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Abstract

This paper presents an optimized method for factoring multivariate poly-

nomials over algebraic extensions fields which defined by an irreducible ascend-

ing set. The basic idea is to convert multivariate polynomials to univariate

polynomials and algebraic extensions fields to algebraic number fields by suit-

able integer substitutions, then factorize the univariate polynomials over the

algebraic number fields. Finally, construct multivariate factors of the original

polynomial by Hensel lemma and TRUEFACTOR test. Some examples with

timing are include.

Keywords : Hensel lemma, integer substitution, ascending set, algebraic exten-

sions fields.

I. Introduction

Factoring polynomials over algebraic extensions fields can be traced back to

Kronecker[1]. A similar algorithm can also be found in van der Waerden [2] which

was adopted and improved by Trager[3]. Along with the development of factoring

polynomials over finite fields or integers, Hensel lemma becomes more and more

important and it also provides an efficient method for factoring polynomials over

algebraic extensions fields. Wang[4], Weinberger, Rothschild[5], Lenstra [6][7] all

gave the methods based on Hensel lemma. As we known Wu’s characteristic set

method is also useful in factoring polynomial over arbitrary fields [8] [9] [10].

The original motivation of considering polynomial factorization over algebraic

extensions fields comes from the need of it in decomposing polynomial sets into ir-

reducible ascending sets. It is necessary for Wu’s method of geometry proving and
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irreducible decomposition of algebraic varieties. Although some algebra systems

such as Maple, Mathematics have implemented the algorithm for factoring polyno-

mials over algebraic extensions fields, yet it is still need to be studied further. The

reasons will be given in section 4. This paper aims to consider ways of overcoming

the disadvantages of the existed methods and develop more efficient algorithm.

We will introduce some notations in section 2. The algorithm and one example

are presented in section 3. At last, we give some remarks and also the timing

statistics on 29 examples.

II. Preliminaries and Notations

Let Q denote the field of rational numbers, Z denote the ring of integers and

u1, · · · , ud be a set of transcendental elements abbreviated as u. The transcendental

extension field obtained from Q by adjoining the u′

is will be denoted by K0, K0 =

Q(u1, · · · , ud).

Definition 2.1 A non-empty finite polynomial set AS is called an ascending set if

it can be arranged in the form:

A1(u, y1), A2(u, y1, y2), · · · , Ar(u, y1, · · · , yr)

with Ai ∈ Q[u, y1, · · · , yi], degyi
(Ai) > 0 for each i, and degyj

(Ai) < degyj
(Aj) for

each pair j < i. Here, degyj
(Ai) denotes the highest degree of yj appears in the

polynomial Ai. AS is said to be contradictory if r = 1, A1 6= 0 with degy1
(A1) = 0.

Definition 2.2 The ascending set AS is said to be irreducible if Ai as a polynomial in

Ki−1[yi] is irreducible, where Ki−1 = Ki−2(ηi−1) with Ai−1 as the minimal polynomial

of ηi−1 for each i ≥ 2 and K0 = Q(u). The field Kr is called algebraic extension field

of K0 defined by AS.

Definition 2.3 Suppose the algebraic extension field Kr is defined as above, K0 =

Q(u1, · · · , ud). If d = 0, i.e., K0 = Q, then Kr is called algebraic number field,

otherwise it is called algebraic function field.

Let us denote Q(u) − basis = {ηe1

1 · · ·ηer
r : 0 ≤ ei < di, 1 ≤ i ≤ r], where di is

the degree of the minimal polynomial Ai of ηi in yi. Using some operations in [11],

we conclude that it is a Q(u)-vector space basis for Kr.

Definition 2.4 The defect of the Q(u)−basis for Kr is the lowest common multiple

of the denominators appearing in the representation of these algebraic functions

whose monic minimal polynomials lie in Z[u].

The following propositions and theorems can be generalized from [12][13].
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Proposition 2.5 The discriminant of the Q(u) − basis for Kr which is defined by

an irreducible ascending set AS is:

N2N3 · · · (discr(A1)) N1N3 · · · (discr(A2)) · · · ,

where Ni is the norm map which is the product of the images under the different

embeddings from Ki to Ki−1 and discr(Ai) = resyi
(Ai, A

′

i) which is the resultant of

Ai and A′

i w.r.t.(with respect to) yi, A′

i is the differential of Ai.

