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Abstract. We present a symbolic-numeric method to refine an approximate isolated singular
solution x̂ = (x̂1, . . . , x̂n) of a polynomial system F = {f1, . . . , fn}, when the Jacobian matrix of
F evaluated at x̂ has corank one approximately. Our new approach is based on the regularized
Newton iteration and the computation of differential conditions satisfied at the approximate singular
solution. The size of matrices involved in our algorithm is bounded by n×n. The algorithm converges
quadratically if x̂ is close to the isolated exact singular solution.

Key words. Root refinement, isolated singular solution, regularized Newton iteration, local
dual space, quadratic convergence.

AMS subject classifications.

1. Introduction.

Motivation and problem statement. Consider an ideal I generated by a
polynomial system F = {f1, . . . , fn}, where fi ∈ C[x1, . . . , xn]. Suppose x̂ = x̂e + x̂ǫ,
where x̂e denotes the isolated exact singular solution of F and x̂ǫ denotes the error in
the solution. The multiplicity µ of x̂e is defined as µ = dim(C[x]/Q), where Q is the
isolated primary component whose associate prime ideal is P = (x1 − x̂1,e, . . . , xn −
x̂n,e), and the index ρ of x̂e is defined as the minimal nonnegative integer ρ such that
P ρ ⊆ Q [37].

In [38, 39], they compute the truncated coefficient matrix of the involutive system
to the order ρ, and generate multiplication matrices from its approximate null vectors.
Then a basis of the approximate local dual space (Definition 2.1) of I at x̂ can be
obtained from these vectors (Theorem 5.4 in [38]). Let ŷ be the vector whose i-th
element is the average of the trace of the multiplication matrix with respect to xi. In
[39], it has been proved that if the given approximation x̂ satisfies ‖x̂− x̂e‖ = ε, for a
small positive number ε, and the index ρ and the multiplicity µ are computed correctly,
then the refined solution obtained by adding ŷ to x̂ will satisfy ‖x̂+ ŷ− x̂e‖ = O(ε2).
Here and hereafter, ‖·‖ is denoted as the l2-norm. The size of these coefficient matrices
in [39] is bounded by n

(
ρ+n

n

)
×
(
ρ+n

n

)
, which will be very big when ρ is large. Especially,

when the corank of the Jacobian F ′(x̂e) is one, then ρ = µ, which is also called the
breadth one case in [4, 5]. As pointed out in [10], the breath one case is the least
degenerate one and therefore most likely to be of practical significance. Moreover, it
is also the worst case for the deflation method [5, 18, 27, 28] since the deflation always
terminates at step µ− 1, hence the size of the matrices grows extremely fast with the
multiplicity.

In [20], we present a new algorithm which is based on Stetter’s strategies [35] for
computing a closed basis L = {L0, . . . , Lµ−1} of the approximate local dual space of
I = (f1, . . . , fn) at x̂ incrementally in the breadth one case. The size of matrices we
used in computing each order of differential conditions is bounded by n × n, which
does not depend on the multiplicity. Moreover, during the computation, we only need
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to store the input polynomial system F , the last n− 1 columns of the Jacobian F ′(x̂)
and the computed differential conditions. Therefore, in the breadth one case, both
storage space and execution time for computing a closed basis of the approximate
local dual space are reduced significantly by the algorithm in [20]. This motivates us
to consider whether we can get rid of large coefficient matrices in [38, 39] and refine
approximate singular solutions more efficiently based on the computed differential
conditions.

Main contribution. Suppose we are given an approximate singular solution x̂

of a polynomial system F satisfying ‖x̂ − x̂e‖ = ε, where the positive number ε is
small enough such that there are no other solutions of F nearby. We also assume that
the corank of the Jacobian matrix F ′(x̂e) is one. In order to restore the quadratic
convergence of the Newton method, we first apply one regularized Newton iteration (in
Section 3.1) to obtain a new approximation x̂+ ŷ which also satisfies the assumptions
above, and then compute the approximate null vector r1 of the Jacobian F ′(x̂ + ŷ)
which gives a generalized Newton direction, and the step length δ is obtained by
solving a linear system formulated by the computed differential operators using the
algorithm in [20]. We show that ‖x̂ + ŷ + δr1 − x̂e‖ = O(ε2). The size of matrices
involved in our algorithm is bounded by n × n. The method has been implemented
in Maple. Moreover, we also prove the conjecture in [5] that the breadth one depth-
deflation always terminates at step µ − 1, where µ is the multiplicity.

