
Solving Approximate GCD of Multivariate
Polynomials

By Maple/Matlab/C Combination

Kai Li Lihong Zhi Matu-Tarow Noda

Department of Computer Science
Ehime University, Japan

{likai,lzhi,noda}@hpc.cs.ehime-u.ac.jp
http://www.hpc.cs.ehime-u.ac.jp

August 12, 2005

Abstract

The problem of solving approximate GCD of multivariate polyno-
mials has been well studied in the computational literature because of
its importance particularly in engineering application[2, 6, 7]. Num-
bers of algorithms have been proposed to give the approach such as
approximate subresultant PRS and modular algorithm using SVD.
Here we focus on EZ-GCD[3], another method based on Hensel Lift-
ing. In this computation, QR decomposition of Sylvester Matrix is
the key operation. Generally, Computer Algebra Systems such as
Maple[9] and Asir/Risa[12] are only applicable in small sized matrix
problem. But in multivariate polynomial case, matrix size becomes
very large. Obviously it could be more effective if numeric method is
adopted. So we must address it in symbolic-numeric combined com-
putation. Moreover, noticing the specificity of Sylvester Matrix data
construction[8], more efficient method could be applied if we invoke
a C routine acting as Sylvester Matrix QR solver. Hence it is clear
that a comprehensive toolkit which can offer faster and more accurate
solution on this term is needed. In this paper, Maple, a computer
algebra system; Matlab[10], a high-performance numeric library; and
C routines, are combined to implement our computation, showing a
stable and faster result.

1

1 Introduction

Algorithms for approximate GCD computation have been significant ad-
vances in the past decade. Many papers have mentioned their proposal on
field of univariate or multivariate polynomials. The problem we consider
here is: Given two multivariate polynomials F (x1, ..., xn) and G(x1, ..., xn)
with floating-point coefficients, how to compute the ’satisfactory’ approxi-
mate GCD for a given error tolerance ε?

F = C(x1, ..., xn)F̃ (x1, ..., xn) + O(ε(x1, ..., xn))

G = C(x1, ..., xn)G̃(x1, ..., xn) + O(ε(x1, ..., xn))

for example:

F = (x2 + y2 − 1)(xy − 0.25) − 10−5xy,

G = (x2 + y2 − 1)(x − y) − 10−5(x + 1)

For ε = 10−5, the approx-GCD may be

x2 + y2 − 1

Of course, for such multivariate problem like this, we can consider our solu-
tion based on univariate GCD approach. But it is nontrivial to modify the
techniques used in symbolic computation such as interpolation and Hensel
lifting to compute the approximate GCD of multivariate polynomials. There
are three main methods for this domain: Subresultant PRS, Modular Al-
gorithm and EZ-GCD using Hensel lifting algorithm[3]. In this paper, we
discuss our solution with EZ-GCD, and focus on extending the Hensel lifting
to polynomials with floating-point coefficients. This computation involves
the QR-decomposition of a Sylvester matrix as the key operation. Consid-
ering its special data structure, we invoke a C routine acting as an efficient
Sylvester matrix QR solver. Moreover, a linear local optimization problem is
also proposed to improve the candidate approximate factors obtained form
Hensel lifting. Hence it is clear that a comprehensive environment which
provides fast and stable symbolic and numeric computation is needed. Here
we combine Maple/Matlab/C routine to meet our requirement. Showing a
satisfied result.

2 Related Works

As we have just mentioned, Subresultant PRS and Modular Algorithm are
also available to multivariate approximate GCD problems.

2

The Subresultant PRS algorithm is the Euclidean algorithm using pseudo-
division in a polynomial ring.

{P1 = F, P2 = G, . . . , Pk 6= 0, Pk+1 = 0.}

Where
βiPi+1 = remainder(αiPi−1, Pi), i = 2, 3,

here,

αi = lc(Pi)
di+1, di = deg(Pi−1) − deg(Pi);

β2 = 1, γ2 = 1;

βi = lc(Pi−1), γi = lc(Pi−1)
di−1γ

1−di−1

i−1 , i ≥ 3.

lc(P) denotes the leading coefficient of P . The above method has been
extended to polynomials with floating-point coefficients by Prof.Noda and
Sasaki[6].