Proposition 2.6 The square of the defect of the Q(u) − basis divides its discrimi-

nant.

Lemma 2.7 If F1 is a monic associate of F ∈ K then F1 ∈ (1/f)Z[u, η1, · · · , ηr][x],

where f = resη1
(A1, · · · , (resηr

(Ar, lc(F ))).

Theorem 2.8 Let F ∈ Z[u, η1, · · · , ηr][x]. If G is a monic divisor of F over Kr then

G ∈ 1/(fd)Z[u, η1, · · · , ηr][x], where f , d are defined as above.

Extended Hensel Lemma: Let φ be the ideal (x2 − a2, x3 − a3, · · · , xn − an) and

F be a given polynomial in Z[x, x2, · · · , xn], 2 ≤ n, G1(x), H1(x) be two relatively

prime univariate polynomials in Z[x] such that

F (x, x2, · · · , xn) ≡ G1(x)H1(x) mod φ,

then for any integer k > 1 there exist multivariate polynomials Gk(x, x2, · · · , xn)

and Hk(x, x2, · · · , xn) such that

F (x, x2, · · · , xn) ≡ GkHk mod φk

and Gk ≡ G1 mod φ, Hk ≡ H1 mod φ.

III An outline of the factorization algorithm

Now we consider the factorization of multivariate polynomial

F (u, η1, ..., ηr, x, x2, ..., xt) over algebraic function field Kr which is defined by an

irreducible ascending set AS. The standard modular approach to factoring multi-

variate polynomials over algebraic function fields is divided into five steps:

Step 1 Ensure that the polynomial be square-free.

Step 2 Find lucky integer substitutions to reduce the multivariate polynomial to the

univariate polynomial and the algebraic function field to the algebraic number

field.

Step 3 Factor the univariate polynomial over the algebraic number field.

Step 4 Lift the univariate factors as well as the ascending set by Hensel lemma.

Step 5 Check true factors.
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Step 1 and 4 are handled by the results in [14]. We will explain what conditions

the integer substitution should satisfied in the first part of this section. We describe

how to find true factors in the second part of this section. At last, a complete

algorithm for factoring multivariate polynomials over algebraic function fields is

given.

3.1 Substitution Values

The polynomial F (x1, x2, · · · , xn) is square-free and primitive w.r.t. each variable

in field Q(u1, · · · , ut, η1, · · ·ηr). Choose a main variable xi in such a way that makes

the leading coefficient of F w.r.t. xi lie in the field Kr or the degree w.r.t. xi

be low. Without loss of generality, we may assume x1 to be the main variable

and denote it as x. F = am(x2, · · · , xn)xm + · · · + a0(x2, · · · , xn), if am 6= 1, let

F = am
m−1F (x/am, x2, · · · , xn). In the following text, we always suppose that F is

monic. We also presume that every polynomial in AS is monic.

Definition 3.1 The evaluation value {b1, · · · , bt, a2, · · · , an} is lucky if it satisfies the

following conditions:

1. F1 = F (b1, · · · , bt, x, a2, · · · , an) is still square-free and degxF1 = degxF .

2. AS0 = [A1(b1, · · · , bt, y1), · · · , Ar(b1, · · · , bt, y1, · · · , yr)] remains to be an irre-

ducible ascending set and degyi
A∗

i = degyi
Ai, where A∗

i = Ai(b1, · · · , bt, y1, · · · , yi).

We can see that almost all the evaluation values satisfy the first condition. For

the second condition, we avoid the case that the irreducible ascending set becomes

reducible because it may lead to extraneous factors and dense intermediate results

when perform Hensel lifting.

It is fortunate that we have a lot of freedom to choose b′is which meet the con-

dition. Here we give a description of Hilbert Irreducible Theorem.

Theorem 3.2 Let P be irreducible polynomial in Z[y1, · · · , yv, x1, · · · , xt], by U(N)

we denote the number of V-tuples (b1, · · · , bv) ∈ Zv such that |bi| ≤ N for 1 ≤ i ≤ v

and P (b1, · · · , bv, x1, · · · , xt) is reducible in Z[x1, · · · , xt], then there exist constants

a and c (depending on P ) such that U(N) ≤ c(2N + 1)v−a and 0 < a < 1.

