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Abstract

In this paper, we propose a combined symbolic-numeric algorithm for com-
puting the nearest singular polynomial and its multiple zero. Explicit expres-
sions of the minimal perturbation and the nearest singular polynomials are
presented. A theoretical error bound and several numerical examples are
given.
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1 Introduction

An approach based on minimization of quadratic forms to study problems related
to polynomials with inexact coefficients has been proposed by Karmarkar and Lak-
shman [4] [5]. In an earlier paper [8], we have applied it to the following problem.
Given a monic polynomial f

f ="+ Z fjl’m_j, fj - @,
j=1

find a monic polynomial A(x) with a multiple root

m—k
h=(z—o)f @™+ 3 ¢am " 7), ¢, €C,

i=1

such that
N® = f=h P
is minimized. Here € denotes the complex number field, and || f —% || is the [>-norm
of its coefficient vector. Here and after, ¢ denotes unknown multiple root.
Let A be an m x (m — k) matrix with entries a;; = (ifj)(—c)“j, where (7) =0
if g > p or ¢ < 0. We define

u = [fhf% e 'afm]Ta
v [¢1a ¢27 ) ¢m—k]T7 (1)

W = [a107"'>ak0707"'70]T'

Thus

Here, the operator 7 is used for the regular transposition, while * applied to matrices
and vectors is the Hermite transposition. For any ¢, N'®) attains its minimum N
when v is the least square solution of equation u —w — Av = 0, i.e.,

v=A*(u-w), (2)
where AT = (A*A)~'A* is the Penrose inverse of A [7]. Consequently
NE = (u—w)*(I- AAY)(u—w), (3)
Note that Nr(nk) depends on ¢ only. The problem becomes finding ¢ such that /\/,Sf)
is minimized.
In [8], we have derived a suitable expression for V%) which allows us to factorize
its first derivative easily, and only one nontrivial factor yields the local minimum.

Some recursive relations between the polynomials determining the multiple zeros for
consecutive k’s are also provided.



In present paper we shall be concerned with the design of a practical algorithm.
Furthermore, we include some new results that have not been published before.
There is a sharp difference between the method by Karmarkar and Lakshman [4]
[5] and the method in this paper: the former searches for the minimum point by
an iterative numerical method, while the latter determines the point definitely by
solving an equation.

The remaining part of the paper is set up as follows. First, we recall the approach
and results in [8]. In section 3, we derive a new expression for the minimum of
N®) which is easily computed and induces in particular, explicit expressions of
the nearest singular polynomials for £ = 2,3,4. In the final section, we estimate
the precision required in the computation of the multiple root and describe the
algorithm for computing the nearest singular polynomial, multiple root and the
minimal perturbation. The performance of the algorithm is illustrated by several
numerical examples.

2 Preliminaries

In order to obtain explicit expression for A'*) and the nearest singular polynomial,
let us introduce polynomial

the vector

and matrix Ay

dq1 ok lg
¢« gc e ok-Te
g1 *q 8kq1
= - =
Ak — 8'0 60‘80 ‘ 866' c c @kxk' (4)
ak—lql akql a2k—2q1
Ok=1lc  9k=lcgec " Q9Qk—lcok—1c

Theorem 1 A; is a Hermitian and positive definite matrix, and
. 2
det(Ay) > <H(k — z)') . (5)
i=1
Proof. The matrix Ay, is factorized as

A =JQVIVHQ Y,

where



[0 00 1]
0 010
J = 10 100 ’
1 ...000],,
_ ﬁ 0 0 . 0]
1 1
e G 0 0
Q = =11 € (= s 0 7
1 k1 k1 k2 (3 ks )
L (k—l)!c (k_Q)!C (k_3)!C 1 inn
m—1\ m— k
(k_l)c k (k—l)c 1 0
m o\ ~m— k+1 k
vV = (k—l)c SRS (k-1>02 (k_l)c 1
mAk—2\ m— 2k—1 2%—2\ k=1 (2k—3\ k-
(e e (e @ o,
o= L 1—1 i—j L — m_’_l_]_l m—k+i—j
Wh@f@Ql](k—j)!(j_1>C JandVU< P )c J

We split the matrix V' = [V} V4], into the first m — k and the last k£ columns,
then it is straightforward to see that