In Modular algorithm, multivariate polynomial GCD problems are re-
duced to univariate problems by using evaluation homomorphisms to elim-
inate variables, and reconstruct to GCD of the original inputs from these
“images” using interpolations. There are two kinds of modular methods:
One is dense and the other is sparse. For the dense modular algorithm, the
number of homomorphisms is exponential in the number of variables, It is
usually very large. If the multivariate polynomials and their nontrivial GCD
are sparse, then sparse modular method needs much less number of homo-
morphisms. It computes the degree and sparsity of the GCD by random
evaluation homomorphisms and only interpolates nonzero coefficients. Cor-
less et al.[2] modified the sparse modular algorithm to compute approximate
GCD in the case of bivariate polynomials.

1. Choose random evaluations α, βi of x and y to compute Tx nonzero
terms in GCD(F (x, βi), G(x, βi)) and Ty nonzero term in GCD(F (α, y),
G(α, y)).

2. Solve M monic GCD(F (x, βi), G(x, βi) for random choose βi, where
M ≥ TyTx/(Tx − 1).

3. Interpolate all coefficients simultaneously.

Both of the two methods have advantages and disadvantages[5]. For example:
sparse modular method can find the “small” GCD very fast but may be
unlucky or need a large number of evaluation homomorphisms in the case
the GCD is dense; Subresultant algorithm can deal with the polynomials
with complicated leading coefficients but it is very inefficient to find that two
polynomials are actually prime to each other.

3

3 Hensel Algorithm

This section briefly describes the EZ-GCD using Hensel algorithm to compute
approximate GCD of multivariate polynomials.

When we apply Hensel algorithm for computing GCD, the two input
polynomials are reduced to two univariate polynomials whose GCD is then
lifted back to the multivariate domain using a generalized Newton’s iteration.

R[x1, . . . , xn] × R[x1, . . . , xn]
GCD
→ R[x1, . . . , xn]

mod I ↓ ↓ mod I

R[x1] × R[x1]
GCD
→ R[x1]

Where I = (x2 − a2, . . . , xn − an).
For polynomials with exact coefficients, the main steps compute GCD

using Hensel lifting can be illustrated as:

1. Choose a main variable, suppose x1, find lucky evaluation homomor-
phism I = (x2 − a2, . . . , xn − an).

2. FI = F mod I, GI = G mod I. Compute CI =GCD(FI , GI) and
cofactors F̃I , G̃I .

3. If there is one of the cofactors which is prime to CI , then use multivari-
ate Hensel construction to lift CI and the cofactor. Otherwise perform
a square-free decomposition for either F or G.

Among the steps of above, the last one is critical. Suppose P is a polynomial
in x1, . . . , xn with leading coefficient pm(a2, . . . , an) 6= 0. Let x = x1, u =
x2, . . . , xn, G(0) and H (0) be relatively prime polynomials satisfying

P (x, u) = G0(x)H (0)(x). (1)

The multivariate Hensel construction is to calculate polynomials G(k)(x, u)
and H (k)(x, u) satisfying

P (x, u) = Gk(x)H (k)(x) mod Ik+1. (2)

Now we face the challenge of solving polynomial Diophantine equations for
the fixed polynomials G(0)(x) and H (0)(x). If G(0)(x) and H ())(x) are rela-
tively prime, then for any polynomial R(x) with deg(R(x)) < deg(G(0)(x))+
deg(H(0)(x)), there exist unique polynomials A(x), B(x) such that

A(x) · G(0)(x) + B(x) · H (0)(x) = R(x)

4

and
deg(A(x)) < deg(H(0)(x)), deg(B(x)) < deg(G(0)(x)).

