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Abstract

In this paper, we propose a combined symbolic-numeric algorithm for com-
puting the nearest singular polynomial and its multiple zero. Explicit expres-
sions of the minimal perturbation and the nearest singular polynomials are
presented. A theoretical error bound and several numerical examples are
given.
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1 Introduction

An approach based on minimization of quadratic forms to study problems related
to polynomials with inexact coefficients has been proposed by Karmarkar and Lak-
shman [4] [5]. In an earlier paper [8], we have applied it to the following problem.
Given a monic polynomial f

f = xm +
m∑

j=1

fjx
m−j, fj ∈ C,

find a monic polynomial h(x) with a multiple root

h = (x− c)k(xm−k +
m−k∑

j=1

φjx
m−k−j), φj ∈ C,

such that
N (k) := ‖ f − h ‖2

is minimized. Here C denotes the complex number field, and ‖ f−h ‖ is the l2-norm
of its coefficient vector. Here and after, c denotes unknown multiple root.

Let A be an m× (m− k) matrix with entries aij = ( k
i−j

)(−c)i−j, where (p
q
) = 0

if q > p or q < 0. We define

u := [f1, f2, . . . , fm]T ,
v := [φ1, φ2, . . . , φm−k]

T ,
w := [a10, · · · , ak0, 0, · · · , 0]T .

(1)

Thus
N (k) = (u−w −Av)∗(u−w −Av).

Here, the operator T is used for the regular transposition, while ∗ applied to matrices
and vectors is the Hermite transposition. For any c, N (k) attains its minimum N (k)

m

when v is the least square solution of equation u−w −Av = 0, i.e.,

v = A+(u−w), (2)

where A+ = (A∗A)−1A∗ is the Penrose inverse of A [7]. Consequently

N (k)
m = (u−w)∗(I−AA+)(u−w), (3)

Note that N (k)
m depends on c only. The problem becomes finding c such that N (k)

m

is minimized.

In [8], we have derived a suitable expression for N (k)
m which allows us to factorize

its first derivative easily, and only one nontrivial factor yields the local minimum.
Some recursive relations between the polynomials determining the multiple zeros for
consecutive k’s are also provided.

2



In present paper we shall be concerned with the design of a practical algorithm.
Furthermore, we include some new results that have not been published before.
There is a sharp difference between the method by Karmarkar and Lakshman [4]
[5] and the method in this paper: the former searches for the minimum point by
an iterative numerical method, while the latter determines the point definitely by
solving an equation.

The remaining part of the paper is set up as follows. First, we recall the approach
and results in [8]. In section 3, we derive a new expression for the minimum of
N (k)

m which is easily computed and induces in particular, explicit expressions of
the nearest singular polynomials for k = 2, 3, 4. In the final section, we estimate
the precision required in the computation of the multiple root and describe the
algorithm for computing the nearest singular polynomial, multiple root and the
minimal perturbation. The performance of the algorithm is illustrated by several
numerical examples.

2 Preliminaries

In order to obtain explicit expression for N (k)
m and the nearest singular polynomial,

let us introduce polynomial

q1 :=
m−1∑

j=0

(cc)j,

the vector
ek :=

[
f(c), f ′(c), . . . , f (k−1)(c)

]T
,

and matrix Λk

Λk :=




q1
∂q1

∂c
. . . ∂k−1q1

∂k−1c
∂q1

∂c
∂2q1

∂c∂c
. . . ∂kq1

∂c∂k−1c
...

...
. . .

...
∂k−1q1

∂k−1c
∂kq1

∂k−1c∂c
. . . ∂2k−2q1

∂k−1c∂k−1c



∈ Ck×k. (4)

Theorem 1 Λk is a Hermitian and positive definite matrix, and

det(Λk) ≥
(

k∏

i=1

(k − i)!

)2

. (5)

Proof. The matrix Λk is factorized as

Λk = JΩ−1V V ∗(Ω−1)
∗
J,

where
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J =




0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 1 0 0
...

. . .
...

...
...

1 . . . 0 0 0




k×k

,

Ω =




1
(k−1)!

0 0 . . . 0
1

(k−1)!
c 1

(k−2)!
0 . . . 0

1
(k−1)!

c2 2
(k−2)!

c 1
(k−3)!