By this theorem and primitive element theory, we can assure that there exist in-

finitely many specializations of the u′

is which keep the irreducibility of the ascending

set. It is hard to check the irreducibility of AS0, so we need to pay more attention

to this problem in the future.

The other problems even after we use lucky integer substitutions are the appear-

ing of extraneous factors and large dense multivariate polynomials. For example :

F = x2 −u is irreducible over extension field Q(a2 − 2), but if we pick the value of u
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as 2 then F ≡ x2 − 2 ≡ (x− a)(x+ a) mod (u− 2) over Q(a2 − 2). The extraneous

factors will cause more complicate lifting process and combinatorial search. One

method to avoid the extraneous factors is to choose two or more sets of integers as

the substitution values, select the sets of integers which make the minimal number

of factors. It is time-consuming to try different integer substitutions, in general, two

or three different integer substitutions are enough to avoid the extraneous factors.

In our algorithm, we choose two different substitutions. In order to avoid the expan-

sion of the polynomial after the integer substitutions, we select integers with small

in absolute value. Best values are 0,1,-1,etc.

3.2. Early Factor Detection

It is true that the degree of xi of any factor is less than the degree of xi in F

for any i, but it is not true for the degree of ui. Degree of ui in any factors may be

larger than the degree of the ui in the coefficients of the input polynomial or in the

coefficients of the minimal polynomials. For example: F = x2−u = (x+u2y)(x−u2y)

over the extension field defined by AS = [u3y2 − 1]. In [13] Abbott gave a possible

upper bound for the degree of ui, but it is unfortunate that the bound is often too

large and Abbott’s proof which based on Trager’s algorithm is not complete yet.

We also need to worry about the case that u′

is appear in the denominators of

the coefficients of factors. For example:

F = x6 − a = (x2y − a)(x2a + x4y + y2)/y2.

over the extension field defined by AS = [a2 − y3].

Because of these two cases, it is necessary to distinguish x′

is from u′

is. If the

field has no transcendentals, i.e, the field is a algebraic number field, algorithm

PFACTORAS will end when the lifting degree δ is bigger than the total degree of xi

in F for i > 1, combining factors to find true factors. Otherwise use early detection

technique.

In the following algorithm PFACTORAS, after we get

F ≡ G1
(δ)(u1, · · · , ut, η1, · · · , ηr, x1, · · · , xn) · · ·

Gm
(δ)(u1, · · · , ut, η1, · · · , ηr, x1, · · · , xn) mod (φδ+1, AS),

when δ > degu(F ) +
∑r

i=1 degu(Ai) +
∑n

i=2 degxi
F , we begin TRUEFACTOR test.

Let F ∗

i ≡ DFi mod (φδ+1, AS), Gi = F ∗

i /D over Q(u1, · · · , ut, η1, · · · , ηr), where

Fi is either some Gi
(δ) or the product of two or more Gi

(δ) mod (φδ+1, AS) and D

is the largest factor whose square can divide the discriminant of Kr. True factors of

F over Kr can be obtained from those G′

is.

Algorithm PFACTORAS
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Input: A square-free polynomial

F ∈ Q(u1, · · · , ut, η1, · · · , ηr)[x1, · · · , xn],

an irreducible ascending set

AS = [A1(u1, · · · , ut, y1), · · · , Ar(u1, · · · , ut, y1, · · · , yr)].

Output: A list of irreducible factors over Q(u1, · · · , ut, η1, · · · , ηr).

Step 1 Choose a set of lucky evaluation value b1, · · · , bt, a2, · · · , an such that

F0 = F (b1, · · · , bt, η1, · · · , ηr, x1, a2, · · · , an),

AS(0) = [A1(b1, · · · , bt, y1), · · · , Ar(b1, · · · , bt, y1, · · · , yr)].

Step 2

PUFACTORAS(F0) ≡ G1
(0)(η1, · · · , ηr, x1) · · ·

Gm
(0)(η1, · · · , ηr, x1) mod (φ, AS),

where φ = (u1 − b1, · · · , ut − bt, x2 − a2, · · · , xn − at);

Step 3 Hensel lift for factors Gi
(0) and AS(0) such that

F ≡ G1
(δ)(u, η1, · · · , ηr, x1, · · · , xn) · · ·

Gm
(δ)(u, η1, · · · , ηr, x1, · · · , xn) mod (φδ+1, AS).