‘/1*
V=V Vi “VV+ 1BV
‘/'2*

Since the symmetric matrix V5 V5 is a positive definite matrix and the symmetric
matrix V3 V)" is a semidefinite matrix, then the symmetric matrix V V* =V, V" +
Vo V' is a positive definite matrix and the product of its eigenvalues is bigger than
the product of all eigenvalues of V5 V5 [1]. We know the product of all eigenvalues
of V3 V5 is equal to its determinant which is 1. So we have det(V V*) > 1. It follows
that

det(Ay,) = det(J) det(2) det(V V*) det((27)") det(.J) > (f[(k - z)!) .
O

We now consider the expression of the N and its derivative. For reference, we
restate the following three theorems in [8].
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Theorem 2 The N\¥) and its derivative can be expressed as:

NP = erA ey, (6)
ONY prbe
e = k—f—; k, gk ‘= det Ak, Pr = det Pk, (7)
qj
where
k—2
¢ ... S f(e)
b Bl (o)
Pk: — 8.c . 808. c ‘ c Cka. (8)
kf.l 2k;3 )
%qucl e m f(kil)(c)

Theorem 3 N%) attains its local minimum only if ¢ satisfies pr, = 0 and
Qo1 Pkt Pht — GpPr1DPk1 > 0. 9)

The following theorem gives an alternative method to determine p; and ¢; in (7)
(9) fori=Fk—1,k k+1.

Theorem 4 Let gy := 1, ¢ := ;”:_Ol(cé)j and p1 := f(¢), ¢i,p; for 1 <i<k+1
can be computed by the following recursive relations:

32%‘ 0q; 0g;

qi&c% - e e = {¢i-19i+1, (10)
P p; Op; Op; .

pi@c@é_ oc oe DPi—1Pi+1, (11)
Opi Jq; o

Gipe ~Pig, = Gi1Pirr (12)

Notice that if the coefficients of f(z) are floating points, we will first consider these
coefficients as symbols and substitute them after exact computation of the p; and
¢;- In this way, if the expressions of p; and ¢; are computed once, they can also be
used for other polynomials of the same degree but different coefficients as f(z). The
formulas (10)(12) are used in the Algorithm N to compute ¢; and p; recursively.

3  Another Expression for N*

The expression (6) of N*) is very suitable for deducing the simple formula of its
derivative (7), but the inverse of matrix in (6) makes it uneasy to calculate for large
k. Here we provide an alternative explicit expression for ./\/n(f) in terms of ¢; and p;.
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Theorem 5

N(k):@+@+...+ PrPk

. (13)
q1 q192 qk—19k

Proof. For k = 1, it is obvious since Ay = [¢1] and e; = [f(c)] = [p1]. Suppose
equation (13) is true for 1 < i < k. We partition the matrix Ayy; as

Ap wy
Ak‘-i—l - [ W]t; o ]
where .
wr ak(h ak+1q1 aZk:—lql . a2ksq1
P oke Gcoke’ T ok 1eoke OFcoke’

Since the matrix Ay is nonsingular by Theorem 1, applying the Gaussian elimination,

we obtain
I 0 A wy - Ay Wi
—wiAt 1 wi a | | 0 a-wiA;'wy |

Compare the determinant of the matrices on the two sides, we have

det Api1 Qe

=a—wiAlw, = =
ﬁ ROk F det Ak qr

Now the inverse of Ay, can be expressed through the inverse of Ay:
AT A=A wy s I 0
k+1 0 ﬁ—l _W;ZAlzl 1 .
By inserting the expression of A}, into (6) for k + 1, we obtain
— | A7 A w87t 1 0 e
(k+1)  _ * (k) k E Wk k
Nm [eka f (C)} [ 0 6—1 _WZAI;I 1 f(k)(c)
= ejA; e + 87 (fB(0) — ef Ay wi) (FP () — wiAy e
N® i k. Pk+1 Pk+1

" qk+1 9k Gk
_ Nélk)+pk+1pk+1‘
qrkqk+1

O

From the expression (13), it is clear that the minimum A/*) increases along with
the multiplicity k. According to Theorem 2, N*) attains its local minimum only if
the value of ¢ satisfies p = 0. So (13) can be simplified to

AR — pip1 | P2b2 Pr—1Pk—1

m —_—t—F . (14)
q1 q192 qk—2Gk—1



By now, we have expressed N} and ON¥) /dc explicitly in terms of p; and ¢;
which can be calculated recursively. In the sequel we also try to set up some formulas
based on ¢; instead of (2) to compute the coefficients of the corresponding nearest
singular polynomials.

