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Abstract. This paper describes an optimized method for factorizing multivariate polynomials over alge-
braic extension fields. The proposed method is applied to solving several selected problems in automated
geometry theorem proving, decomposition and implicitization of geometric objects, and verification of ge-
ometric conditions. Some performance comparisons between this and other related methods are reported.
This work demonstrates the practical value and need of algebraic factorization in geometric problem-solving.

1. Introduction

Factoring multivariate polynomials over algebraic extension fields (or algebraic factorization for short) is
one of the most difficult tasks in computer algebra. Algorithmic investigations on the subject, began in the
middle 1970’s (see [13, 18, 19] for example), have led to the revitalization of classical ideas and development
of new and powerful techniques [1, 7, 8, 9]. Research efforts and technological advances have made factoring
routines available and efficient on desktop. Our study on algebraic factorization started in 1984, motivated
by the need of it in Wu’s method [20, 21] for geometry theorem proving (GTP). Two different methods were
proposed in [6] and [15] respectively and applied to GTP [16] and irreducible decomposition of algebraic varieties
[14]. Investigations along this line have been furthered recently by the second author [23] who has been trying
to work out an optimized algorithm by incorporating and improving different techniques. For some time we
have observed that, in the algebraic treatment of problems with geometric background, it happens often that
some polynomials are reducible over certain algebraic extension fields and their factorization may result in easy
solutions to the problems. This paper evolves from an exploration of this observation. It is twofold: on one
hand, the paper provides a set of selected geometric problems and explains how algebraic factorization can help
solve such problems. On the other hand, the selected problems serve as a reasonable testbed for the efficiency
and applicability of the different algorithms we are working with.

In the following section, we describe a hybrid factoring algorithm which has good overall performance
according to our experiments. We shall indicate the cases in which other algorithms may perform better. In
Sections 3, 4 and 5, different types of problems from geometry — including the non-existence of real MacLane
83 configuration and the verification of Tam conditions for circle space — and their solutions making use of
algebraic factorization will be presented. Some of these problems are computationally hard and unsolvable by
other methods (without factorization). Timing statistics and comparisons among different factoring methods
for some of the occurring polynomials will be given. The results of this paper demonstrate the practical value
of our factoring methods and their implementation.

2. An Optimized Method of Factorization

Let Q denote the field of rational numbers, Z denote the ring of integers and u1, u2, . . . , ud be a set of
transcendental elements, abbreviated as u. The transcendental extension field obtained from Q by adjoining
the ui is denoted by K0, i.e., K0 = Q(u1, . . . , ud). A finite ordered set A of polynomials is called an ascending

set if it can be put in the form

[A1(u, y1), A2(u, y1, y2), . . . , Ar(u, y1, y2, . . . , yr)]

with Ai ∈ Q[u, y1, . . . , yi], deg(Ai, yi) > 0 for each i, and deg(Ai, yj) < deg(Aj , yj) for each pair j < i. Here
deg(Ai, yj) denotes the degree of Ai in yj as usual. A is said to be irreducible if Ai as a polynomial in Ki−1[yi]
is irreducible, where Ki−1 = Ki−2(ηi−1) with Ai−1 as minimal polynomial of ηi−1 for each i ≥ 2. The field
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Kr is called an algebraic extension field of K0 defined by A (or simply by A1 when r = 1). If d = 0 and
thus K0 = Q, then Kr is called an algebraic number field ; otherwise it is called an algebraic function field.
Sometimes, when A is specified as above, we simply write K i−1(yi) for Ki without explicitly introducing the
algebraic element ηi.

Any element in Kr can be represented by a basis

{η1
e1 · · · ηr

er : 0 ≤ ei < mi for all i},

where mi is the degree of the minimal polynomial Ai of ηi in yi. The defect of this basis for Kr is the largest
denominator appearing in the representation of those algebraic functions whose monic minimal polynomials lie
in Z[u]. The discriminant of the basis for Kr is

N2N3 · · · (dis(A1))N1N3 · · · (dis(A2))N1N2 · · · (dis(A3)) · · · ,

where Ni is the norm map, i.e., the product of the images under the different embeddings from K i to Ki−1,
and dis(Ai) denotes the discriminant of Ai (which is defined to be the resultant of Ai and its derivative A′

i with
respect to yi). The following theorem can be easily proved (see [1]).

Theorem 1. The square of the defect of the basis for Kr divides its discriminant.

As we know, integer substitutions and Hensel lifting are efficient techniques for factorizing polynomial over
finite fields, Z or algebraic number fields. In this section, we extend these techniques to factorize multivariate
polynomials over algebraic function fields. We state the extended Hensel lemma below and refer to [22] for
other details.

Extended Hensel Lemma. Let F (x, x2, . . . , xt) be a polynomial in Kr[x, x2, . . . , xt] and a2, . . . , at be a set
of integers satisfying that

deg(F (x, x2, . . . , xt), x) = deg(F (x, a2, . . . , at), x)

and F (x, a2, . . . , at) is squarefree. Let a factorization of F (x, a2, . . . , at) over Kr be

F (x, a2, . . . , at) ≡ G
(0)
1 (x) · · ·G(0)

m (x) mod (U),

where U = (x2 − a2, . . . , xt − at) denotes the ideal generated by x2 − a2, . . . , xt − at. Then for an arbitrary

non-negative integer k, one can construct polynomials G
(k)
1 , . . . , G

(k)
m ∈ Kr[x, x2, . . . , xt] such that

F (x, x2, . . . , xt) ≡ G
(k)
1 (x, x2, . . . , xt) · · ·G

(k)
m (x, x2, . . . , xt) mod (Uk+1),

G
(k)
i (x, x2, . . . , xt) ≡ G

(0)
i (x) mod (U).