Suppose

G(0)(x) = gsx
s + gs−1x

s−1 + . . . + g1x + g0, gs 6= 0

H(0)(x) = htx
t + ht−1x

t−1 + . . . + h1x + h0, ht 6= 0

We are going to solve the linear equations:

M x = r, (3)

where r is the coefficient vector of polynomial R(x), M is Sylvester matrix
of polynomial G(0)(x) and H (0)(x), i.e.,

gs gs−1 0
. . .

. . .
...

gs gs−1 . . . g0

ht ht−1 0
. . .

. . .
...

ht ht−1 . . . h0

T

(4)

Several ways can be applied to solve the linear equations(3). LU decomposi-
tion which is the fastest but may be unstable in some cases, especially when
M is close to singular; SVD method can detect nearly rank-deficiency in the
presence of roundoff error and give satisfactory results while LU decomposi-
tion fails, but it is notoriously computational intensive; QR decomposition
with Householder transformations or Given rotations are very stable although
it is about double cost than LU decomposition. We prefer QR decomposi-
tion as it is easy to exploit the structure of the Sylvester matrix M for the
purpose of finding a computationally efficient and stable algorithm.

In general case, we can use Maple command or invoke Matlab’s build-
in command qr() to calculate the decomposition. But in case of Sylvester
matrix, we find it would be more efficient if we apply a C routine[11] which is a
Sylvester matrix QR solver. The reason is simple: the specificity of Sylvester
matrix determines a high-speed algorithm to update its computation.

Notice that Sylvester matrix is composed of two submatrice G and H,
and each submatrix is a special one being called Toeplitz whose entries are
constant along each diagonal[8]. So, each time when we zero an element
selectively applying Given rotations algorithm, we can change other following
rows directly without necessary of calculating it again. The step can be going

5

on and on and finally we apply Householder reflection to zero remaining part
as a submatrix.

For example, suppose we have a Sylvester matrix that s = t = 3, the
matrix can be written as:

g3 g2 g1 g0 0 0
0 g3 g2 g1 g0 0
0 0 g3 g2 g1 g0

h3 h2 h1 h0 0 0
0 h3 h2 h1 h0 0
0 0 h3 h2 h1 h0

1. Apply Given rotation[8] to row 1 and 4 to zero H3, rewrite other corre-
sponding rows(row 2,3 from row 1, and row 5,6 from row 4) accordingly.

g
(1)
3 g

(1)
2 g

(1)
1 g

(1)
0 0 0

0 g
(1)
3 g

(1)
2 g

(1)
1 g

(1)
0 0

0 0 g
(1)
3 g

(1)
2 g

(1)
1 g

(1)
0

0 h
(1)
2 h

(1)
1 h

(1)
0 0 0

0 0 h
(1)
2 h

(1)
1 h

(1)
0 0

0 0 0 h
(1)
2 h

(1)
1 h

(1)
0

2. Apply Given rotation to row 2 and 4, to zero element H
(1)
2 , and rewrite

row 3 and 5 accordingly. And so on, one more step, we get:

g
(1)
3 g

(1)
2 g

(1)
1 g

(1)
0 0 0

0 g
(2)
3 g

(2)
2 g

(2)
1 g

(2)
0 0

0 0 g
(3)
3 g

(3)
2 g

(3)
1 g

(3)
0

0 0 0 h
(3)
0 v(2) v(3)

0 0 0 h
(2)
1 h

(2)
0 v(1)

0 0 0 h
(1)
2 h

(1)
1 h

(1)
0

3. Apply Householder reflection[8] to the low 3×3 submatrix and estimate
the condition of the upper triangular factor R.

g
(1)
3 g

(1)
2 g

(1)
1 g

(1)
0 0 0

0 g
(2)
3 g

(2)
2 g

(2)
1 g

(2)
0 0

0 0 g
(3)
3 g

(3)
2 g

(3)
1 g

(3)
0

0 0 0 v1 v2 v3

0 0 0 0 v4 v5

0 0 0 0 0 v6

6

The efficiency of combining Given rotations with Householder transforma-
tions is clear. For example, in case of s = t = n, the flops used in general
LU, QR and SVD decomposition are 2

3
(2n)3, 4

3
(n3) + 6n2, and 12(2n)3.

