interested in finding AH, AG which modify H and G to achieve
a sufficient small backward error.

Ezxample 1:

F = (22 +y*+1.01)(2% + 2y + v + 1.12),
G = (22 + y* + 1.01) (2% + zy + 1.02) + 10~ *(x + y).

For e = 1074, y = 0, we modify algorithms in the papers %! to get
C® = GCD(F(x,0), G(z,0)) = 1.01 — 0.000998478z + 1.z2,
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with backward error about 10~° and cofactor of C'(®) with respect to F(z,0)
F® =112 +0.001055z + 1.2

For simplicity, polynomials here and below are rounded to six digits.
Compute the Hensel lifting for F,C(®) and F(©). When k = 3,

C®? =1.01 — 0.000998478z + 1.2 + 0.99999y2,
F® = 1.12 4 0.001055z + 1.2% + 0.999821zy + 0.0101626y + 1.00001y2,
| F—CPF® || = 0.0102642.

Since the leading coefficients of F, C'?) and F® with respect to = are equal
to 1, no corrections are needed. The optimization problem (9) is the mini-
mization of 14 linear equations in 8 correction coefficients subject to 6 linear
equality conditions. It turns out we can choose all corrections be zero except
the correction coefficient of y in F(?) be —0.01. This gives us a backward error
about 1073,

For this example, it is very difficult to get the correct approximate GCD
only by improving the univariate GCD or increasing the Digits in Maple (e.g.
Digits=40). We will discuss this problem in section 4.

4 Implementation and Discussion

It has been pointed out ? that all these three methods have advantages and
disadvantages. For example: sparse modular method can find the “small”
GCD very fast but may be unlucky or need a large number of evaluation
homomorphisms in the case the GCD is dense; Subresultant algorithm can
deal with the polynomials with complicated leading coefficients but it is very
inefficient to find that two polynomials are actually prime to each other; Hensel
lifting algorithm only needs small number of homomorphisms but has trouble
if the GCD 1is not prime to any of its cofactor. All these advantages and
disadvantages are remained and some special drawback will appear when we
extend these methods to polynomials with floating-point coefficients.

4.1 Modular Algorithm

The main serious problem in Modular Algorithm is the high condition number
of the Vandermonde matrix for interpolation of polynomials. A variety of
bounds for the condition number of a Vandermonde matrix have been derived
by Gautschi”. Let V,, = V(ag,a1,...,a,_1) € R™*™.

Corless et al. suggest to randomly scale each variable and choose the
random points: « + (u;, where u; are the Chebyshev nodes in [—1,1] and
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Table 1: Bounds and Estimates for koo (Vi).

o koo (Vi) n=>5 n==~6 n="7
equispaced [0, 1] (4m)~ 1 /28" 3687.7 29501.5 236012.5
equispaced [—1,1] ale=m/4(3.1)" 41.5 128.8 399.3
3377
Chebyshev nodes [—1, 1] 0+ V2)™ 46.7 112.8 272.4
a; >0 > 2" I(n > 1) 10° ~ 10% | 10* ~ 10° | 10° ~ 10°

a,B € (1/2,1). Tt is still possible to get very large condition numbers when
n is big. We have tried to use orthogonal polynomials instead of power series
1,z,22,..., to interpolate the GCDs. The details will be reported in another
paper. However, it is always very dangerous to interpolate a polynomial from
more than 10 points '2. So it is not recommended to interpolate a non-monic
GCD with degree larger than 5 and dense in some variables.

In Corless’s paper 2, in order to obtain the same denominator of the GCD,
a large system is formed to interpolate all coefficients simultaneously. However,
it is possible to interpolate coefficients independently if we perform the normal-
ization of the leading coefficient *. Firstly, we estimate the leading coefficient
of the GCD from the relation

1c(GCD(F, G)) | GCD(I¢(F), 1e(G)). (11)

If ¢ = GCD(Ic¢(F),1c(G)) is small, we normalize the GCD to have the leading
coefficient ¢. Now the coefficients of the GCDs we computed will be poly-
nomials in all variables and can be interpolated one by one. However, if we
are unlucky, the GCD we computed may contain an extra factor which can
be divided out after computing the content of the GCD(it requires to run the
algorithm recursively). Moreover, we also notice that normalization of the
leading coefficient may destroy the sparsity of the GCD. So normalization is
only practical when ¢ is simple (e.g. 1).