By choosing x as the main variable, one can write F in the form

F = Cnxn + · · · + C0

with Ci ∈ Kr[x2, . . . , xt] for i = 0, 1, . . . , n. Cn is the leading coefficient of F in x. With respect to x, the
content of F is the greatest common divisor of C0, . . . , Cn; F is primitive if its content is 1. F is said to be
squarefree if it has no repeated factors. In [23] we have presented a method for the squarefree decomposition of
polynomials over algebraic function fields. In what follows, F is assumed to be squarefree, and primitive with
respect to its main variable.

Now consider the factorization of a multivariate polynomial F over the algebraic function field Kr which
is defined by the irreducible ascending set A. Through some transformations such as normalization and linear
transformation, we can make the leading coefficients of F and the polynomials in A to be in Z.

The basic idea underlying the algorithm to be described is using suitable integer substitutions to first map
F to a univariate polynomial and Kr to an algebraic number field and then map the algebraic number field
to a simple algebraic number field through linear transformation and characteristic sets computation [11, 20].
Part of this is done by devising a method similar to that given in [13]. The factors of the original polynomial
F are finally reconstructed by Hensel lifting and true factor test. Here we should note that the ascending set
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which defines the extension field must be lifted along with the factors. Below we give an outline of the three
main algorithms and present two examples to illustrate their main steps. Note that η stands for η1, . . . , ηr.

Algorithm FactorA.

Input: An irreducible ascending set A = [A1(u, y1), . . . , Ar(u, y1, . . . , yr)] that defines the algebraic function
field Q(u, η) and a squarefree polynomial F (u, η, x1, . . . , xt) ∈ Q(u, η)[x1, . . . , xt].

Output: An irreducible factorization of F over Q(u, η).

Step 1. Choose two sets of lucky integers b = (b1, . . . , bd) and a = (a2, . . . , at), and let

F (0) := F (b, η, x1, a),

A(0) := [A1(b, y1), . . . , Ar(b, y1, . . . , yr)].

Step 2. Use UFactorA to factorize F (0)(η, x1) over Q(η) defined by A(0):

F (0) ≡ G
(0)
1 (η, x1) · · ·G

(0)
m (η, x1) mod (U, A(0)),

where U = (u1 − b1, . . . , ud − bd, x2 − a2, . . . , xt − at).

Step 3. Apply Hensel lifting for the factors G
(0)
i and A

(0) such that

F ≡ G
(δ)
1 (u, η, x1, . . . , xt) · · ·G

(δ)
m (u, η, x1, . . . , xt) mod (U δ+1, A(δ)),

A ≡ A(δ) mod (U δ+1).

Step 4. When δ > deg(F, u) +
∑t

i=2 deg(F, xi) +
∑r

i=1 deg(Ai, u) (where the degree in u is meant the total

degree), use TrueFactor test to obtain

F = G1(u, η, x1, . . . , xt) · · ·Gs(u, η, x1, . . . , xt).

In step 1 of FactorA, the two sets of lucky integers b = (b1, . . . , bd) and a = (a2, . . . , at) are chosen to satisfy
the following two conditions:

1) F (0) = F (b, η, x1, a) remains squarefree and deg(F (0), x1) = deg(F, x1).

2) A(0) = [A1(b, y1), . . . , Ar(b, y1, . . . , yr)] is still an irreducible ascending set.

For the first condition, we only need to choose a and b such that

resx1
(F, F ′)(b, x1, a) 6= 0.

Here and later on resx denotes the resultant of the polynomials with respect to the variable x. It is more difficult
to choose b such that the ascending set remains irreducible. However, there is a lot of freedom according to the
following Hilbert irreducibility theorem.

Theorem 2. Let P (y1, . . . , ys, x1, . . . , xt) be irreducible in Z[y1, . . . , ys, x1, . . . , xt] and U(N) denote the number
of s-tuples (b1, . . . , bs) ∈ Zs such that |bi| ≤ N for 1 ≤ i ≤ s and P (b1, . . . , bs, x1, . . . , xt) is reducible in
Z[x1, . . . , xt]. Then there exist constants a and c (depending on P ) such that U(N) ≤ c(2N + 1)s−a and
0 < a < 1.

According to this theorem and the primitive element theory, there exist an infinite number of specializations
of u which keep the irreducibility of the ascending set A.

Now let us have a look at the fourth step in FactorA. It is obvious that the degree of any factor of F is less
than the degree of F in x, but this is not true for the degree in u. Consider, for example, the factorization

F = x2 − u = (x + u2y)(x − u2y)

over the extension field Q(u, y) defined by the minimal polynomial u3y2 − 1. In J. A. Abbott’s Ph.D thesis
[1], a possible upper bound for the degree in u was given, but unfortunately the bound is often too large and
Abbott’s proof based on Trager’s algorithm [13] is not complete.
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We also need to worry about the case where u appears in the denominators of the coefficients of the factors.
This may be seen, for example, from the factorization

F = x2 − u =
(

x −
a

u

) (

x +
a

u

)

over the extension field Q(u, a) defined by a2−u3. Because of these two cases, it is necessary to distinguish x from
u and perform the TrueFactor test. After multiplied by the defect, the factors will belong to Q(η)[u, x1, . . . , xt],
so FactorA will terminate when δ is big enough. We refer to [23] for the details of TrueFactor test.

Algorithm UFactorA.

Input: An irreducible ascending set A = [A1(y1), . . . , Ar(y1, . . . , yr)] that defines Q(η) and a squarefree poly-
nomial F (η, x) ∈ Q(η)[x].

Output: An irreducible factorization of F over Q(η).

Step 1. Select a set of integers c = (c1, . . . , cr) such that the characteristic set C of A∪{w−c1y1−· · ·−cryr}
under the variable ordering w ≺ y1 ≺ · · · ≺ yr is irreducible and quasilinear (that is, the first
polynomial in C is irreducible over Q and all the other polynomials in C are linear with respect to
their main variables).

Step 2. Normalize C so that it becomes the form C = [C0(w), y1 − C1(w), . . . , yr − Cr(w)].

Step 3. Let F ∗(w, x) := F (C1(w), . . . , Cr(w), x) and apply Factor to F ∗(ξ, x) over Q(ξ):

F ∗ = F1(ξ, x) · · ·Fs(ξ, x),

where ξ has minimal polynomial C0(w).