AS ≡ AS(δ) mod (φδ+1)

Step 4 By TRUEFACTOR test, we obtain

F = G1(u, η1, · · · , ηr, x1, · · · , xn) · · ·Gs(u, η1, · · · , ηr, x1, · · · , xn) over K

Algorithm PUFACTORAS

Input: A square-free polynomial F ∈ Q(η1, · · · , ηr)[x],

an irreducible ascending set AS = [A1(y1), · · · , Ar(y1, · · · , yr)].

Output: a list of irreducible factors over Q(η1, · · · , ηr).

Step 1 Choose a set of integers ci, computing

CS = CHARSET ({AS ∪ {w − c1y1 − · · · − cryr}}),

according to the order:w ≺ y1 ≺ · · · ≺ yr.

Step 2 If CS is not quasi-linear then go to Step 1 and try other ci.

Step 3 CS = {C0(w), y1 − C1(w), · · · , yr − Cr(w)}.

Step 4 F ∗ = F (C1(w), · · · , Cr(w), x).

UFACTOR(F ∗) = F1(w, x) · · ·Fs(w, x) over Q(C0(w)).
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Step 5 Substitute w =
∑r

i=1 ciyi for w in Fi.

Step 6 Return F = F1(y1, · · · , yr, x) · · ·Fs(y1, · · · , yr, x).

Algorithm UFACTOR

Input: F (x, α) a square-free polynomial over Q(α),

m(x) the monic minimal polynomial of α.

Output: A list of irreducible factors over Q(α).

Step 1 Choose a positive integer s:

G(x, α) = F (x − sα, α),

R(x) = resy(G(x, y), m(y)).

Step 2 If R(x) is not square-free then factor

R(x)/(GCD(R(x), R′(x))) = F1(x) · · ·Fs(x).

If s = 1 go to Step1;

For each factor Fi, compute

Gi = GCD(F (x + sα, Fi(x + sα)),

F ∗ = F (x + sα)/(G1 · · ·Gs).

Return F = UFACTOR(F ∗)
∏s

i=1 UFACTOR(Gi).

Step 3 Factor R(x) = H1(x) · · ·Ht(x) over Q.

Step 4 If t = 1 then return(F ).

Step 5 For each Hi do

Hi(x, α) = GCD(Hi(x, α), G(x, α)) over Q(α),

G(x, α) = G(x, α)/Hi(x, α) over Q(α),

Hi(x, α) = Hi(x + sα, α).

Step 6 Return F (x, α) = H1(x, α) · · ·Ht(x, α).

Example 1. To factor

F = x4 − ax2r − yabr + ar2x2 − ar2yb − y2ab + y2r − r4 over Q(r, a, b)

where a, b are defined by AS = [a2 − r, b2 − ab + r].

Step 1 Picking the substitution value 2 for r and 1 for y, F is mapped to F0 =

x4 + 2ax2 − 7ab − 14, AS is mapped to AS(0) = [a2 − 2, b2 − ab + 2] which is

still an irreducible ascending set.

Step 2 Computing a characteristic set of {AS(0) ∪ {w − b}} according to the order

w ≺ a ≺ b, we get {w4 + 2w2 + 4, 2a + w3, b − w}.

Substituting {a = −w3/2, b = w} in F0,

factoring F0 = (x2 + w − 2w3)(x2 + w3 − w) over Q(w),

we have F0 = (x2 + b + 4a)(x2 − b − 2a) over Q(a, b).
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Step 3 Hensel lift AS(0) and the two factors of f :

F ≡ (x2 + yb + 4ar − 4a)(x2 − yb − ar) mod ((r − 2, y − 1)2, AS);

AS ≡ [a2 − r, b2 − ab + r] mod (r − 2, y − 1)2;

F ≡ (x2 + yb + ar2)(x2 − yb − ar) mod ((r − 2, y − 1)3, AS);

AS ≡ [a2 − r, b2 − ab + r] mod (r − 2, y − 1)3.

Step 4 We can check that

F = (x2 + yb + ar2)(x2 − yb − ar) over Q(r, a, b).