. . . 0
...

...
...

. . .
...

1
(k−1)!

ck−1 k−1
(k−2)!

ck−2 (k−1
2 )

(k−3)!
ck−3 . . . 1




k×k

,

V =




(
m−1
k−1

)
cm−k . . .

(
k

k−1

)
c 1 0 . . . 0(

m
k−1

)
cm−k+1 . . .

(
k+1
k−1

)
c2

(
k

k−1

)
c 1 . . . 0

...
...

...
...

. . .
...(

m+k−2
k−1

)
cm−1 . . .

(
2k−1
k−1

)
ck

(
2k−2
k−1

)
ck−1

(
2k−3
k−1

)
ck−2 . . . 1




k×m

.

where Ωij = 1
(k−j)!

(
i− 1
j − 1

)
ci−j and Vij =

(
m + i− j − 1

k − 1

)
cm−k+i−j.

We split the matrix V = [V1 V2], into the first m − k and the last k columns,
then it is straightforward to see that

V V ∗ = [V1 V2]




V ∗
1

V ∗
2


 = V1 V ∗

1 + V2 V ∗
2 .

Since the symmetric matrix V2 V ∗
2 is a positive definite matrix and the symmetric

matrix V1 V ∗
1 is a semidefinite matrix, then the symmetric matrix V V ∗ = V1 V ∗

1 +
V2 V ∗

2 is a positive definite matrix and the product of its eigenvalues is bigger than
the product of all eigenvalues of V2 V ∗

2 [1]. We know the product of all eigenvalues
of V2 V ∗

2 is equal to its determinant which is 1. So we have det(V V ∗) ≥ 1. It follows
that

det(Λk) = det(J) det(Ω−1) det(V V ∗) det((Ω−1)
∗
) det(J) ≥

(
k∏

i=1

(k − i)!

)2

.

2

We now consider the expression of the N (k)
m and its derivative. For reference, we

restate the following three theorems in [8].
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Theorem 2 The N (k)
m and its derivative can be expressed as:

N (k)
m = e∗kΛ

−1
k ek, (6)

∂N (k)
m

∂c
=

pk+1pk

q2
k

, qk := detΛk, pk := detPk, (7)

where

Pk :=




q1 . . . ∂k−2q1

∂k−2c
f(c)

∂q1

∂c
. . . ∂k−1q1

∂c∂k−2c
f ′(c)

...
. . .

...
...

∂k−1q1

∂k−1c
. . . ∂2k−3q1

∂k−1c∂k−2c
f (k−1)(c)



∈ Ck×k. (8)

Theorem 3 N (k)
m attains its local minimum only if c satisfies pk = 0 and

q4
k−1pk+1pk+1 − q4

kpk−1pk−1 ≥ 0. (9)

The following theorem gives an alternative method to determine pi and qi in (7)
(9) for i = k − 1, k, k + 1.

Theorem 4 Let q0 := 1, q1 :=
∑m−1

j=0 (cc)j and p1 := f(c), qi, pi for 1 < i ≤ k + 1
can be computed by the following recursive relations:

qi
∂2qi

∂c∂c
− ∂qi

∂c

∂qi

∂c
= qi−1qi+1, (10)

pi
∂2pi

∂c∂c
− ∂pi

∂c

∂pi

∂c
= pi−1pi+1, (11)

qi
∂pi

∂c
− pi

∂qi

∂c
= qi−1pi+1. (12)

Notice that if the coefficients of f(x) are floating points, we will first consider these
coefficients as symbols and substitute them after exact computation of the pi and
qi. In this way, if the expressions of pi and qi are computed once, they can also be
used for other polynomials of the same degree but different coefficients as f(x). The
formulas (10)(12) are used in the Algorithm N to compute qi and pi recursively.

3 Another Expression for N (k)
m

The expression (6) of N (k)
m is very suitable for deducing the simple formula of its

derivative (7), but the inverse of matrix in (6) makes it uneasy to calculate for large
k. Here we provide an alternative explicit expression for N (k)

m in terms of qi and pi.
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Theorem 5

N (k)
m =

p1p1

q1

+
p2p2

q1q2

+ · · ·+ pkpk

qk−1qk

. (13)

Proof. For k = 1, it is obvious since Λ1 = [q1] and e1 = [f(c)] = [p1]. Suppose
equation (13) is true for 1 ≤ i ≤ k. We partition the matrix Λk+1 as

Λk+1 =

[
Λk wk

w∗
k α

]

where

wk =

[
∂kq1

∂kc
,
∂k+1q1

∂c∂kc
, . . . ,

∂2k−1q1

∂k−1c∂kc

]T

, α =
∂2kq1

∂kc∂kc
.