For k = 2, suppose ¢ = v gives the minimum of N?). Let

fm($)¢=:f($)—-jé?)qU($), (15)
where -
q11(x) == 2 (Em)’

It is trivial to check that he(y) = 0 and hy(7y) = pe2/q1 = 0. Thus he(z) has a double
root v and

17— 2= L00)
q1

So hy is the nearest singular polynomial of f with a root of multiplicity 2. Similar
results can be found in [5] [2] [6].

It turns out that analogous formulas exist for k = 3, 4.

Theorem 6 For k = 3, suppose ¢ =~ gives the minimum ofNéf’), then the nearest
singular polynomaial is
hy(v)

q2

hg(l‘) = hQ(SC) —
where ho(z) is defined as (15) and

Gaa(T), (16)

Jq11(x 0
g () = q qgc( ) _ %qu(x).

Proof. It is easy to check that gaa(v) = 0, ¢h(y) = g2 and ¢hy(y) = Jgo/0c.
Therefore, hs(y) = hi(y) = 0 and

1 Op, P2 0go

hl/ — N R S A
() @1 9 qugp Oc
— @b (by Theorem 4)
4192
= 0. (by Theorem 3)

It follows that v is a triple root of hs(x). Since

|2l = b it — O 4 it — O
- oec Oe

_ Oq1_ 0q1 0
D\ Docoe ~ oc oe
= {142,




we have

Ihs = fII* < [ hs—ha ||+l h2i\|2
P2y ff() A

| o2 || + === = N
%q% a1

IN

O

Theorem 7 For k = 4, suppose ¢ = v gives the minimum of NV, then the nearest
singular polynomaial is

hy(x) == hs(x) — hé;?)%:z(x), (17)
where X Suml@) O
— 422\ 42
gs3(x) = @ <Q2 e (.96%2(55)) :

Proof From the proof of the above theorems, we know that hs(y) = 0 and g33(7y) =
0,a55(7) = 0,485 (v) = 45,45 () = %2 So, ha() = Hi(y) = Wj(7) = 0 and

By = 19 s 0t
! ¢ Oc ¢2q3 Oc
_ q2P4 —0
q2q3

It follows that 7 is a root of hg(z) of multiplicity 4. Since

Z_l . i 0? ; o o o .
| s ”2 i=0 <Q2 (2(2 Daie - (9cq21€> 8q’62 (quc 1 aqélé ))
(7 j— Pq g (. . oq
7 2 - 4t 7 _ JHa : 1 i
<q2 (Z(Z 1)qlc 802 C) ac 1q1€ - 780 C

= 4203,

we have

Fha=f 1" < Il ha—=hs "+l hs = f |

psD p2Dy . PiD1
T g [P+ 22 P = N,
4243 qi142 q1

IN

O

Unfortunately, there are no obvious way to generalize (15)(16)(17) to the cases
of k£ > 4. The study in this point is in progress and will be reported in the future.



4 Algorithm and Examples

Let v = a+1ib, where a and b are real, i stands for the imaginary unit. By Theorem 3,
we subject to find the real solutions of a polynomial equations system. It consists of
the real and imaginary part of py(a,b). In order to guarantee the absolute minimum
of N'®) to be within 42, we estimate the precision required in the calculation of real
root a and b of pg(a,b). The analysis is similar to [5], but it is much simple and clear
due to the explicit expressions we have derived. Since v = a+ib is a multiple root of
the minimally perturbed polynomial h whose coefficients are bounded in magnitude
by the coefficients of f. Therefore we suppose || a+ib ||< B, where B=1+2 f ||

Theorem 8 For a given 6 >0, v = a+ 1ib, if
80, 0 < Sm~2k+1)? p=2m(k+1) (18)

then N (a + 04,0+ 6,) — N{¥) (a,b) < 6.

Proof. We have

(k) o
N® (a4 505+ 5) — N®(a,b) < W‘S‘Léb < PeriPis s
dj

By Theorem 1, g, > (Hle(k: - i)!)2 > 1. It follows that only bounds of px(a, b), pxr1(a, b)
are needed. Using the recursive relations in Theorem 4, we get

deg, pr41 + deg, pr—1 < 2deg, py.