Step 4. Substitute ξ =
∑r

i=1 ciηi for ξ in each Fi.

Step 5. Return F = F1(η, x) · · ·Fs(η, x).

Theorem 3. The probability of success for the selection of the integers ci in step 1 of UFactorA is 1.

We refer to [5] for a proof of this theorem.

Algorithm Factor.

Input: A monic minimal polynomial m(y) of α and a squarefree polynomial F (α, x) ∈ Q(α)[x].

Output: An irreducible factorization of F over Q(α).

Step 1. Choose a positive integer s and compute

G(α, x) := F (α, x − sα),

R(x) := resy(G(y, x), m(y)).

Step 2. If R(x) is squarefree then go to step 3. Otherwise, compute over Q an irreducible factorization

F1(x) · · ·Fk(x) = R(x)/gcd(R(x), R′(x)).

If k = 1 then go to step 1 (trying another integer s) else compute

Gi := gcd(F (x), Fi(x + sα))

and factorize F/(G1 · · ·Gk) and each Gi over Q(α) using Factor:

Gi(α, x) = Gi1(α, x) · · ·Gimi
(α, x), 1 ≤ i ≤ k,

F (α, x)/[G1(α, x) · · ·Gk(α, x)] = G01(α, x) · · ·G0m0
(α, x);

then return
F =

∏

1 ≤ j ≤ mi

0 ≤ i ≤ k

Gij(α, x)

and the algorithm terminates.
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Step 3. Factorize R over Q:
R(x) = H1(x) · · ·Hl(x).

If l = 1 then return F and the algorithm terminates.

Step 4. For i = 1, . . . , l do:
Hi(α, x) := gcd(Hi(x), G(α, x)),

G(α, x) := G(α, x)/Hi(α, x),

Hi(α, x) := Hi(α, x + sα)

over Q(α).

Step 5. Return F = H1(α, x) · · ·Hl(α, x).

Theorem 4. For any F (α, x) ∈ Q(α)[x] there are only finitely many integers s that make R(x), the norm of
F (α, x− sα) over Q(α), not squarefree. If R(x) is squarefree and H1(x) · · ·Hk(x) is a complete factorization of

R(x) over Q, then
∏k

i=1 gcd(F (α, x − sα), Hi(x)) is a complete factorization of F (α, x − sα) over Q(α).

For a proof of this theorem, refer to [13].

Example 1. Factorize
F = x2 + r2ax − rax − aby2 + ry2 − r2aby − raby − r4

over Q(r, a, b) defined by A = [a2 − r, b2 − ab + r].

Step 1. Pick the substitution value 2 for r and 1 for y; then F and A are mapped to

F (0) = x2 + 2ax − 7ab− 14 and A
(0) = [a2 − 2, b2 − ab + 2],

respectively. A(0) is still an irreducible ascending set.

Step 2. Computing a characteristic set of A(0) ∪ {w − b} under the variable ordering w ≺ a ≺ b, we get

[w4 + 2w2 + 4, 2a + w3, b − w].

Substitution of a = −w3/2, b = w in F (0) yields

F (0) = (x + w − 2w3)(x + w3 − w)

over Q(w) defined by w4 + 2w2 + 4, so F = (x + b + 4a)(x − b − 2a) over Q(a, b) defined by A(0).

Step 3. Hensel lifting A
(0) and the two factors of F (0), we have

F ≡ (x + by + 4ra − 4a)(x − by − ra) mod (r − 2, y − 1)2,

A ≡ [a2 − r, b2 − ab + r] mod (r − 2, y − 1)2,

F ≡ (x + by + r2a)(x − by − ra) mod (r − 2, y − 1)3,

A ≡ [a2 − r, b2 − ab + r] mod (r − 2, y − 1)3.

Step 4. The factor x− by − ra remains unchanged during the lifting, so with test it is found to be a true factor
of F . Thus, we have

F = (x + by + r2a)(x − by − ra)

over Q(r, a, b) defined by A.

Example 2. Factorize F = x2 − y + 1 over K = Q(y, a) defined by A = [a2 − (y − 1)3].

Step 1. Pick the substitution value 0 for y; then F and A are mapped to

F (0) = x2 + 1 and A
(0) = [a2 + 1]

respectively. The ascending set A(0) is still irreducible.
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Step 2. Applying UFactorA to F (0), one gets

F ≡ (x − a)(x + a) mod (y, A(0)).

Step 3. Hensel lifting A(0) and the two factors of F (0) proceeds as follows:

F ≡ (x − a − ay)(x + a + ay) mod (y2, A),

A ≡ [a2 − 3y + 1] mod (y2),

F ≡ (x − a − ay − ay2)(x + a + ay + ay2) mod (y3, A),

A ≡ [a2 + 3y2 − 3y + 1] mod (y3),

F ≡ (x − a − ay − ay2 − ay3)(x + a + ay + ay2 + ay3) mod (y4, A),

A ≡ [a2 − y3 + 3y2 − 3y + 1] mod (y4).

Step 4. TrueFactor test: Let D be the greatest factor whose square divides the discriminant of the basis for K,
i.e., dis(a2 − (y− 1)3) = −4(y− 1)3; clearly D = y− 1. Take one (or the product) of the above two factors, e.g.,

F1 = (x − a − ay − ay2 − ay3).

Then, we have

F ∗
1 = DF1 = (y − 1)F1 ≡ x(y − 1) + a mod (y4, A).

A simple test shows that F ∗
1 /D = x + a/(y − 1) can divide x2 − y + 1. Therefore, we obtain the following

factorization

F =

(

x −
a

y − 1

)(

x +
a

y − 1

)

over K.

The above method is an extension of P. S. Wang’s method [18]. His method is restricted to algebraic
number fields, while ours can also factorize multivariate polynomial over algebraic function fields. Wang made
use of factorization over finite fields. In our method, factorization is performed over the integers because of the
inefficient coefficient bound in the case of algebraic function fields.