Since the matrix Λk is nonsingular by Theorem 1, applying the Gaussian elimination,
we obtain

[
I 0

−w∗
kΛ

−1
k 1

] [
Λk wk

w∗
k α

]
=

[
Λk wk

0 α−w∗
kΛ

−1
k wk

]
.

Compare the determinant of the matrices on the two sides, we have

β := α−w∗
kΛ

−1
k wk =

detΛk+1

detΛk

=
qk+1

qk

.

Now the inverse of Λk+1 can be expressed through the inverse of Λk:

Λ−1
k+1 =

[
Λ−1

k −Λ−1
k wkβ

−1

0 β−1

] [
I 0

−w∗
kΛ

−1
k 1

]
.

By inserting the expression of Λ−1
k+1 into (6) for k + 1, we obtain

N (k+1)
m =

[
e∗k, f (k)(c)

] [
Λ−1

k −Λ−1
k wkβ

−1

0 β−1

] [
I 0

−w∗
kΛ

−1
k 1

] [
ek

f (k)(c)

]

= e∗kΛ
−1
k ek + β−1

(
f (k)(c)− e∗kΛ

−1
k wk

) (
f (k)(c)−w∗

kΛ
−1
k ek

)

= N (k)
m +

qk

qk+1

pk+1

qk

pk+1

qk

= N (k)
m +

pk+1pk+1

qkqk+1

.

2

From the expression (13), it is clear that the minimum N (k)
m increases along with

the multiplicity k. According to Theorem 2, N (k)
m attains its local minimum only if

the value of c satisfies pk = 0. So (13) can be simplified to

N (k)
m =

p1p1

q1

+
p2p2

q1q2

+ · · ·+ pk−1pk−1

qk−2qk−1

. (14)
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By now, we have expressed N (k)
m and ∂N (k)

m /∂c explicitly in terms of pi and qi

which can be calculated recursively. In the sequel we also try to set up some formulas
based on qi instead of (2) to compute the coefficients of the corresponding nearest
singular polynomials.

For k = 2, suppose c = γ gives the minimum of N (2)
m . Let

h2(x) := f(x)− f(γ)

q1

q11(x), (15)

where

q11(x) :=
m−1∑

i=0

(cx)i.

It is trivial to check that h2(γ) = 0 and h′2(γ) = p2/q1 = 0. Thus h2(x) has a double
root γ and

‖ f − h2 ‖2 =
f(γ)f(γ)

q1

≤ N (2)
m .

So h2 is the nearest singular polynomial of f with a root of multiplicity 2. Similar
results can be found in [5] [2] [6].

It turns out that analogous formulas exist for k = 3, 4.

Theorem 6 For k = 3, suppose c = γ gives the minimum of N (3)
m , then the nearest

singular polynomial is

h3(x) := h2(x)− h′2(γ)

q2

q22(x), (16)

where h2(x) is defined as (15) and

q22(x) := q1
∂q11(x)

∂c
− ∂q1

∂c
q11(x).

Proof. It is easy to check that q22(γ) = 0, q′22(γ) = q2 and q′′22(γ) = ∂q2/∂c.
Therefore, h3(γ) = h′3(γ) = 0 and

h′′3(γ) =
1

q1

∂p2

∂c
− p2

q1q2

∂q2

∂c

=
q1p3

q1q2

(by Theorem 4)

= 0. (by Theorem 3)

It follows that γ is a triple root of h3(x). Since

‖ q22 ‖2 =
m−1∑

i=0

(
iq1c

i−1 − ∂q1

∂c
ci

) (
iq1c

i−1 − ∂q1

∂c
ci

)

= q1

(
q1

∂2q1

∂c∂c
− ∂q1

∂c

∂q1

∂c

)

= q1q2,
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we have

‖ h3 − f ‖2 ≤ ‖ h3 − h2 ‖2 + ‖ h2 − f ‖2

≤ p2p2

q2
1q

2
2

‖ q22 ‖2 +
f(γ)f(γ)

q1

= N (3)
m .