Sparse Modular Algorithm is fast but also probabilistic. The algorithm is
not efficient for dense GCDs and could also be unlucky. In floating-point com-
putations, “zero” only means relatively small, i.e., O(¢). Failure to recognize
the essential “zero” will bring unsatisfactory answer.

Example 2:
F=Q0+z+y1+y2+ys+ya+ys)?
(=242 — (y1 +y2 +ys + ya +y5)?),
G=(04z+y+y2+ys+ys+ys)
2+x+y1+y2+ys+va+ys)

Compute T, =T, =Ty, =Ty, =Ty, =Ty, = 3. Since the GCD is monic

(12)
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and dense, we need about 3° = 243 evaluations. For Digits=10, ¢ = 107, the
algorithm returns:

2.00029z 4 1.22 + 1.99931y12 + 1.99909y; + 1.99789y, + 1.99773ys3
+1.99476y4 + 1.99543ys5 + 1.00134y7 + 1.00188y3 + 1.00202y3 + 1.00512y3
+1.00550y2 — 0.112238yay4y5 — 0.0681706y2y3y5 — 0.120297y3y4ys5
—0.0525764y1y4y5 — 0.0387045y1y2y5 — 0.0263314y1y3ys + 0.083544412y,y3
+0.0199011zy4ys 4 0.0640616y2y1y4 + 0.135066y2y2y4 + 0.1476623y2y3y4
+0.0461392y2y1y2 + 0.0353559y2y1y3 — 0.0237874y2xy, + 0.0197683y3y?
+0.0466600y7y2 + 0.0125651y3y2 + 0.0141069y3yZ — 0.0480776y4y32
—0.0102278y5y% — 0.0125707ysy3 — 0.0158431y5y3 — 0.0387656ys5y7
—0.0181389y2y2 — 0.0218871ysy2 + 2.03987y4ys + 1.997372y4
+1.997862ys5 + 2.00681y114 + 2.00683y1y5 + 2.01477yays + 2.01531y2ys
+2.01526y3y4 + 2.01765y3y5 + 1.00060 + 1.99889xy2

+1.99894xy5 + 2.00545y1y2 + 2.00329y1y3 + 2.00916y2ys3.

Some terms such as y2y4ys, - - - , Y2y3y2 which should be zeros but have not
very small coefficients here. If Digits=20, we can get the exact result:

2.0+ 1.4+ 1.2? + 212+ 2.y1 + 2.y2 + 2.y3 + 2.y4 + 2.y5 + Lyf + 1.y3 + 1.y3
+1.yf 4+ Ly? + 2.yays + 2.2ys + 2.2y5 + 29194 + 2.91Y5 + 2.Y2y1 + 2.Y2y5
+2.y3ys + 2.y3y5 + 2.2y2 + 2.2y3 + 2.91y2 + 2.91y3 + 2.92y3.

4.2 Subresultant PRS

What will happen when we extend Subresultant PRS for polynomials with
floating-point coefficients? At each iteration of the algorithm, the pseudo-
remainder is divided by a factor which is an exact factor in the case of exact
rational coefficients. But now, it is only an approximate factor. Error accumu-
lation is inevitable for each division. Another problem is caused by the large
cancelation error during the pseudo-remainder computations. Even we perform
the normalization 19, it is still possible to obtain unsatisfactory answers.