Structure of the paper. Section 2 is devoted to recall some notations and well-
known facts. In Section 3, we describe an algorithm for refining approximate isolated
singular solutions of polynomial systems in the breadth one case. Moreover, we prove
that the algorithm converges quadratically if the approximate solution is close to the
isolated exact singular solution. Some experiment results are given in Section 4. We
mention some ongoing research in Section 5.

2. Preliminaries. Let D(α) = D(α1, . . . , αn) : C[x] → C[x] denote the differ-
ential operator defined by:

D(α1, . . . , αn) :=
1

α1! · · ·αn!

∂α1+···+αn

∂xα1

1 · · · ∂xαn
n

,

for nonnegative integer array α = [α1, . . . , αn]. We write D = {D(α), |α| ≥ 0} and
denote by SpanC(D) the C-vector space generated by D. Introducing a morphism on
D that acts as “integral”:

Φj(D(α)) :=

{
D(α1, . . . , αj − 1, . . . , αn), if αj > 0,
0, otherwise.

As a counterpart of the anti-differentiation operator Φj , we define the differential
operator Ψj as

Ψj(D(α)) := D(α1, . . . , αj + 1, . . . , αn).

Definition 2.1. Given a zero x̂e of an ideal I = (f1, . . . , fn), we define the local
dual space of I at x̂e as

△x̂e
(I) := {L ∈ SpanC(D)|L(f)x=x̂e

= 0, ∀f ∈ I}. (2.1)

The vector space △x̂e
(I) and conditions equivalent to L(f)x=x̂e

= 0, ∀L ∈ △x̂e
(I)

are also called Max Noether space and Max Noether conditions in [25] respectively.
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Notice that the local dual space defined here consists of differential operators instead

of differential functionals in [5, 21, 22, 24, 25, 26]. For a nonnegative integer k, △(k)
x̂e

(I)
is a subspace of △x̂e

(I) which consists of differential operators with differential order

bounded by k. Obviously, △(0)
x̂e

(I) = D(0, . . . , 0). We have that

dimC(△x̂e
(I)) = µ, (2.2)

where µ is the multiplicity of the zero x̂e.
Definition 2.2. [21, 22, 24] A subspace △ of SpanC(D) is said to be closed if

and only if its dimension is finite and

L ∈ △ =⇒ Φj(L) ∈ △, j = 1, . . . , n.

Suppose Span(L0, L1, . . . , Lµ−1) is closed and L0, . . . , Lµ−1 are linearly independent
differential operators which satisfy that Li(fj)x=x̂e

= 0, j = 1, . . . , n, i = 0, . . . , µ − 1,
then due to the closedness, Li(q · fj)x=x̂e

= 0, ∀q ∈ C[x1, . . . , xn]. Hence, △x̂e
(I) =

Span(L0, L1, . . . , Lµ−1).
Lemma 2.3. Let F ′(x̂e) be the Jacobian of a polynomial system F = {f1, . . . , fn}

evaluated at x̂e. Suppose the corank of F ′(x̂e) is one, i.e., the dimension of its

null space is one, then dim(△(k)
x̂e

(I)) = dim(△(k−1)
x̂e

(I)) + 1 for 1 ≤ k ≤ µ − 1 and

dim(△(k)
x̂e

(I)) = dim(△(µ−1)
x̂e

(I)), for k ≥ µ. Hence we have µ = ρ.
Proof. Lemma 2.3 is an immediate consequence of [34, Theorem 2.2] and [5,

Lemma 1].
Theorem 2.4. [20] Suppose we are given an isolated multiple root x̂e of the

polynomial system F = {f1, . . . , fn} with the multiplicity µ and the corank of the

Jacobian F ′(x̂e) is one, and L1 = D(1, 0, . . . , 0) ∈ △(1)
x̂e

(I). We can construct the
k-th order differential condition retaining the closedness incrementally for k from 2
to µ − 1 by the following formulas:

Lk = Pk + ak,2D(0, 1, . . . , 0) + · · · + ak,nD(0, . . . , 1), (2.3)

where Pk has no free parameters and is obtained from previous computed L1, . . . , Lk−1

by the following formula:

Pk = Ψ1(Lk−1) + Ψ2(Qk,2)α1=0 + · · · + Ψn(Qk,n)α1=α2=···=αn−1=0, (2.4)

where

Φ1(Pk) = Lk−1, Qk,j = Φj(Pk) = a2,jLk−2 + · · · + ak−1,jL1, 2 ≤ j ≤ n. (2.5)

Here Ψj(Qk,j)α1=···=αj−1=0 means that we only pick up differential operators D(α)
in Qk,j where α1 = · · · = αj−1 = 0. The parameters ak,j , j = 2, . . . , n are deter-
mined by checking whether [Pk(f1)x=x̂e

, . . . , Pk(fn)x=x̂e
]T can be written as a linear

combination of the last n − 1 linearly independent columns of F ′(x̂e).
Suppose x̂ is an approximation of x̂e and ‖x̂ − x̂e‖ = ε ≪ 1, we can use the

algorithm MultiplicityStructureBreadthOneNumeric in [20] to compute a closed basis
{L0, . . . , Lµ−1} of the approximate local dual space of I at x̂. Since the errors in the
matrix of the linear system

[
Pk(F )x=x̂,

∂F (x̂)

∂x2
, . . . ,

∂F (x̂)

∂xn

]
· [1, ak,2, . . . , ak,n]T = 0,
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used in Theorem 2.4 are bounded by O(ε) and

Lk = Pk + ak,2D(0, 1, 0, . . . , 0) + · · · + ak,nD(0, . . . , 0, 1),

is determined by its right singular vector [1, ak,1, . . . , ak,n]T corresponding to its small-
est singular value, we have

‖Lk(F )x=x̂‖ = O(ε), (2.6)

according to [11, Corollary 8.6.2].

3. An Algorithm for Refining Approximate Singular Solutions. Suppose
we are given an approximate solution

x̂ = x̂e + x̂ǫ,

where x̂ǫ denotes the error in the solution and x̂e denotes the exact solution of the
polynomial system F = {f1, . . . , fn} with the multiplicity µ and the index ρ. In this
section, we present a new method to refine x̂ in the breadth one case, i.e., µ = ρ.

Let A = F ′(x̂) be the Jacobian matrix of F evaluated at x̂ and b = −F (x̂).
Suppose the error in the solution is small enough, i.e., ‖x̂ − x̂e‖ = ε ≪ 1, and A is
invertible, then Newton’s iteration computes

ŷ = A−1b, (3.1)

and ‖x̂ + ŷ − x̂e‖ = O(ε2) according to the well-known Kantorovich theorem [16].
However, if A is singular, as shown in [15], the convergence of Newton iterations for
multivariate case is not guaranteed at irregular singularities.

Rall [29] studied the convergence properties of Newton’s method at singular
points. Some modifications of Newton’s method to restore quadratic convergence
have also been proposed in [1, 6, 7, 8, 12, 13, 14, 27, 28, 30, 31, 33]. In [13], a bor-
dered system was introduced to restore the quadratic convergence of Newton’s method
when A has corank one approximately and x̂ is a simple singular solution. It is clear
to see that the regularity condition in [13] can not be satisfied if the multiplicity is
larger than 2.

For simplicity, we make an assumption throughout this section.
Assumption 1. Suppose we are given an approximate singular solution x̂ of a

polynomial system F satisfying ‖x̂ − x̂e‖ = ε, where the positive number ε is small
enough such that there are no other solutions of F nearby. Moreover, we assume that
the corank of the Jacobian matrix F ′(x̂e) is one.

Let A = F ′(x̂) be the Jacobian matrix of F evaluated at x̂ and its singular values
be σ1, . . . , σs. Under Assumption 1, we have ‖F (x̂)‖ = O(ε), σi = Θ(1), 1 ≤ i ≤ n−1
and σn = O(ε).