IV. Experiments
We have implemented the algorithms in MAPLE 5.2. Below we give the timing

statistics on a set of 29 examples. The experiments were all made in MAPLE

5.2 on SPARC 2. The timings are given in CPU seconds. The meaning of the

headings of the table is explained as follows: Ex–the example number; Cfactor–

time for D.M.Wang’s algorithm which included in his CharSet package; Factor1–

time for the MAPLE 5.2 built-in factorization function using the method of Trager;

Factor2–time for the MAPLE 5.2 built-in factorization function using the method

of Lenstra; Zfactor–time for our implementation for factorization. We use the long

dash — to indicate that there are no result after 5 hours.
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Timing Statistics in MAPLE 5.2

Ex Cfactor Factor1 Factor2 Zfactor

1 0.25 1.63 2.45 0.48

2 1.45 1.18 1.70 1.13

3 1.23 3.20 4.53 1.90

4 0.18 1.38 2.18 1.43

5 1.18 1.08 1.53 0.91

6 0.90 2.51 3.28 1.93

7 1.33 2.21 4.15 2.25

8 4.25 4.78 5.51 3.30

9 2.00 9.00 8.38 6.65

10 — 1277 897 25.00

11 — — — 59.00

12 0.61 2.18 0.21 0.46

13 3.95 6.45 22.83 4.86

14 5.26 4.20 3.23 3.96

15 2.73 3.68 2.76 1.91

16 1.78 2.00 4.33 1.15

17 16.3 3.76 4.51 15.81

18 403.6 3444 422.58 65.53

19 0.76 1.66 1.16 1.55

20 6.70 6.68 11.56 6.25

21 1.85 2.66 3.28 0.81

22 11.46 10.96 6.01 2.91

23 290.70 — — 23.15

24 2.51 6.83 10.95 3.95

25 11.91 9.63 14.60 11.78

26 — 4.61 10.08 1.50

27 2091 16.38 17.05 14.00

28 — 67.60 61.33 58.51

29 — — — 10088

V. Conclusions The experiments show that our algorithm is efficient for fac-

toring polynomials over algebraic extension fields defined by an irreducible ascending

set, especially for the cases involving the transcendental elements. We can also see

that Maple’s built-in factorization function is not sufficient for using. Factor1 and

Factor2 have difficult in factoring the example 11 and 23, 29. For example 10 they

also take longer time. Cfactor has made great improvement but it may also be

inefficient for factoring polynomial involving transcendental elements, see examples
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10, 11, 28 and 29.
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1. F = x4 − 1; AS1 = [a2 + 1]; a ≺ x;

2. F = x4 + ax3 + 2x3 + 2ax2 + 5x2 + 2ax + 6x + 6; AS1 = [a2 + 1]; a ≺ x ;

3. F = 2ax4 + 3x4 + 3ax3 − 2x3 − 2ax2 − 2x2 + ax − 1; AS1 = [a2 + 1]; a ≺ x;

4. F = y2 + x2; AS1 = [a2 + 1]; a ≺ x ≺ y ;

5. F = x2 + x − 1; AS1 = [a2 − 5]; a ≺ x;

6. F = x4 + 3x2 + 4; AS1 = [a2 + a + 2]; a ≺ x;

7. F = 64x6 − 4; AS1 = [a3 + 2];a ≺ x;

8. F = 16x4 + 8x3 + 4x2 + 2x + 1; AS1 = [a4 + a3 + a2 + a + 1]; a ≺ x ;

9. F = x4 + y4; AS1 = [a4 + 1]; a ≺ x ≺ y ;

10. F = x8 +2x7 +(−y− z2 − 8)x6 +(−4y +6z2 − 40)x5 +(y2 +(2z2 − 48)y + z4 +

32z2 + 256)x4 + (−4y2 + (2z2 + 32)y − 4z4 + 32z2 + 960)x3 + (−y3 + (−3z2 +

28)y2+(2z4−4z2 +384)y−z6−32z4 +144z2−1152)x2 +(2y3+(−4z2 +72)y2+

(6z4 + 24z2 − 576)y + 2z6 − 48z4 − 576z2 + 3456)x + y4 + (−z2 − 12)y3 + (z4 +

24z2+144)y2+(−z6+24z4−432z2−1728)y+z8−12z6+144z4−1728z2+20736;

AS1 = [a4 + a3 + a2 + a + 1]; a ≺ y ≺ x ≺ z;

11. F = x5−5vyx3−5uzx3+5uy2x2+5z2yx2+5v2zx2+5vu2x2−5zy3x+5v2y2x−

5vuzyx − 5u3yx − 5vz3x + 5u2z2x − 5v3ux + y5 − 5vuy3 + 5vz2y2 + 5u2zy2 −

5uz3y−5v3zy+5v2u2y+z5+5v2uz2−5vu3z+u5+v5; AS1 = [a4+a3+a2+a+1].

u ≺ v ≺ x ≺ y.