3. Proving Geometric Theorems

Following Wu [20], one may express a theorem in elementary (unordered) geometry be means of a set H of
polynomials for its hypothesis and, without loss of generality, a single polynomial C for its conclusion. Proving
the theorem amounts to deciding whether any zero of H is a zero of C, and if not, which parts of the zeros
of H are zeros of C. An elementary version of Wu’s method [20] proceeds by computing first a characteristic
set C of H and then the pseudo-remainder R of C with respect to C. If R ≡ 0, then the theorem is proved
to be true under the subsidiary condition J 6= 0, where J is the product of the initials of the polynomials in
C. A large number of geometric theorems can be proved effectively in this way. However, if R happens to be
non-zero, one cannot immediately tell whether the theorem is false or not; in this case, one has to examine the
reducibility of C and to perform further decompositions [3, 16, 20]. C is reducible often when some geometric
ambiguities such as bisection of angles and contact of circles are involved in the theorem [21]. To test the
irreducibility of C or to decompose C into irreducible ascending sets, it is necessary to factorize polynomials
over successive algebraic extension fields. In [16] was presented a set of geometric theorems whose automated
proofs may require algebraic factorization. Here we give two other examples — Poncelet’s theorem and the
non-existence of real 83 configuration.

Example 3 (Poncelet’s theorem). Let R be the radius of the circumscribed circle and r the radius of the
inscribed circle of an arbitrary triangle, and let d be the distance between the centers of the two circles. Show
that R2 − 2Rr = d2.
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 D 

 A  B 

 C 

 R 
 H 

 d 

 r 

Let the arbitrary triangle be ABC, the incenter and circumcenter of 4ABC be D and H , and the points
be located as

O(0, 0), A(x1, 0), B(x2, 0), C(0, x3), D(x4, x5), H(x6, x7).

Then the hypothesis of the theorem may be expressed as

H1 = x3(x
2
5 − x2

4) − 2x1(x4 − x1)x5 + x1x3(2x4 − x1) = 0, % ∠BAD = ∠DAC

H2 = x3(x
2
5 − x2

4) − 2x2(x4 − x2)x5 + x2x3(2x4 − x2) = 0, % ∠ABD = ∠DBC

H3 = (x2 − x1)(2x6 − x2 − x1) = 0, % H is the circumcenter

H4 = 2x3x7 − 2x2x6 − x2
3 + x2

2 = 0, % of 4ABC

H5 = r2 − x2
5 = 0, % r2 = |OD|2

H6 = R2 − x2
7 − (x6 − x1)

2 = 0, % R2 = |AH |2

H7 = d2 − (x7 − x5)
2 − (x6 − x4)

2 = 0. % d2 = |DH |2

With the above algebraic formulation, Poncelet’s theorem is not always true because D can also be an excenter
of 4ABC and so can r, R, d be negative. It is not easy to distinguish the incenter from the excenters and to
deal with positiveness without using inequalities. We want to see for which components the above formulation
of Poncelet’s theorem is true.

For this purpose, let us order the variables as x1 ≺ · · · ≺ x7 ≺ r ≺ R ≺ d and split {H1, . . . , H7} into
two polynomial sets H′ and H′′ according to the obvious factorization of H5 (for simplifying the computation).
Using Wu’s method [20], we compute a characteristic set C′ of H′, and C′′ of H′′; during the computation, two
factors x2 − x1 and x1 are removed. The pseudo-remainder of the conclusion-polynomial G = d2 −R2 + 2Rr is
non-zero with respect to both C′ and C′′, so we have to examine the reducibility of C′ and C′′.

One may find that C1 differs from C2 only by their fifth polynomials

C ′
5 = 2(x4 − x2 − x1)r − x3(2x4 − x2 − x1),

C ′′
5 = 2(x4 − x2 − x1)r + x3(2x4 − x2 − x1).

The first, sixth and seventh polynomials in C′ and in C′′ are

C ′
1 = C ′′

1 = 4x4
4 − 8(x2 + x1)x

3
4 − 4(x2

3 − x2
2 − 3x1x2 − x2

1)x
2
4 + 4(x2 + x1)(x

2
3 − x1x2)x4 − (x2 + x1)

2x2
3,

C ′
6 = C ′′

6 = 4x2
3R

2 − x4
3 − (x2

2 + x2
1)x

2
3 − x2

1x
2
2,

C ′
7 = C ′′

7 = 4x2
3(x4 − x2 − x1)d

2 − 8x2
3x

3
4 + 12(x2 + x1)x

2
3x

2
4 + [3x4

3 − 12x1x2x
2
3 − 5(x2

2 + x2
1)x

2
3 − x2

1x
2
2]x4

− (x2 + x1)x
4
3 − (x2 + x1)

3x2
3 − x2

1(x2 + x1)x
2
2.

The other polynomials in C′ and C′′ are all linear in their main variables. We thus need to factorize C ′
6 = C ′′

6

over the extension field K = Q(x1, . . . , x4) defined by the irreducible polynomial C ′
1 = C ′′

1 . The factorization
may be found as follows

C ′
6 = C ′′

6 = (2x3R − 2x2
4 + 2x2x4 + 2x1x4 + x2

3 − x1x2)(2x3R + 2x2
4 − 2x2x4 − 2x1x4 − x2

3 + x1x2).

It took 1.65 CPU seconds using Factor A in Maple V.3 on an Alpha station 600.



30 D.Wang and L.Zhi

It may be verified that C ′
7 = C ′′

7 is irreducible over K. Therefore, C′ can be decomposed into two irreducible
ascending sets: the pseudo-remainder of G is zero with respect to one of them, and non-zero with respect to
the other. The same conclusion holds for C′′.

The non-constant factors of the initials of the polynomials in C′ and C′′ are x3 and x4 − x2 − x1. Hence,
under the subsidiary conditions (x2 −x1)x3(x4 − x2 − x1) 6= 0 (i.e., 4ABC does not degenerate into a line and
is not isosceles), the algebraic form of Poncelet’s theorem is true for two non-degenerate components and false
for the other two. Geometrically, the theorem is true generically when D is the incenter of 4ABC and the
variables r and R take the same sign.