Remark 3.1. Notice that the notation O(g) denotes that the value is bounded
above by g up to a constant factor, while Θ(g) denotes that the value is bounded both
above and below by g up to constant factors.

3.1. Regularized Newton iteration. Under Assumption 1, F ′(x̂) is approxi-
mately singular. Instead of using (3.1) to compute ŷ, we solve the following damped
least-squares problem

min ‖Ay − b‖2 + λ‖y‖2,
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to obtain ŷ, where A = F ′(x̂) and b = −F (x̂). The real number λ > 0 is called the
regularization parameter [36].

Theorem 3.2 (Regularized Newton Iteration). Under Assumption 1, if we choose
the smallest singular value σn of F ′(x̂) as the regularization parameter, the solution
ŷ of the following regularized least squares problem

(A∗A + σnIn)ŷ = A∗b (3.2)

satisfies

‖ŷ‖ = O(ε), ‖F (x̂ + ŷ)‖ = O(ε2), (3.3)

where A∗ is the Hermitian (conjugate) transpose of A = F ′(x̂), In is the n×n identity
matrix and b = −F (x̂).

Proof. Suppose A = U · Σ · V ∗ is the singular value decomposition of A where
Σ = diag{σ1, . . . , σn}, then the solution of (3.2) is

ŷ = V · (Σ2 + σnIn)−1 · Σ · U∗ · b. (3.4)

Since σi = Θ(1), 1 ≤ i ≤ n − 1, σn = O(ε) and ‖b‖ = O(ε), we have

‖ŷ‖2 =

n∑

i=1

(
σi|b̃i|

σ2
i + σn

)2

= O(ε2),

where b̃ = [b̃1, . . . , b̃n]T = U∗b and ‖b̃‖ = ‖b‖ = O(ε). Hence, ‖ŷ‖ = O(ε).
From the Taylor expansion of F at x̂, we have

F (x̂e) = −b + A(x̂e − x̂) + O(ε2).

Hence

‖ − b + A(x̂e − x̂)‖ = O(ε2).

Furthermore, we have

‖ − U∗b + Σ · V ∗(x̂e − x̂)‖ = O(ε2).

Since σn = O(ε) and ‖V ∗(x̂− x̂e)‖ = ‖x̂− x̂e‖ = ε, we derive that the last component
of the vector b̃ satisfies

|b̃n| = O(ε2). (3.5)

Since

Aŷ − b = U · diag

{ −σn

σ2
1 + σn

, . . . ,
−σn

σ2
n + σn

}
· b̃,

we have

‖Aŷ − b‖2 =

n∑

i=1

(
σn|b̃i|

σ2
i + σn

)2

,
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where

σn

σ2
i + σn

= O(ε), for i = 1, . . . , n − 1,

and ‖b̃‖ = O(ε). Although

σn

σ2
n + σn

= Θ(1),

we have from (3.5) that |b̃n| = O(ε2), hence

‖Aŷ − b‖ = O(ε2). (3.6)

Finally, from the Taylor expansion of F at x̂, we have

‖F (x̂ + ŷ)‖ ≤ ‖ − b + Aŷ‖ + O(ε2) = O(ε2).

According to Theorem 3.2, after applying one regularized Newton iteration to
F and x̂, we get ŷ satisfies (3.3), and the new approximate singular solution x̂ + ŷ

satisfies

‖x̂ + ŷ − x̂e‖ ≤ ‖x̂ − x̂e‖ + ‖ŷ‖ = ε + O(ε).

If

‖x̂ + ŷ − x̂e‖ = O(ε2),

then we have already achieved the quadratic convergence. However, the convergence
of the regularized Newton iteration is also not guaranteed when the Jacobian matrix
is near singular. Hence, in most cases, we will have

‖x̂ + ŷ − x̂e‖ = Θ(ε). (3.7)

We show below how to restore the quadratic convergence when the computed approx-
imate singular solution x̂ + ŷ satisfies (3.3) and (3.7).