2

Theorem 7 For k = 4, suppose c = γ gives the minimum of N (4)
m , then the nearest

singular polynomial is

h4(x) := h3(x)− h′′3(γ)

q3

q33(x), (17)

where

q33(x) :=
1

q1

(
q2

∂q22(x)

∂c
− ∂q2

∂c
q22(x)

)
.

Proof From the proof of the above theorems, we know that h4(γ) = 0 and q33(γ) =

0, q′33(γ) = 0, q′′33(γ) = q3, q
(3)
33 (γ) = ∂q3

∂c
. So, h4(γ) = h′4(γ) = h′′4(γ) = 0 and

h
(3)
4 (γ) =

1

q2

∂p3

∂c
− p3

q2q3

∂q3

∂c

=
q2p4

q2q3

= 0.

It follows that γ is a root of h3(x) of multiplicity 4. Since

‖ q1q33 ‖2 =
m−1∑

i=0

(
q2

(
i(i− 1)q1c

i−2 − ∂2q1

∂c2
ci

)
− ∂q2

∂c

(
iq1c

i−1 − ∂q1

∂c
ci

))

(
q2

(
i(i− 1)q1c

i−2 − ∂2q1

∂c2
ci

)
− ∂q2

∂c

(
iq1c

i−1 − ∂q1

∂c
ci

))

= q2
1q2q3,

we have

‖ h4 − f ‖2 ≤ ‖ h4 − h3 ‖2 + ‖ h3 − f ‖2

≤ p3p3

q2
2q

2
3

‖ q33 ‖2 +
p2p2

q1q2

+
p1p1

q1

= N (4)
m .

2

Unfortunately, there are no obvious way to generalize (15)(16)(17) to the cases
of k > 4. The study in this point is in progress and will be reported in the future.
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4 Algorithm and Examples

Let γ = a+ib, where a and b are real, i stands for the imaginary unit. By Theorem 3,
we subject to find the real solutions of a polynomial equations system. It consists of
the real and imaginary part of pk(a, b). In order to guarantee the absolute minimum
of N (k)

m to be within δ2, we estimate the precision required in the calculation of real
root a and b of pk(a, b). The analysis is similar to [5], but it is much simple and clear
due to the explicit expressions we have derived. Since γ = a+ ib is a multiple root of
the minimally perturbed polynomial h whose coefficients are bounded in magnitude
by the coefficients of f . Therefore we suppose ‖ a+ ib ‖≤ B, where B = 1+2 ‖ f ‖.

Theorem 8 For a given δ > 0, γ = a + ib, if

δa, δb < δm−2(k+1)2B−2m(k+1) (18)

then N (k)
m (a + δa, b + δb)−N (k)

m (a, b) ≤ δ2.

Proof. We have

N (k)
m (a + δa, b + δb)−N (k)

m (a, b) ≤ ∂N (k)
m (a, b)

∂c
δaδb ≤ pk+1pk

q2
k

δaδb.

By Theorem 1, qk ≥
(∏k

i=1(k − i)!
)2 ≥ 1. It follows that only bounds of pk(a, b), pk+1(a, b)

are needed. Using the recursive relations in Theorem 4, we get

degγ pk+1 + degγ pk−1 ≤ 2 degγ pk.

Therefore,
degγ pk ≤ k degγ p1 = mk.

Similarly it can be shown that

degγ pk ≤ (m− 1)k.

The bound of coefficients in pk can be obtained directly from the estimate of entries
in matrix (8) as m2k2

B. Note that we have assumed ‖ a + ib ‖≤ B. Thus,

N (k)
m (a+δa, b+δb)−N (k)

m (a, b) ≤ δaδbm
2k2

B2mkm2(k+1)2B2m(k+1) ≤ δaδbm
4(k+1)2B4m(k+1).

The (18) implies that

N (k)
m (a + δa, b + δb)−N (k)

m (a, b) ≤ δ2.

2

We are now ready to describe the algorithm for computing the nearest singular
polynomials with a k-fold root.
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Algorithm N:

Input: Monic polynomial f ∈ C[x] of degree m, an error bound δ and an integer
k > 1.