Therefore,
deg., pr. < kdeg, p1 = mk.

Similarly it can be shown that
degvpk < (m—1)k.

The bound of coefficients in py can be obtained directly from the estimate of entries
in matrix (8) as m?**B. Note that we have assumed || a + ib || < B. Thus,

./\/'T(nk) (CL—F(SQ, b+5b)_-/\/;§1k) (CL, b) < 5a6bm2k2B2mkm2(k+1)2B2m(k+1) < 5a5bm4(k+1)234m(k+1).
The (18) implies that
NE (a4 64,0+ 6,) — N (a,b) < 6%

O

We are now ready to describe the algorithm for computing the nearest singular
polynomials with a k-fold root.



Algorithm N:

Input: Monic polynomial f € C[x] of degree m, an error bound ¢ and an integer
kE>1.

Output: The nearest singular polynomial h and v = a + ib € C such that ~ is the
k-fold root of h and N¥)(a, b) — (absolute minimum of N(®) < §2.

N1. Set qo == 1, q1 := 754" (ce) and py := f(c).
N2. For ¢ from 2 to k+ 1 do

1 Oqi—1 0gi—1 Ogiy
i = i — by f la (10);
1 Gis (q acoe ~ oc oe ) DY formula (10)
1 Opi—1 0gi—1
p s (q 1o TP y formula (12)

N3. Find the roots of pj, satisfying inequality (9) and bounded by B to the precision
defined in Theorem 8.

N4. Compute N¥) by the formula (14). Let v = a + ib be one of the roots giving
the least value of V(%)

N5. For k = 2,3,4, determine the nearest singular polynomial A by formulas (15)
(16) (17) respectively. Otherwise h is obtained from equation (2).

The algorithm has been implemented in the computer algebra system Maple V
Release 5. Numerical experiments were run on a DEC personal workstation(433MHz,
256Mbyte). The following table presents times(seconds) for running Algorithm N on
five examples (see Appendix). The times are broken down into symbolic deduction
of the expressions of py, hx, N'*) depending on ¢, ¢, numerically finding the multiple
root v, and evaluating hy, N¥) at . Ex and k show the example number and
multiplicity respectively. For the details of the computation, see the Appendix.

Ex | k | Symbolic deduction | Finding root | Evaluation
time (s) time (s) time (s)
112 0.02 0.02 0.01
113 0.02 0.03 0.02
1 |4 0.02 0.02 0.03
2 |12 0.03 0.03 0.02
312 0.09 0.03 0.01
4 12 0.05 0.11 0.02
4 |3 0.11 0.05 0.02
4 |4 0.20 0.05 0.06
5 |2 0.03 1.17 0.02
6 |2 0.08 2.44 0.03
6 |3 0.20 18.05 0.15
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5 Conclusion

In this paper, we show how to compute the nearest singular polynomials by the tech-
nique of parametric minimization. The algorithm presented here is of polynomial-
time complexity in the degree and size of the coefficients of the input polynomial.
Our method has been applied to sensitivity analysis of root locations of polynomials
subject to coefficient perturbations. However, for k& > 4, we have not yet obtained
an explicit formula for the nearest singular polynomial with a given multiple zero.
In fact, the algorithm appears to reach its limit for £ > 4. The practicality of our
algorithm has still to be tested.

Acknowledgment The authors thank Prof.H.J.Stetter for many useful suggestions
and the anonymous referees for their fruitful comments.

Appendix. A Collection of Examples

Let k, hy,y and N{¥) be the same as above. For a given tolerance e, if N(F) < €2,
then we say f has a k-cluster of zeros and v is called the center of the cluster
[3]. In the following text, all coefficients are displayed to 7-decimals floating-point
approximation.

Example 1

f=2*—0.960000 z* — 0.0401000 2% + 0.000096 = + 0.000004.

hy = 2*—0.9600002* — 0.0401000 z* 4+ 0.0000959953 2 — 0.0000000559041;
v = 0.00114957;  (double root)

NP = 16450381071
For k = 3:
hs = z*—0.960000 2> — 0.0400826 2 + 0.000547512 = + 0.00000248153;
v = —0.0135359; (triple root)
N = 41445311077,
For k = 4:

hy = z*—0.792494 23 4+ 0.235518 22 — 0.0311077 = + 0.00154079;
= 0.198123;  (quadruple root)
NG = 0.104999.