If L1 ∈ △(1)
x̂+ŷ(I) is not D(1, 0, . . . , 0), as pointed out by Stetter in [35], we can

compute the right singular vector of F ′(x̂ + ŷ) corresponding to its smallest singular
value σ′

n, denoted by r1 satisfying ‖r1‖ = 1 and

‖F ′(x̂ + ŷ) r1‖ = σ′
n = O(ε). (3.8)

Let us form a unitary matrix R = [r1, . . . , rn] and perform the linear transforma-
tion

H(z) = F (R z). (3.9)

It is clear that

ẑe = R−1x̂e (3.10)

is an exact root of H(z) and

ẑ = R−1 (x̂ + ŷ) (3.11)
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is an approximate root of H(z). Moreover, we have

‖ẑ− ẑe‖ = ‖R−1(x̂ + ŷ − x̂e)‖ = ‖x̂ + ŷ − x̂e‖ = Θ(ε), (3.12)

‖H(ẑ)‖ = ‖F (x̂ + ŷ)‖ = O(ε2), (3.13)

and
∥∥∥∥

∂H(ẑ)

∂z1

∥∥∥∥ = ‖F ′(x̂ + ŷ)r1‖ = σ′
n = O(ε). (3.14)

Hence, the condition (3.7) is equivalent to (3.12). Here and hereafter, we always
assume that ẑ satisfies

‖ẑ − ẑe‖ = Θ(ε). (3.15)

Theorem 3.3. The root ẑe defined in (3.10) is an isolated singular solution of
H with the multiplicity µ and the corank of H ′(ẑe) is one.

Proof. Since H ′(ẑe) = F ′(x̂e)R and R is a unitary matrix, we derive that the
corank of H ′(ẑe) is one. Let µ′ be the multiplicity of ẑe, and {L0, L1, . . . , Lµ′−1} be
a closed basis of the local dual space of H at ẑe. The operator ΓR : SpanC(D) →
SpanC(D) is defined by:

ΓR(D(α)) := ΓR

(
1

α1! · · ·αn!

∂α1+···+αn

∂zα1

1 · · · ∂zαn
n

)

=
1

α1! · · ·αn!

∂α1+···+αn

∂(r∗1 · x)
α1 · · · ∂(r∗n · x)

αn

=
1

α1! · · ·αn!

∑

|β|=|α|
cβ · ∂β1+···+βn

∂xβ1

1 · · ·∂xβn
n

,

=
1

α1! · · ·αn!

∑

|β|=|α|
cβ · β1! · · ·βn! · D(β),

where cβ is the coefficient of ∂β1+···+βn

∂x
β1
1

···∂x
βn
n

in the expansion of ∂α1+···+αn

∂(r∗
1
·x)α1 ···∂(r∗n·x)αn . Since

H(z) = F (R z) and x = R z, according to multivariate chain rules, we have

ΓR(Lk)(F )x=x̂e
= Lk(H)z=ẑe

= 0,

and for 1 ≤ j ≤ n,

Φj(ΓR(Lk)) =ΓR

(
n∑

i=1

ri,jΦi(Lk)

)

=ΓR

(
k−2∑

i=1

(ak−i,2r2,j + · · · + ak−i,nrn,j)Li + r1,jLk−1

)

=

k−1∑

i=1

(ak−i,2r2,j + · · · + ak−i,nrn,j)ΓR(Li) + r1,jΓR(Lk−1),
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where 0 ≤ k ≤ µ′ − 1. Hence, {ΓR(L0), ΓR(L1), . . . , ΓR(Lµ′−1)} is a closed basis of

△(µ′−1)
x̂e

(I) and µ′ ≤ µ. On the other hand, since F (x) = H(R−1 x), we derive that
µ ≤ µ′. Hence, µ′ = µ.

Remark 3.4. Since H ′(ẑ) = F ′(x̂+ŷ)R and R is a unitary matrix, we derive that
the singular values of H ′(ẑ) are the same as those of F ′(x̂+ŷ) and the corank of H ′(ẑ)
is one approximately. Suppose {L0, L1, . . . , Lµ−1} is a closed basis of the approximate
local dual space of H at ẑ, where L0 = D(0, . . . , 0) and L1 = D(1, 0, . . . , 0). From the
proof of Theorem 3.3 and (2.6), we have

ΓR(Lk)(F )x=x̂+ŷ = Lk(H)z=ẑ = O(ε),

and

Φj(ΓR(Lk)) ∈ Span{ΓR(L1), . . . , ΓR(Lk−1)},

where 0 ≤ k ≤ µ − 1 and 1 ≤ j ≤ n. Hence, {ΓR(L0), ΓR(L1), . . . , ΓR(Lµ−1)} is a
closed basis of △x̂+ŷ(I).