Output: The nearest singular polynomial h and γ = a + ib ∈ C such that γ is the
k-fold root of h and N (k)

m (a, b)− (absolute minimum of N (k)
m ) ≤ δ2.

N1. Set q0 := 1, q1 :=
∑m−1

j=0 (cc)j and p1 := f(c).

N2. For i from 2 to k + 1 do

qi :=
1

qi−2

(
qi−1

∂2qi−1

∂c∂c
− ∂qi−1

∂c

∂qi−1

∂c

)
by formula (10);

pi :=
1

qi−2

(
qi−1

∂pi−1

∂c
− pi−1

∂qi−1

∂c

)
by formula (12).

N3. Find the roots of pk satisfying inequality (9) and bounded by B to the precision
defined in Theorem 8.

N4. Compute N (k)
m by the formula (14). Let γ = a + ib be one of the roots giving

the least value of N (k)
m .

N5. For k = 2, 3, 4, determine the nearest singular polynomial h by formulas (15)
(16) (17) respectively. Otherwise h is obtained from equation (2).

The algorithm has been implemented in the computer algebra system Maple V
Release 5. Numerical experiments were run on a DEC personal workstation(433MHz,
256Mbyte). The following table presents times(seconds) for running Algorithm N on
five examples (see Appendix). The times are broken down into symbolic deduction
of the expressions of pk, hk,N (k)

m depending on c, c, numerically finding the multiple
root γ, and evaluating hk, N (k)

m at γ. Ex and k show the example number and
multiplicity respectively. For the details of the computation, see the Appendix.

Ex k Symbolic deduction Finding root Evaluation
time (s) time (s) time (s)

1 2 0.02 0.02 0.01
1 3 0.02 0.03 0.02
1 4 0.02 0.02 0.03
2 2 0.03 0.03 0.02
3 2 0.09 0.03 0.01
4 2 0.05 0.11 0.02
4 3 0.11 0.05 0.02
4 4 0.20 0.05 0.06
5 2 0.03 1.17 0.02
6 2 0.08 2.44 0.03
6 3 0.20 18.05 0.15

10



5 Conclusion

In this paper, we show how to compute the nearest singular polynomials by the tech-
nique of parametric minimization. The algorithm presented here is of polynomial-
time complexity in the degree and size of the coefficients of the input polynomial.
Our method has been applied to sensitivity analysis of root locations of polynomials
subject to coefficient perturbations. However, for k > 4, we have not yet obtained
an explicit formula for the nearest singular polynomial with a given multiple zero.
In fact, the algorithm appears to reach its limit for k > 4. The practicality of our
algorithm has still to be tested.

Acknowledgment The authors thank Prof.H.J.Stetter for many useful suggestions
and the anonymous referees for their fruitful comments.

Appendix. A Collection of Examples

Let k, hk, γ and N (k)
m be the same as above. For a given tolerance ε, if N (k)

m ≤ ε2,
then we say f has a k-cluster of zeros and γ is called the center of the cluster
[3]. In the following text, all coefficients are displayed to 7-decimals floating-point
approximation.

Example 1

f = x4 − 0.960000x3 − 0.0401000x2 + 0.000096x + 0.000004.

For k = 2:

h2 = x4 − 0.960000x3 − 0.0401000x2 + 0.0000959953x− 0.0000000559041;

γ = 0.00114957; (double root)

N (2)
m = 1.645038 · 10−11.

For k = 3:

h3 = x4 − 0.960000x3 − 0.0400826x2 + 0.000547512x + 0.00000248153;

γ = −0.0135359; (triple root)

N (3)
m = 4.144531 · 10−7.

For k = 4:

h4 = x4 − 0.792494x3 + 0.235518x2 − 0.0311077x + 0.00154079;

γ = 0.198123; (quadruple root)

N (4)
m = 0.104999.

Suppose the given accuracy ε = 10−3, then f has a 3-cluster of zeros . If ε = 10−5,
then f only has a 2-cluster of zeros.
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Example 2

f = x5 + 2.03 x4 − 0.9398 x3 − 2.0296 x2 − 0.0602 x− 0.0004.