Remark that the irreducible decompositions for the examples in this paper were computed by using the
CharSets package [17]. The following theorem is interesting because it is true over the reals but not the
complexes.

Example 4 (MacLane 83; see [4] and references therein). Let A, B, C, D, E, F, G, H be eight points such that the
following eight triples are collinear: A, B, D; B, C, E; C, D, F ; D, E, G; E, F, H ; F, G, A; G, H, B; H, A, C. Then
all the other triples are also collinear (i.e., all the eight points lie on the same line).

We take the coordinates for the points as

A(0, 0), B(1, 0), D(u, 0), C(x1, y1), E(x2, y2), F (x3, y3), G(x4, y4), H(x5, y5).

Then the hypothesis and conclusion of the theorem may be expressed as follows

HYP :

H1 = x2y1 − x1y2 + y2 − y1 = 0, % col(B, C, E)

H2 = x1y3 − u(y3 − y1) − x3y1 = 0, % col(C, D, F )

H3 = x2y4 − u(y4 − y2) − x4y2 = 0, % col(D, E, G)

H4 = x2(y3 − y5) + x3(y5 − y2) + x5(y2 − y3) = 0, % col(E, F, H)

H5 = x4y3 − x3y4 = 0, % col(F, G, A)

H6 = y5 − y4 + x5y4 − x4y5 = 0, % col(G, H, B)

H7 = x1y5 − y1x5 = 0; % col(H, A, C)

CON : y1 = y2 = y3 = y4 = y5 = 0. % col(A, B, C, D, E, F, G, H)

Hereinabove, col(A, B, C, . . .) means that the points A, B, C, . . . are collinear.
Computing an irreducible decomposition of {H1, . . . , H7} with respect to the variable ordering u ≺ y1 ≺

· · · ≺ y5 ≺ x1 ≺ · · · ≺ x5, one may get eighteen irreducible ascending sets C1, . . . , C18, for which

• C1 = [y1, y2, y3, y4, y5] = 0 implies that the eight points are collinear;

• C2 = [u, y3, y4, y5, x2y1 − x1y2 + y2 − y1, x3, x4, x5] = 0 implies that A = D = F = G = H and B, C, E
are collinear;

• C3 = [y2, y3, y4, y5, x2 − 1, x3 − u, x5] = 0 implies that A = H, B = E, D = F and G are collinear.

The other 12 irreducible ascending sets, which only involve linear polynomials, correspond to some degenerate
cases which can be derived from the above two cases through a cyclic permutation.

Now let us look at the three irreducible ascending sets C16, C17, C18, in which the first polynomials are
quadratic. C16 is reproduced as follows

C16 = [u2 − u + 1, uy2 − 2y2 + y1, uy3 − 2y3 + y1, uy4 − 3y4 + y1, uy5 + y5 − uy1,

ux2 − 2x2 + x1 − u + 1, ux3 − 2x3 + x1 + 1, ux4 − 3x4 + x1 + 1, ux5 + x5 − ux1].

Let α be a root of u2 − u + 1 and β = (α + 1)/3; then

A(0, 0), B(1, 0), C(0, 1), D(α, 0), E(
2 − α

3
, β), F (β, β), G(

2 + α

7
,
2 + α

7
), H(0, β)
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give a non-degenerate complex zero of C16, under which the eight points are not collinear. So the theorem is
not true over the field of complex numbers.

It is easy to verify that the theorem is not true for C17 and C18 over the complexes. Now consider the
theorem for the component C17 over the reals (the same discussion is valid for the component C18). The first
polynomial in C17 is

C1 = [(u2 − u + 1)y2
2 + (u − 2)y1y2 + y2

1 ]y
2
3 − u(2uy2 − y2 + y1)y1y2y3 + u2y2

1y
2
2 .

Factorizing C1 over Q(y) defined by y2 + 3, one may get two linear factors. C1 has real zeros if and only if the
imaginary part I = u(y1 − y2)y1y2 of the two linear factors is zero.

An irreducible decomposition of the polynomial set {H1, . . . , H7, I} consists of sixteen components. One
component is [y1, y2, y3, y4, y5] and the others are all composed of linear polynomials: it is clear that these
components represent the two degenerate cases we have discussed above. Therefore, the theorem is true only
for one component and false for the other degenerate cases over the reals.

4. Decomposition and Implicitization of Curves and Surfaces

Algebraic curves and surfaces are geometric objects defined by zeros of systems of algebraic equations in 2-
or 3-dimensional space. In modern geometry engineering like computer-aided geometric design and geometric
modeling, it is desirable to decompose such objects into simpler and smaller subobjects. In the language
of algebraic geometry, the problem is to decompose arbitrary algebraic curves and surfaces into irreducible
components. In fact, there are several algorithmic methods based on characteristic sets [11, 20] and Gröbner
bases [2] for carrying out such decomposition (see [14] for instance). In these methods, algebraic factorization
is indispensable.

Let V be an algebraic curve or surface in 3-dimensional affine space defined by the common zeros of a set
P of polynomials. While speaking about the irreducibility of V, we mean that V cannot be expressed as the
union of two or more non-trivial subcurves or subsurfaces of V. The problem of decomposing V into irreducible
components is equivalent to computing from P a sequence of polynomial sets Pi, each of which defines an
irreducible subcurve or subsurface Vi of V.

A simple example is to decompose the intersection of two cylinders x2 + y2 = 1 and x2 + z2 = 1 in
3-dimensional space [14]. With respect to the variable ordering x ≺ y ≺ z,

[x2 + y2 − 1, x2 + z2 − 1]

is a reducible ascending set. Decomposing it into irreducible ones requires factoring x2+z2−1 over the extension
field Q(x, y) defined by x2 + y2 − 1. The intersection is an algebraic curve comprising two irreducible curves
defined respectively by

x2 + y2 − 1 = 0, y − z = 0 and x2 + y2 − 1 = 0, y + z = 0.