Remark 3.5. It should be noticed that Theorem 3.3 holds as long as R is a
regular matrix. However, if we choose a unitary matrix R, then it is much easier to
compute the inverse of R since R−1 = R∗.

It is interesting to notice that, after running one regularized Newton iteration,
the last n − 1 elements of the solution ẑ have already been refined quadratically.

Theorem 3.6. Suppose ẑe and ẑ are defined in (3.10) and (3.11) respectively.
Under Assumption 1, we have

|ẑ1,e − ẑ1| = Θ(ε), (3.16)

and

|ẑi,e − ẑi| = O(ε2), for i = 2, . . . , n. (3.17)

Proof. From the Taylor expansion of H(z) at ẑ, we have

H(ẑe) = H(ẑ) + H ′(ẑ)(ẑe − ẑ) + O(ε2).

Since H(ẑe) = 0 and ‖H(ẑ)‖ = O(ε2), we have

‖H ′(ẑ)(ẑe − ẑ)‖ = O(ε2).

From (3.14) and (3.15), we have

∥∥∥∥
∂H(ẑ)

∂z1
(ẑ1,e − ẑ1)

∥∥∥∥ = O(ε2),

and
∥∥∥∥
[
∂H(ẑ)

∂z2
, . . . ,

∂H(ẑ)

∂zn

]
· [ẑ2,e − ẑ2, . . . , ẑn,e − ẑn]T

∥∥∥∥ = O(ε2).

According to Remark 3.4, the matrix
[

∂H(ẑ)
∂z2

, . . . , ∂H(ẑ)
∂zn

]
is of full column rank, so

that (3.17) is correct. The equation (3.16) follows from (3.15) and (3.17).
If the multiplicity µ is larger than 2, the regularity assumption in [13] will not

be satisfied. The violation of the regularity assumption is caused by the existence of
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the higher order differential condition. It is interesting to notice that the left singular
vector of the Jacobian matrix H ′(ẑ) corresponding to the smallest singular value can
be used to prove the following theorem.

Theorem 3.7. If the multiplicity of the singular root is larger than 2, under
Assumption 1, we have

‖L1(H)z=ẑ‖ =

∥∥∥∥
∂H(ẑ)

∂z1

∥∥∥∥ = O(ε2).

Proof. If µ > 2, according to Theorem 2.4 and (2.6), there exists a second order
differential condition such that

‖L2(H)z=ẑ‖ =

∥∥∥∥
(

1

2

∂2

∂z2
1

+ a2,2
∂

∂z2
+ · · · + a2,n

∂

∂zn

)
(H)z=ẑ

∥∥∥∥ = O(ε). (3.18)

Suppose un is the left singular vector of H ′(ẑ) corresponding to the smallest
singular value σ′

n and ‖un‖ = 1, then

∣∣∣∣u
∗
n

∂H(ẑ)

∂zi

∣∣∣∣ = O(ε), 1 ≤ i ≤ n. (3.19)

From (3.18) and (3.19), we have

∣∣∣∣u
∗
n

∂2H(ẑ)

∂z2
1

∣∣∣∣ = O(ε). (3.20)

Therefore, we get

∣∣∣∣u
∗
n

∂2H(ẑ)

∂z2
1

(ẑ1,e − ẑ1)
2

∣∣∣∣ = O(ε3). (3.21)

From the Taylor expansion of H(z) at ẑ, we have

H(ẑe) = H(ẑ) + H ′(ẑ)(ẑe − ẑ) + H ′′(ẑ)(ẑe − ẑ)2 + O(ε3), (3.22)

where (ẑe − ẑ)2 denotes the vector of all monomials with degree 2 and H ′′(ẑ) consists
of all second order derivatives of H evaluated at ẑ.