Our C routine, qr sylvester.c runs well in the computation. Although
one can use Matlab or Maple build-in function to get the result, but our
experience have verified the optimization of using plug-in C function as a
Sylvester matrix QR solver.

Running time (seconds) for Sylvester Matrix QR(on DEC Alpha)

gs Ht Maple QR (s) Matlab QR (s) C routine (s)
s = 72 t = 58 7.32 0.0888 0.0234
s = 58 t = 35 3.00 0.0156 0.0049
s = 36 t = 34 1.29 0.0058 0.0020
s = 36 t = 18 0.57 0.0039 0.00096

If G(0)(x) and H (0)(x) has an approximate GCD, then M will be near rank
deficient. So it is necessary to estimate the condition number of the matrix
M before we star the Hensel lifting. If M is near singular, we have to choose
other evaluation points or try the squarefree decomposition of polynomials
F or G.

For Hensel construction, it is also very important to decide when to stop
the lifting. Obviously, the procedure will stop as soon as ‖∆P (k)‖ = O(ε).
However, it is also possible that ∆P (k) still has some coefficients whose abso-
lute values are not O(ε) when k is larger than the total degree of the variables
u in P . For example, the given polynomial:

P = (x + 2 + y)(s + 1.51 + 4y − 2y2 + y3) + η(x + y)

when η = 0:

P ≡ (x + 2)(x + 1.51) mod y

P ≡ (x + 2 + y)(x + 1.51 + 4y) mod y2

P ≡ (x + 2 + y)(x + 1.51 + 4y − 2y2) mod y3

P ≡ (x + 2 + y)(x + 1.51 + 4y − 2y2 + y3) mod y4

P ≡ (x + 2 + y)(x + 1.51 + 4y − 2y2 + y3) mod y5

The significant character make it easy to determine when to stop the lifting
because the coefficients will not change anymore after certain lifting steps.

7

However, in approximate case, we are not so lucky:
when η = 1

104 (rounding to 4 digits):

P ≡ (x + 2.)(x + 1.51) mod y

P ≡ (x + 2. + 1.002y)(x + 1.51 + 3.998y) mod y2

P ≡ (x + 2. + 1.002y + 0.01357y2)

(x + 1.51 + 3.998y − 2.014y2) mod y3

P ≡ (x + 2. + 1.002y + 0.01357y2 + 0.07349y3)

(x + 1.51 + 3.998y − 2.014y2 + 0.9265y3) mod y4

P ≡ (x + 2. + 1.002y + 0.01357y2 + 0.07349y3 + 0.3979y4)

(x + 1.51 + 3.998y − 2.014y2 + 0.9265y3 − 0.3979y4) mod y5

In this case, we have to decide if it is caused by error accumulation or P
has no approximate factors indeed. If many coefficients of ∆P (k) are rela-
tively much larger than ε, it is believed that F and G have no approximate
GCD and no correction is necessary. Otherwise, we can use the optimization
method to improve the initial approximate univariate GCD and it cofac-
tor G(0) and H (0), or increase the number of digits carried in floating-point
computations. But it is possible that the above two techniques are very in-
efficient. A correction method on this issue was discussed by Lihong Zhi and
her colleagues[4].

When ∆P (0) is reasonable small, we round off G(k−1) and H (k−1) to G
and H respectively. G and H are supposed to be candidate factors of P .
Refer to the same example of above, when η = 1

104 , we suppose

G = x + 2. + 1.002y,

H = x + a1 + a2y + a3y
3 + a4y

3.

Thinking about the sequence [x, xy, xy2, xy3, 1, y, y2, y3, y4], we get the linear
equations:

1. 0 0 0
0 1. 0 0
0 0 1. 0
0 0 0 1.
2. 0 0 0

1.002 2. 0 0
0 1.002 2. 0
0 0 1.002 2.
0 0 0 1.002

a1

a2

a3

a4

 =

1.510
3.998
−2.
1.