They are two circles obtained as the sections of the first cylinder by the planes y − z = 0 and y + z = 0. What
follows is a more complicated example.

Example 5. Let P = {P1, P2} with

P1 = − 27c2 + 18abc− 4a3c − 4b3 + a2b2,

P2 = 256c3 − 128a2c2 + 144ab2c + 16a4c − 27b4 − 4a3b2.

The algebraic curve defined by P is the intersection of two discriminant surfaces in 3-dimensional space. It
may be decomposed into two irreducible curves: one of them is a line defined by b = 0 and c = 0. The other
component is quite complex. It may be defined by the following total degree Gröbner basis

G = [P1,

512ac2 + 4104c2 − 1024b2c + 352a3c + 256a2bc − 1764abc− 121b3 + 16a4b − 108a3b + 32a5,

− 2048bc2 + 512a2c2 + 1432ac2 − 4104c2 − 434b2c − 528a2bc + 1764abc + 32a4c − 568a3c

+ 108ab3 + 121b3 + 108a3b − 32a5,

− 256c3 + 128a2c2 + 108ac2 − 144ab2c − 72a2bc + 27b4 + 16ab3].
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The two components of the curve are plotted for −50 ≤ a ≤ 50 in the figure below.

In decomposing P into irreducible ascending sets under a ≺ b ≺ c, we have to factorize a bivariate polynomial
of 12 terms with largest coefficient of 89 digits over Q(a) defined by the following minimal polynomial

A = 134217728a4 + 2820096000a3 + 17689155840a2 + 42431509152a+ 31381059609.

Our algorithm examines that the polynomial is irreducible.

Geometric objects such as curves and surfaces may be algebraically represented by implicit or parametric
equations. The advantage of each representation depends upon the type of problems to be solved. In geometric
modeling, one often needs to convert one representation into the other. The implicitization of parametric
objects can be carried out by using Gröbner bases, characteristic sets and other elimination techniques. Here,
two examples are presented to show how algebraic factorization may be used to reduce the complexity of the
implicitization problem.

Example 6. Determine the implicit form (in the variables x and y) of the curve given by the following system
of equations

(x − u)2 + (y − v)2 − 1 = 0,

v2 − u3 = 0,

2v(x − u) + 3u2(y − v) = 0,

(3wu2 − 1)(2wv − 1) = 0.

These equations come from a formulation of an offset to the curve y2−x3 = 0. The example was communicated
by P. Vermeer from the Department of Computer Science, Purdue University. We were told that it ran out of
swap space (280 MB) before obtaining the solution by using the Gröbner basis implementation in Macsyma on
a Symbolic machine. We have tried to determine the implicit equations using the characteristic set method with
Wu’s projection theorem. For the first trial, we do not decompose the polynomial set according to the given
factorization of the last polynomial. The computation of a characteristic set (with respect to x ≺ y ≺ u ≺ v ≺ w)
is very easy (10.1 seconds in Maple 4.3 on an Apollo DN10000), but the zero decomposition is rather difficult.
We tried to compute it with six variants, of which four did not succeed within 2000 CPU seconds. For the two
successful variants, 11 quasi-irreducible ascending sets were produced in 937.3 and 1003.88 seconds, respectively.
The biggest integer coefficient of the occurring polynomials has more than 800 digits (while the biggest coefficient
of the input polynomials is 6). The projection of these ascending sets using our implementation of Wu’s algorithm
took more than 2000 seconds.

To make the projection possible, we tried to decompose the ascending sets into irreducible ones (which are
hoped to be simpler). The irreducibility test for the 11 ascending sets all requires polynomial factorization over
algebraic extension fields. If we decompose the input set into two sets of polynomials, then the quasi-irreducible
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zero decomposition can be computed in about 740 seconds, yielding 18 ascending sets, where the occurring
polynomials have big integer coefficients too.

Below we give in table form the timing statistics on the non-trivial irreducibility tests for the above-mentioned
ascending sets with three factoring functions. The timings are provided in CPU seconds and include the time
for garbage collection, in Maple V.2 running on a Sun SPARC 2 station. The computation was interrupted
manually after 3600 CPU seconds, which is indicated by > 3600. The meanings of the headings of the table are
explained as follows: Ex – the example number; d – the number of transcendental elements for the extension
field; deg(A) – the degrees of the polynomials in the defining ascending set, separated by the slant; deg(F ) –
the degree of the polynomial to be factorized; zfactor – our implementation of the algorithm FactorA in Maple
V.2; cfactor – the function in CharSets 1.2 [17]; factor – Maple’s built-in function.

Timing Statistics in Maple V.2

Ex d deg(A) deg(F ) zfactor cfactor factor

1 0 4/2 2 1.26 301.5 3
2 0 4/2 2 65.76 22.96 42.46
3 0 2/2/2 2 103.2 >3600 2759.58
4 0 4 2 0.83 1.43 1.76
5 0 2/6 2 1273.02 809.8 2925.03
6 0 4 2 3.33 9.95 8.05
7 1 8 2 893.6 >3600 >3600
8 0 4/2 2 1.31 >3600 2.8
9 0 2/2 2 0.43 20 3.16
10 0 4/2 2 1.2 246.1 3.03
11 0 2/2 2 6.48 882.2 20.13

Example 7 [12]. Consider the following set of four polynomials

P1 = v − u2,

P2 = (x − u)2 + (y − v)2 + z2 − r2,

P3 = 2su − x + u,

P4 = y − v + s,

which arise from a formulation in computing the r-offset of the parabola given by v = u2 and w = 0 in 3-
dimensional Euclidean space. To determine the r-offset, one has to get the implicit equations and inequations
in x, y, z, r by eliminating the variables u, v, s with projection. We have no difficulty to compute the r-offset
using projection methods without factorization. However, if we want to compute an irreducible zero or variety
decomposition of the polynomial set P = {P1, . . . , P4}, then algebraic factorization will occur. When the variable
ordering r ≺ x ≺ y ≺ z ≺ u ≺ v ≺ s is used, several non-trivial polynomials have to be factorized over algebraic
extension fields. Here are some examples:

• 2u2 − 2y + 1 over the extension field Q(r, y, z) defined by the minimal polynomial 4z2 + 4y − 4r2 − 1;

• 8yz2 − 4z2 + 8y2 + 8x2y − 8r2y − 6y + 14x2 + 4r2 + 1 over Q(r, x, y) defined by the minimal polynomial

A = 16y3 − 24y2 + 12y − 27x2 − 2;

• 12yu2 − 6u2 + 18xu + 4y2 − 4y + 1 over Q(r, x, y, z) defined by the irreducible ascending set

[A, 12z2 + 16y2 − 4y + 12x2 − 12r2 + 1].

The test of irreducibility and factorization for the above three polynomials took only 0.08, 0.25 and 0.31 CPU

seconds respectively using FactorA in Maple V.3 running on an Alpha station 600.
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5. Verification of Geometric Conditions

In the way of studying geometric spaces (non-commutative geometries), the general problem of automated
verification of geometric conditions was addressed in [10]. Some examples on the verification of the Tam
configuration for the circle space using algebraic methods were discussed. We take one of them which was
considered as a benchmark example. It is actually a quantifier elimination problem over the reals. J. Pfalzgraf
[10] tried to solve the problem using the CAD method without success. We explain how this problem can be
solved by making use of algebraic factorization.

Example 8 [10]. Determine whether for any x1, x2, y1, y2, z1, z2, x
′
1, x

′
2, y

′
1, y

′
2 ∈ R (the field of reals) satisfying

P1 = (x1 − y1)
2 + (x2 − y2)

2 − (x′
1 − y′

1)
2
− (x′

2 − y′
2)

2
= 0

there exist ζ1 and ζ2 in R such that

P2 = (x′
1 − ζ1)

2
+ (x′

2 − ζ2)
2
− (x1 − z1)

2
− (x2 − z2)

2
= 0,

P3 = (y′
1 − ζ1)

2
+ (y′

2 − ζ2)
2
− (y1 − z1)

2
− (y2 − z2)

2
= 0.

Let P = {P1, P2, P3} and fix the variable ordering as x1 ≺ x2 ≺ y1 ≺ y2 ≺ z1 ≺ z2 ≺ x′
1 ≺ x′

2 ≺ y′
1 ≺ y′

2 ≺ ζ1 ≺
ζ2. Computing a characteristic set C of P with respect to this ordering, we get C = [P1, C2, C3] with

C2 = 2x2
1y

′
1ζ1 − 2x2

1y2z2 + 2x2
2y

′
1ζ1 − 2x2

2y1z1 + 2y1z1x
′2
1 + 2y2z2x

′2
1 + 2x1y1x

′
1y

′
1 − x2

1ζ
2
1 + x2

1z
2
2 − y2

1ζ
2
1

+ x2
2y

2
1 + y2

1z
2
2 − x2

2ζ
2
1 + x2

2z
2
1 − y2

2x
′2
1 − y2

2ζ
2
1 + x2

1y
2
2 + y2

2z
2
1 − 2x1y1y

′
1ζ1 − 2x1x2y1y2 + 2x1y1y2z2

+ 2x2y2x
′
1y

′
1 − 2x1y1x

′
1ζ1 + 2x1x2y1z2 − 2x2y2y

′
1ζ1 − 2x2y2x

′
1ζ1 + 2x1x2y2z1 + 2x2y1y2z1 − 2x1z1x

′
1y

′
1

− 2x2z2x
′
1y

′
1 − 2y1z1x

′
1y

′
1 − 2y2z2x

′
1y

′
1 + 2x1z1x

′
1ζ1 + 2x2z2x

′
1ζ1 − 2y1z1x

′
1ζ1 − 2y2z2x

′
1ζ1 − 2x1z1y

′
1ζ1

− 2x1x2z1z2 + 2x1y2z1z2 − 2x2z2y
′
1ζ1 + 2x2y1z1z2 + 2y1z1y

′
1ζ1 + 2y2z2y

′
1ζ1 − 2y1y2z1z2 + 2x1y1ζ

2
1

− 2x1y1z
2
2 − 2x2y

2
1z2 + 2y2

1x
′
1ζ1 + 2x2y2ζ

2
1 − 2x2y2z

2
1 − 2x1y

2
2z1 + 2y2

2x
′
1ζ1 + 2z2

1x
′
1y

′
1 + 2z2

2x
′
1y

′
1

+ 2x1z1y
′2
1 + 2x2z2y

′2
1 − y2

1x
′2
1 − z2

1x
′2
1 − z2

2x′2
1 − x2

1y
′2
1 − z2

1y
′2
1 − x2

2y
′2
1 − z2

2y
′2
1 ,

C3 = x2
1 − x1y1 + x2

2 − x2y2 − x′2
1 + x′

1y
′
1− x′2

2 + x′
2y

′
2 + x′

1ζ1 + x′
2ζ2 − x1z1− x2z2 − y′

1ζ1− y′
2ζ2 + y1z1 + y2z2.

The initials of C2 and C3 are

I2 = (x2 − y2)
2 + (x1 − y1)

2,

I3 = x′
2 − y′

2,

respectively. According to Ritt-Wu’s characteristic set method [11, 20], we have

Zero(P) = Zero(C/I2I3) ∪ Zero(P ∪ {I2}) ∪ Zero(P ∪ {I3}),

where Zero(C/I) denotes the set of all common zeros of C for which I 6= 0. If I2 = 0, then x1 = y1, x2 = y2 and
thus x′

1 = y′
1, x

′
2 = y′

2 (as P1 = 0). In this case, P2 = P3 and the existence of ζ1 and ζ2 is obvious. Therefore,
Zero(P ∪ {I2}) does not have to be further considered.