Suppose the given accuracy € = 1073, then f has a 3-cluster of zeros . If € = 1075,
then f only has a 2-cluster of zeros.
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Example 2

f=2a"+203z—0.9398 23 — 2.0296 2> — 0.0602 z — 0.0004.
For k = 2:

hy = z°+2.030000z* — 0.939800 z° — 2.029600 22 — 0.0601992 2z — 0.000449603;
v = —0.0149931; (double root)
N® = 2460988 - 1077,

Since M) is very small, we try k = 3 to see if there is a 3-cluster of zeros. For
k=3, N =0.368179, so it is only possible for f has a 2-cluster.

Example 3

f=2a%+1.992% —9.02022* — 1.9104 2* + 8.0218 22 — 0.0796 = — 0.0016.
For k = 2:

he = %4 1.990000 z° — 9.020200 z* — 1.910400 2*® + 8.021800 2> — 0.0795911
+0.000197662;
= 0.00497002;  (double root)
NP = 32316681075

For k = 3, Nrf’) = 5.766062, f has no 3-cluster of zeros.
Example 4

f=a%42.042° —0.9199 2* — 2.039806 2* — 0.080112 2> — 0.000194 = + 0.000012.
For k = 2:

he = %4 2.0400002° — 0.919900 z* — 2.039806 x> — 0.0801120 2> — 0.000194044 x
+0.0000137343;
v = —0.0253447;  (double root)
NB = 30097891072,

hs = %4 2.0400002° — 0.919900 z* — 2.039806 2> — 0.0800891 z* + 0.00105689
+0.00000465900;
v = —0.0132538; (triple root)
NG = 7453849107
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For k = 4:

hy = 2842095264 2° — 1.073789 2* — 1.684835 2> — 0.612729 222 — 0.0921448 z

—0.00507403;
v = —0.214203; (quadruple root)
NG = 0.444902.

So it is reasonable that f has a 3-cluster of zeros if e = 1073.

Example 5

f =2+ (0.909091 + 0.1 i) z* — 10.2* — (9.09091 — i) 2> + 9.z + 8.181818 + 0.9 i.

For k = 2:

he =

’y —_=
ND =

2° 4+ (0.904823 + 0.0863028i) z* + (—9.996349 + 0.0145469i) *
+(—9.093866 — 1.015397i) 22 + (9.002183 + 0.0162447i) x
+(8.180493 + 0.8829164);

—0.955062 — 0.0536859i;  (double root)

0.00123884.

Suppose the given accuracy € = 1071, then f has a 2-cluster of zeros. Otherwise f
only has simple roots.

Example 6

f = 2*' —1.1428572%° — 1.02" 4+ 2.714286 2'® — 4.0 27 + 4.1428714 z'°
—2.571371 2% + 2™ 4 0.857143 '3 — 3.142857 212 + 2.0 2 + 0.285714 2:1°
+0.571428 ® — 1.285600 7 + 2.857143 2° — 4.714286 2° + 2.142857 z*
+0.428571 2° 4+ 0.857143 2* — 0.714286 = — 0.285700.

For k = 2:

he = 2*' —1.142866 22° — 1.000009 29 4 2.714276 2'® — 4.000009 27 + 4.142862 2!
—2.571380 " + 1.0 2™ 4 0.857133 '3 — 3.142867 22 + 2.0 2! + 0.285705 z:*°
—0.952391107° 27 + 0.571419 2% — 1.285609 2" + 2.857133 25 — 4.714295 x°
+2.142847 2% 4 0.428562 2 + 0.857133 2% — 0.714295 = — 0.285709;

v = .999991; (double root)
N@ = 1904771078,
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For k = 3:

hy = %' —1.1424142%° — 0.999574 2% + 2.714695 x*® — 3.999607 z'" + 4.143250 2'°
—2.571008 z'° + 1.000349 2** 4 0.857479 '3 — 3.142534 z'? 4 2.000311 2!
+0.286013 ' + 0.00028743 2 4 0.571705 2® — 1.285334 27 + 2.857398 2.°
—4.71404 2° + 2.143093 z* + 0.4287986 2> + 0.857361 22 — 0.714076 «
—0.285498;
v = 1.040009; (triple root)
N = 0.0000963776.

Suppose the given accuracy € = 1072, then f has a 3-cluster of zeros . If e = 1074,
then f only has a 2-cluster of zeros.
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