3.02
9.510

0
0
1.

8

so we get:

H ≈ x + 1.510 + 3.998y − 2y2 + 1.0y3

The backward error ‖P − G · H‖ = 0.006659.
For given ε = 10−3,

‖P − G · H‖

10−3
= 6.659.

Clearly it is not very large, thus we come to the conclusion that G and H
are possibly valid factors of P with the necessary of correction.

Now we are facing the challenge of linearized minimization problem:

min
∆G,∆H

‖P − GH − G∆H − ∆GH‖. (5)

Notice that it is not necessary to actually solve the minimization problem.
We are only interested in finding ∆H, ∆G which modify H and G to achieve
a sufficient small backward error. Here

∆G = −0.0003385 − 0.002454y;

∆H = 0.00004460 + 0.002861y + 0.001910y2 − 0.001761y3.

So we can see that:

‖P − (G + ∆G) · (H + ∆H)‖

10−3
= 0.22

it is quite satisfying.
On the other hand, notice that the minimization problem is essentially

linear programming solving

min ‖AT x − b‖
∞

min{y : AT − ye ≤ b, AT x + ye ≥ b, y ∈ R}

Even though we can apply complex search method or primal-dual interior-
point method to solve it, but it is necessary to point out that the matrix A
is usually very big. For example, Let x = (x1, x2, x3), deg(P) = 6, deg(G) =
2, deg(H) = 4, then A is an 84×45 matrix. In this case, numeric computation
package such as Matlab is necessary for a more efficient calculation.

9

4 Comprehensive Environment Construction

The fact that we could not find one stand-alone mathematical package which
simultaneously provided high performance for both symbolic processing and
numerical computation impels us continuously to think about a useful com-
prehensive environment on this domain. Fortunately we already have rela-
tively sophisticated packages are provided separately which are standing on
their own field, such as Maple to perform symbolic computations and Mat-
lab to perform linear programming solving. We also have C for programming
applications such as Sylvester matrix QR solver. That’s why we are focusing
on the combination of these three part to work together. Another reason
we selected this particular combination is that Maple and Matlab already
provide an easy-to-use interface between the two system.

4.1 Two methods

The simplest way to enable both Maple and Matlab to be available in solving
one problem is to transfer the data from one format to the other. Each
system has its own inter form for data representation which is not usable
directly to the other. However, both of them have provided an input-output
interface for data transfer. Due to this, we wrote a routine in C to perform
this manipulation. But the off-line mode solution is of inconvenient and not
satisfactory–people should do some job within one system such as Maple, save
the data, run the C routine to perform the transfer, and then call the other
software such as Matlab as a UNIX external program, read in the transfered
data to continue the mission, and vice versa. Clearly, the more direct and
more efficient implementation is needed.

From Maple V Release 5 on, an easy-to-use interface between Maple
and Matlab has been provided. Matlab currently includes a Maple kernel
to do symbolic processing, and also provides a top-level Matlab command
(maple()) to execute Maple function calls. On the other hand, Matlab li-
brary can also be invoked successfully within Maple system by entering the
command with(Matlab), which let users access all Matlab package func-
tion freely, and can also invoke an individual function using the long form
Matlab[function].

4.2 C Routines Integration

Our implementation has been done via creating MEX-fines that are dynami-
cally linked subroutines that the Matlab interpreter can automatically behave

10

just like Matlab’s own built-in functions, thus one can call MEX-files exactly
as calling its built-in function.

The source code for a MEX-file consists of two distinct parts:

1. A C computational routine that contains the code for performing the
computations that one wants implemented in the MEX-file.

2. A gateway routine that interfaces the computational routine with Mat-
lab by the entry point mexFunction and its parameters prhs, nrhs,

plhs, nlhs, where prhs is an array of right-hand input arguments,
nrhs is the number of right-hand input arguments, plhs is an array of
left-hand output arguments, and nlhs is the number of left-hand output
arguments, The gateway calls the computational routine as subroutine.