Computing a characteristic set of P ∪ {I3} yields C′ = [C ′
1, I3, C

′
3, C

′
4], where

C ′
1 = x2

1 − 2x1y1 + y2
1 + x2

2 − 2x2y2 + y2
2 − x′2

1 + 2x′
1y

′
1 − y′2

1 ,

C ′
3 = − y′

1ζ1 + y1z1 + y2z2 − x′2
1 + x′

1ζ1 + x2
1 − x1z1 + x2

2 − x2z2 − x1y1 − x2y2 + x′
1y

′
1,

C ′
4 = − 2x2

1y2z2 + 2x1y1x
′2
2 − 2x2

2y1z1 + 2x2y2x
′2
2 − x2

1x
′2
2 − x2

2x
′2
2 + x2

1z
2
2 + x2

2y
2
1 + y2

1z
2
2 + x2

2z
2
1 + x2

1y
2
2 + y2

2z
2
1

− 2x1x2y1y2 + 2x1y1y2z2 + 2x1x2y1z2 + 2x1x2y2z1 + 2x2y1y2z1 − 2x1x2z1z2 + 2x1y2z1z2 + 2x2y1z1z2

− 2y1y2z1z2 − 2x1y1z
2
2 − 2x2y

2
1z2 − 2x2y2z

2
1 − 2x1y

2
2z1 − y2

1x
′2
2 − y2

2x
′2
2 + 2x2

1x
′
2ζ2 + 2x1y1ζ

2
2 − x2

1ζ
2
2

− y2
1ζ

2
2 − x2

2ζ
2
2 − 4x1y1x

′
2ζ2 + 2y2

1x
′
2ζ2 + 2x2

2x
′
2ζ2 + 2x2y2ζ

2
2 + 2y2

2x
′
2ζ2 − 4x2y2x

′
2ζ2 − y2

2ζ
2
2 .

The initials of C ′
3 and C ′

4 are I ′3 = x′
1 − y′

1 and I ′4 = I2, respectively. Now we have

Zero(P ∪ {I3}) = Zero(C′/I2I
′
3) ∪ Zero(P ∪ {I2, I3}) ∪ Zero(P ∪ {I3, I

′
3}).
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Since I3 = I ′3 = 0 implies that x1 = y1 and x2 = y2, both Zero(P ∪ {I2, I3}) and Zero(P ∪ {I3, I
′
3}) do not have

to be further considered as explained above.
Thus, the problem is reduced to determining (i) whether for any x1, x2, y1, y2, z1, z2, x′

1, x
′
2, y′

1, y
′
2 satisfying

P1 = 0, I2 6= 0, I3 6= 0 there exist ζ1, ζ2 ∈ R such that C2 = 0 and C3 = 0, and (ii) whether for any
x1, x2, y1, y2, z1, z2, x

′
1, x

′
2, y

′
1, y

′
2 satisfying C ′

1 = 0, I3 = 0, I2 6= 0, I ′3 6= 0 there exist ζ1, ζ2 ∈ R such that C ′
3 = 0

and C ′
4 = 0.

For (i), we found that C2 can be factorized over the extension field Q(x1, x2, y1, y2, z1, z2, x
′
1, x′

2, y
′
1, y

′
2)

defined by the minimal polynomial P1 as

C2 = (D2 + D1)(D2 − D1)/I2,

where

D1 = −x1z1y
′
1 − x2z2y

′
1 − y2z2x

′
1 + x2

2y
′
1 − x2y2x

′
1 − x2y2y

′
1 + y2

2x
′
1 + x2

1y
′
1 − y1z1x

′
1 + x2z2x

′
1 + y1z1y

′
1

+ y2z2y
′
1 − x2

2ζ1 − y2
2ζ1 − x2

1ζ1 − y2
1ζ1 + 2x1y1ζ1 + 2x2y2ζ1 − x1y1x

′
1 − x1y1y

′
1 + x1z1x

′
1 + y2

1x
′
1,

D2 = −x2z1y
′
2 + y2z1y

′
2 + x1z2y

′
2 − y1z2y

′
2 + x2y1y

′
2 − x1y2y

′
2 + x1y2x

′
2 − x1z2x

′
2 + y1z2x

′
2 + x2z1x

′
2

− y2z1x
′
2 − x2y1x

′
2.

With Maple V.2 on a Sun SPARC 2 station, the factorization costs cfactor 14.33 CPU seconds and zfactor 11.11
CPU seconds. The Maple function factor returns “object too large” after 781.06 CPU seconds. The two factors
of C2 are linear in ζ1, while C3 is linear in ζ2. Hence, the existence of ζ1 and ζ2 is guaranteed.

For (ii), C ′
4 can be factorized over the extension field Q(x1, x2, y1, y2, z1, z2, x

′
1, x

′
2, y

′
1) defined by the minimal

polynomial C ′
1 as

C ′
4 = (D4 + D3)(D4 − D3)/I2,

where

D3 = −x2
2ζ2 + 2x1y1ζ2 − y2

2ζ2 − x2
1ζ2 + 2x2y2ζ2 − y2

1ζ2 + x2
1x

′
2 − 2x1y1x

′
2 + x2

2x
′
2 − 2x2y2x

′
2 + y2

2x
′
2 + y2

1x
′
2,

D4 = x1z2x
′
1 − x1y2x

′
1 − y1z2x

′
1 − x2z1x

′
1 + y2z1x

′
1 + x2y1x

′
1 + x2z1y

′
1 − y2z1y

′
1 − x1z2y

′
1 + y1z2y

′
1 − x2y1y

′
1

+ x1y2y
′
1.

This factorization costs cfactor 8.73 seconds, zfactor 7.9 seconds and factor 147.81 seconds (CPU time in Maple
V.2 on the same Sun SPARC 2 station). Now, the two factors of C ′

4 are linear in ζ2, while C ′
3 is linear in ζ1.

Therefore, in this case the existence of ζ1 and ζ2 is also guaranteed. This completes our solution to the problem.
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