Ezample 3:
F=y‘+y+a+1,

G:yg—ny—i—xQ. (13)

Let n = 1073 and ¢ = 1079, by the approximate Subresultant Algorithm, we
get ||| = O(2) and

Py = (—0.9959742+0.996977 —1.002012> 423y — 10.22 +0.997984+0.002012z.
But the norms of the remainders of F, G w.r.t. Py are O(1).
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y cond(M) errorl error2 error 3
0.425 7.02 3.41107° | 8.66 10°° | 1.4510°%
0.65 28.9 5.16 10~° | 3.81 107 ° 0.15

4.8 Hensel Lifting Algorithm

Now let us see the main difficulty we encountered when apply Hensel lifting
to compute GCD of multivariate polynomials with floating-point coefficients.
Use the same notations as in section 3, it is clear that if G(9)(z) and H©®)(z)
have a close common root, the matrix M will be very ill-conditioned and the
multivariate Hensel construction will be sensitive 14. This may be caused by
a bad evaluation or both F' and G are not squarefree. For the example 1, the
four roots of G(x, 0) form two clusters near /—1. The roots of F(z,0) are also
not very well separated. The condition number of the Sylvester matrix formed
by C(© and F(© is about 42. Since the polynomials F and G are of digits 5,
it is nature that we obtain an approximate GCD( C®)) with backward error
10~2 by only performing Hensel lifting.

In order to keep the sparsity and error tolerance of the polynomials, we
prefer to choose as many a; be zero as possible. However, if such a; leads
to bad homomorphism, then we have to choose nonzero evaluation for a;. It
affects not only the efficiency but also the stability of the algorithm. As for
the following example:

Ezxample 4:

F =0.25—0.252%2 — 0.25y2 — 0.9999zy + zy> + ya3
= (22 +y? — 1)(zy — 0.25) — 10 Py,

G = —0.00001 + y — 1.00001z + 2y? — ya® + 2% — ¢3
= (2® +y* = 1)(z —y) = 107°(x +1).

(14)

We choose x as the main variable. Since the leading coefficient of F' with re-
spect to x is zero if we evaluate it at y = 0. It is necessary to choose nonzero
evaluation for y. For the random values of y belong to [0.5, 1], we can not
obtain the meaningful result only by Hensel lifting until Digits = 30; If we
choose y in (0, 0.5), then we can get a reasonable result that almost needs
no improvement when Digits = 10. The following table compares the perfor-
mance of the algorithm for example 4 at two different evaluation points. Here,
cond(M) is the condition number of M; errorl, error2 and error3 correspond
to || F; — CrE; |, | Gy — C1Gr || and || AP®) || (lift the two factors of G)
respectively.

At last we would like to point out that both Modular Algorithm and Hensel
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Lifting Algorithm may be inefficient when they are used to compute approxi-
mate non-monic multivariate GCD. On the contrary, Subresultant Algorithm
can deal it very well.

Ezxample 5:

F = (=1 + 2y1y2y3Y4Y5Y6 ) (3 + 2Y192Y3Yay1ysys) + 107°(x + y1 + ys), (15)
G = (=1 + zy1y2y3y4Y5Y6) (—3 + 2y1Y2y3y4ysys) + 1075 (y1 — y3).

Our implementation of Hensel lifting algorithm in Maple fails to obtain
the approximate GCD because any evaluation of y; must be chosen as nonzero
which seriously destroy the sparsity of the original polynomials. Much worse,
normalization of the leading coefficient introduces a nontrivial extra factor.
Modular algorithm takes more than 30 seconds to get a reasonable answer.

However, it is trivial using Subresultant Algorithm to obtain approximate
GCD:

—1. 4 Lay1y2y3yaysys + 0.00001(x + y3 + ys)- (16)

5 Remarks

In this paper, we briefly discuss the three possible methods for computing ap-
proximate GCD of multivariate polynomials. Many problems remain open.
Especially, we still do not have well developed theory for choosing good homo-
morphisms. Only some strategies are proposed. It will be the main direction
for our future research.

Since both Modular and Hensel Algorithm are based on the approximate
univariate GCD computation, we have to choose an efficient and stable algo-
rithm for computing univariate GCDs. Especially for Hensel lifting method,
the computation of cofactor of the GCD is also necessary. In our algorithm,
we modify algorithm in the paper '° and use the result as an initial guess, then
apply some optimization strategies ' to improve it.

It is difficult to propose an optimal algorithm for computing GCD of mul-
tivariate polynomials with floating-point coefficients and there are also a lot of
work to stabilize the algorithms and analyze the errors. Our implementation
in Maple has not yet been optimized, therefore we only get some very initial
observation from our experiments.
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