12. F = x2 + ax + 1 ; AS1 = [a2 + 1]; a ≺ x;

13. F = x3 − 3; AS1 = [a6 + 3a5 + 6a4 + a3 − 3a2 + 12a + 16]; a ≺ x;

14. F = x14 − 2x8 − 2x7 − 2x4 − 4x3 − x2 + 2x + 1; AS1 = [a2 − 2a − 1]; a ≺ x;

15. F = (47x6+21x5+598x4+1561x3+1198x2+261x+47)/47; AS1 = [a2−a+3];

a ≺ x;

16. F = (16x6 − 1)/16; AS1 = [a3 + 2]; a ≺ x;
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17. F = x8 − x7 − x6 + x4 − x2 + x + 1; AS1 = [a4 − a + 1]; a ≺ x;

18. F = x9 + 9x8 + 36x7 + 69x6 + 36x5 − 99x4 − 303x3 − 450x2 − 342x − 226;

AS1 = [a9 − 15a6 − 87a3 − 125]; a ≺ x;

19. F = x2 + x + 1; AS1 = [a2 + 3]; a ≺ x;

20. F = 745092b− 252156 + 540900c + 21032664c2b2 + 2010720b2 + 7117713c2b −

132367c2 +3076830c3−7843500c3b2 +2792322c3b−3779244bc−10724400b2c+

21225240bc5 +26306208b2c5 +8257464c5−436536c4 +6094008b2c4 +594432bc4;

AS1 = [−1 + b + 6b2 + 12b3]; b ≺ c;

21. F = 225400094268963178481660259729034470151092xy2−

132036318262485267264375273692698717304108xy+

19336271128003678023545143828181482228562x−

159381935137720544849472622882685111499038y2+

93363776006477911217284986036335752846984y−

13672808437617638792548674594993197097465; AS1 = [2x2 − 1]; x ≺ y;

22. F = x6 −3x4 +3x2−xa3 −x5a3 +2x4a3−x2a2 +x3a3 −1−xa2 −x5a+x4a2 −

x5a2 − xa + 2x3a2 − 2x2a3 + 2x3a; AS1 = [a4 − a + 1]; a ≺ x;

23. F = 10x3 +4x2z2 +4x2y3−5xy−2yz2−5zx−2y3z+2y2z2−8y2−4z2 +2−6z;

AS1 = [−1+ z3 − z2 + r2,−y4 − y2z2 + y2r2 + z2 − 2− z + r2z + r2]; z ≺ y ≺ x;

24. F = −370x2y−10x3+60x2z+4xy−24zy+74rzy+2rzx+37rz−37y+12r3−24r;

AS1 = [2 + z2,−2z + y + 4y2]; z ≺ y ≺ x;

25. F = x4 + 2x3 + x2 − 1; AS1 = [a2 + 1, b2 − 3, c2 + 5]; a ≺ b ≺ c ≺ x;

26. F = (2xy + 1)z2 + 1; AS1 = [3x2 + x + 2, xy2 + 2]; x ≺ y ≺ z;

27. F = 10x3 +4x2z2 +4x2y3−5xy−2yz2−5zx−2y3z+2y2z2−8y2−4z2 +2−6z

; AS1 = [8 + z3 − z2,−y4 − y2z2 + y29 + z2 + 8z + 7]; z ≺ y ≺ x;

28. F = 10x3 +4x2z2 +4x2y3−5xy−2yz2−5zx−2y3z+2y2z2−8y2−4z2 +2−6z

; AS1 = [−1 + z3 − z2 + r2,−y4 − y2 ∗ z2 + y2 ∗ r2 + z2 − 2 − z + r2 ∗ z + r2];

r ≺ z ≺ y ≺ x;

29. F = x11 − (2 + z3)3; AS1 = [(z + a)11 − 2 − z3]; a ≺ z ≺ x.
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