It is necessary to point out that Matlab works with only a single object
type: the Matlab array. In C programming, it is defined as a structure
named mxArray. All Matlab variables, including scalars, vectors, matrices,
strings and cell arrays are stored as mxArray type format. parameters prhs[]
and plhs[] in gateway routine mexFunction are pointers to mxArray, so
variables can be passed between Matlab and C computational routines by
calling library functions such as mxGetPr(prhs[]).

In our computation, the C routine named qr sylvester.c which con-
tains both computational routine(QR decomposition for Sylvester matrix)
qr sylvester() and gateway routine mexFunction(). It requires 2 param-
eters as input(nrhs=2), and 2 parameters as its computing output(nlhs=2).
After compiling, the routine can be executed directly within Matlab just like
its build-in function with the command form as:
[q,r]=qr sylvester(v1,v2)

In the command, parameters v1,v2 are declared Matlab vectors, corre-
sponding to the coefficients of two given polynomials and q,r are its output
in Matlab data format showing the result of QR decomposition.

4.3 Maple/Matlab/C combination

Now it is clear that our comprehensive system for approximate GCD com-
putation of multivariate polynomials can be described as:

• Use Maple to perform symbolic computation;

• Invoke Matlab function from within Maple system to perform number
computation such as linear programming solving, by using with(Matlab)

and other corresponding command;

11

• Merge C programming application routines qr sylvester.c acting as
the Sylvester matrix QR solver into Matlab acting as its plug-in func-
tion, so as to be available from Maple.

5 Conclusion

In this paper, we briefly discuss using Hensel lifting algorithm to solve ap-
proximate GCD of multivariate polynomials. A comprehensive environment
has been implemented by Maple/Matlab/C combination for a more efficient
computation. As both Maple and Matlab are very popular system to be
used in its corresponding field, the method to combine them with C routines
shows a powerful approach for complicated problem solving.

PSE(Problem Solving Environments)[1] is now a well established method-
ology for computational science, and therefore we have reason to predicate a
more powerful and standardized PSE-building architecture should be avail-
able for robust, flexible, effective PSEs construction.

References

[1] Elias N. Houstis and John R. Rice.(2000).On the Future of Problem
Solving Environments. http://www.cs.purdue.edu/people/jrr.

[2] Corless, R. M., Gianni, P. M., Trager, G. M. and Watt, S. M.: The
singular value decomposition for polynomial systems, Proc. ISSAC ’95,
ACM Press, New York, 1995, 195-207.

[3] Geddes, K.O., Czapor, S.R. and Labahn, G.: Algorithms for Computer
Algebra, Boston, Kluwer, 1992.

[4] Huang, Y., Stetter, H. J., Wu, W. and Zhi, L. H.: Pseudofactors of
multivariate polynomials, submitted to ISSAC’00.

[5] Liao, H. C. and Fateman, R. J.: Evaluation of the heuristic polynomial
GCD, Proc. ISSAC ’95, ACM Press, New York, 1995,240-247.

[6] Noda, M.-T. and Sasaki, T.: Approximate GCD and its application to
illconditioned algebraic equations, J. Comput. Appl. Math., 38(1991),
335-351.

[7] Chin, P.,Corless, R. M. and Corliss, G. F.: Optimization strategies for
approximate GCD problem, Proc. ISSAC ’98,ACM Press, New York,
1998, 228-235.

12

[8] Gene H. Golub, Charles F. Van Loan: Matrix Computations, Second
Edition. The John Hopkins University Press, 1989.

[9] K. M. Heal, M. L. Hansen, K. M. Rockard.: Maple V Programming
Guide. Waterloo Maple Inc.

[10] Matlab Application Program Interface Guide, The MathWorks, Inc.

[11] Press, W., Flannery, B., Teukolsky, S. and Vetterling, W.: Numerical
Recipes: The Art of Scientific Computation, Cambridge U. Press, Cam-
bridge, 1990.

[12] Noro, M. A Computer Algebra System Risa/Asir, 2000.
ftp://archives.cs.ehime-u.ac.jp/put/asir2000/

13