For k = 2:

h2 = x5 + 2.030000x4 − 0.939800x3 − 2.029600x2 − 0.0601992x− 0.000449603;

γ = −0.0149931; (double root)

N (2)
m = 2.460988 · 10−9.

Since N (2)
m is very small, we try k = 3 to see if there is a 3-cluster of zeros. For

k = 3, N (3)
m = 0.368179, so it is only possible for f has a 2-cluster.

Example 3

f = x6 + 1.99 x5 − 9.0202 x4 − 1.9104 x3 + 8.0218 x2 − 0.0796 x− 0.0016.

For k = 2:

h2 = x6 + 1.990000x5 − 9.020200x4 − 1.910400x3 + 8.021800x2 − 0.0795911x

+0.000197662;

γ = 0.00497002; (double root)

N (2)
m = 3.231668 · 10−6.

For k = 3, N (3)
m = 5.766062, f has no 3-cluster of zeros.

Example 4

f = x6 + 2.04 x5 − 0.9199 x4 − 2.039806x3 − 0.080112x2 − 0.000194x + 0.000012.

For k = 2:

h2 = x6 + 2.040000x5 − 0.919900x4 − 2.039806x3 − 0.0801120x2 − 0.000194044x

+0.0000137343;

γ = −0.0253447; (double root)

N (2)
m = 3.009789 · 10−12.

For k = 3:

h3 = x6 + 2.040000x5 − 0.919900x4 − 2.039806x3 − 0.0800891x2 + 0.00105689x

+0.00000465900;

γ = −0.0132538; (triple root)

N (3)
m = 7.453849 · 10−7.
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For k = 4:

h4 = x6 + 2.095264x5 − 1.073789x4 − 1.684835x3 − 0.612729x2 − 0.0921448x

−0.00507403;

γ = −0.214203; (quadruple root)

N (4)
m = 0.444902.

So it is reasonable that f has a 3-cluster of zeros if ε = 10−3.

Example 5

f = x5 + (0.909091 + 0.1 i) x4 − 10. x3 − (9.09091− i) x2 + 9. x + 8.181818 + 0.9 i.

For k = 2:

h2 = x5 + (0.904823 + 0.0863028i) x4 + (−9.996349 + 0.0145469i) x3

+(−9.093866− 1.015397i) x2 + (9.002183 + 0.0162447i) x

+(8.180493 + 0.882916i);

γ = −0.955062− 0.0536859i; (double root)

N (2)
m = 0.00123884.

Suppose the given accuracy ε = 10−1, then f has a 2-cluster of zeros. Otherwise f
only has simple roots.

Example 6

f = x21 − 1.142857x20 − 1.0 x19 + 2.714286x18 − 4.0 x17 + 4.1428714x16

−2.571371x15 + x14 + 0.857143x13 − 3.142857x12 + 2.0 x11 + 0.285714x10

+0.571428x8 − 1.285600x7 + 2.857143x6 − 4.714286x5 + 2.142857x4

+0.428571x3 + 0.857143x2 − 0.714286x− 0.285700.

For k = 2:

h2 = x21 − 1.142866x20 − 1.000009x19 + 2.714276x18 − 4.000009x17 + 4.142862x16

−2.571380x15 + 1.0 x14 + 0.857133x13 − 3.142867x12 + 2.0 x11 + 0.285705x10

−0.95239110−5 x9 + 0.571419x8 − 1.285609x7 + 2.857133x6 − 4.714295x5

+2.142847x4 + 0.428562x3 + 0.857133x2 − 0.714295x− 0.285709;

γ = .999991; (double root)

N (2)
m = .19047710−8.
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For k = 3:

h3 = x21 − 1.142414x20 − 0.999574x19 + 2.714695x18 − 3.999607x17 + 4.143250x16

−2.571008x15 + 1.000349x14 + 0.857479x13 − 3.142534x12 + 2.000311x11

+0.286013x10 + 0.00028743x9 + 0.571705x8 − 1.285334x7 + 2.857398x6

−4.71404x5 + 2.143093x4 + 0.4287986x3 + 0.857361x2 − 0.714076x

−0.285498;

γ = 1.040009; (triple root)

N (3)
m = 0.0000963776.

Suppose the given accuracy ε = 10−2, then f has a 3-cluster of zeros . If ε = 10−4,
then f only has a 2-cluster of zeros.
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