According to Theorem 3.6, all elements in (ẑe− ẑ)2 are O(ε3) except the first one.
Combining with (3.21), we have

∣∣u∗
n H ′′(ẑ)(ẑe − ẑ)2

∣∣ = O(ε3). (3.23)

On the other hand, the Taylor expansion of H(z) at ẑe shows that

H(ẑ) = H(ẑe) + H ′(ẑe)(ẑ − ẑe) + H ′′(ẑe)(ẑ − ẑe)
2 + O(ε3).

Since the corank of H ′(ẑe) is one, suppose ue is the left null vector of H ′(ẑe) and
‖ue‖ = 1, then

u∗
eH

′(ẑe) = 0.

Notice that

‖u∗
eH

′(ẑ)‖ = ‖u∗
e[H

′(ẑ) − H ′(ẑe)]‖ ≤ ‖H ′(ẑ) − H ′(ẑe)‖ = O(ε),



10

and H ′(ẑ) has corank one approximately, so that ‖un −ue‖ = O(ε). Moreover, using
the same analysis above, we obtain that

|u∗
eH

′′(ẑe)(ẑ − ẑe)
2| = O(ε3).

Hence, we have |u∗
eH(ẑ)| = O(ε3). Noticing ‖H(ẑ)‖ = O(ε2), we get

|u∗
nH(ẑ)| ≤ |(un − ue)

∗H(ẑ)| + |u∗
eH(ẑ)| = O(ε3). (3.24)

Combining (3.22), (3.23) and (3.24), we have

|u∗
nH ′(ẑ)(ẑe − ẑ)| = O(ε3), (3.25)

which is equivalent to

|σ′
n v∗

n(ẑe − ẑ)| = O(ε3), (3.26)

where vn = [1, 0, . . . , 0]T is the right singular vector of H ′(ẑ) corresponding to σ′
n.

Hence, |σ′
n(ẑ1,e − ẑ1)| = O(ε3). Based on (3.16), we have

σ′
n = O(ε2). (3.27)

Moreover, from (3.14), we have

‖L1(H)z=ẑ‖ =

∥∥∥∥
∂H(ẑ)

∂z1

∥∥∥∥ = O(ε2). (3.28)

It is amazing to notice that not only the first order differential condition computed
according to Theorem 2.4 satisfies (3.28), but also all other differential conditions up
to the order µ − 2 ≥ 0 satisfy similar conditions:

‖Li(H)z=ẑ‖ = O(ε2), for i = 0, . . . , µ − 2. (3.29)

3.2. An Augmented Polynomial System. To prove (3.29) inductively, we
need to introduce an augmented polynomial system and prove the following theorem.

Theorem 3.8. Let us assume that H(z) is a polynomial system which has ẑe

as an isolated exact singular solution with the multiplicity µ, the corank of H ′(ẑe)
is one. Let I be the ideal generated by polynomials in H and {L0, L1, . . . , Lµ−1}
be a closed basis of △ẑe

(I), where L0 = D(0, . . . , 0), L1 = D(1, 0, . . . , 0) and Lk =
Pk + ak,2D(0, 1, . . . , 0) + · · · + ak,nD(0, . . . , 1) constructed according to Theorem 2.4.
The augmented polynomial system

G(z, λ) :=





H(z),
H ′(z) · λ,
λ1 − 1,

(3.30)

where λ = [λ1, . . . , λn]T has an isolated singular solution (ẑe, λ̂e) with the multiplicity

µ − 1, where λ̂e = [1, 0, . . . , 0]T . If µ ≥ 3 then the Jacobian matrix G′(ẑe, λ̂e) has
corank one and

L̃1 =
∂

∂z1
+ 2a2,2

∂

∂λ2
+ · · · + 2a2,n

∂

∂λn

(3.31)
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satisfies L̃1(G)(z,λ)=(ẑe,λ̂e) = 0. Moreover, starting from L̃0 = D(0, . . . , 0) and L̃1,

for 2 ≤ k ≤ µ − 2, the k-th order differential condition of G at (ẑe, λ̂e) retaining the
closedness has the following form:

L̃k = P̃k +ak,2
∂

∂z2
+ · · ·+ak,n

∂

∂zn

+(k+1)ak+1,2
∂

∂λ2
+ · · ·+(k+1)ak+1,n

∂

∂λn

(3.32)

where

P̃k = Pk + Ψn+2(Qk,n+2) + Ψn+3(Qk,n+3)αn+2=0 + · · · + Ψ2n(Qk,2n)αn+2=···=α2n−1=0

(3.33)
and

Qk,n+j = Φn+j(P̃k) = 2a2,jL̃k−1 + · · · + kak,jL̃1, 2 ≤ j ≤ n. (3.34)

Proof. The Jacobian matrix of G(z, λ) at (ẑe, λ̂e) is

G′(ẑe, λ̂e) =




H ′(ẑe) 0

H ′′(ẑe) · λ̂e H ′(ẑe)

0 λ̂T
e


 ,

where H ′′(ẑe)·λ̂e =
[

∂2H(ẑe)
∂z2

1

, . . . , ∂2H(ẑe)
∂z1∂zn

]
. Since the corank of H ′(ẑe) is one and L1 =

D(1, 0, . . . , 0) ∈ △(1)
ẑe

(I), the first column of H ′(ẑe) is a zero vector and the remaining

columns of H ′(ẑe) are linearly independent. Moreover, since λ̂T
e = [1, 0, . . . , 0], the

last 2n − 1 columns of G′(ẑe, λ̂e) are linearly independent and its corank is less than
one.

If µ ≥ 3, the second order differential condition of H at ẑe has the form L2 =
D(2, 0, . . . , 0) + a2,2D(0, 1, 0, . . . , 0) + · · · + a2,nD(0, . . . , 0, 1). From L2(H)z=ẑe

= 0,
we have

1

2

∂2H(ẑe)

∂z2
1

+ a2,2
∂H(ẑe)

∂z2
· · · + a2,n

∂H(ẑe)

∂zn

= 0.

The vector v = [1, 0, . . . , 0, 2a2,2, . . . , 2a2,n]T is a null vector of G′(ẑe, λ̂e). Therefore,

the Jacobian matrix G′(ẑe, λ̂e) has corank one and the first order differential operator
L̃1 in (3.31) satisfies

L̃1(H
′(z) · λ)(z,λ)=(ẑe,λ̂e) = 2L2(H)z=ẑe

= 0. (3.35)

Hence, we have

L̃1(G)(z,λ)=(ẑe,λ̂e) = 0. (3.36)

Using similar arguments in [20] for proving Theorem 2.4, we can show that the dif-
ferential operators L̃k defined by formulas (3.32), (3.33) and (3.34) retain the closed-
ness. It should also be noticed that L̃k always contains the differential monomial
D(k, 0, . . . , 0) and there are no differential monomials D(i, 0, . . . , 0) for i < k con-
tained in L̃k. Otherwise, we can reduce them by L̃i. Moreover, ∂

∂λ1
is not contained

in any L̃k, otherwise, L̃k(λ1)(z,λ)=(ẑe,λ̂e) 6= 0. Hence, due to the closedness, there

are no differential operators D(α1, . . . , αn, αn+1, . . . , α2n) with αn+1 > 0 contained in
any L̃k.
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Now let us show that the constructed differential operators L̃k satisfy

L̃k(G)(z,λ)=(ẑe,λ̂e) = 0, for 1 ≤ k ≤ µ − 2. (3.37)

From (3.36), we can see that (3.37) is true for k = 1. Moreover, it is easy to check
that

L̃k(H)(z,λ)=(ẑe,λ̂e) =

(
Pk + ak,2

∂

∂z2
+ · · · + ak,n

∂

∂zn

)
(H)z=ẑe

= 0, (3.38)

and

L̃k(λ1)(z,λ)=(ẑe,λ̂e) = 0. (3.39)

Based on formulas (3.32), (3.33) and (3.34), we have

L̃k(H ′(z) · λ)(z,λ)=(ẑe,λ̂e) =

Lk

∂

∂z1
+

n∑

j=2

(2 a2,jLk−1 + · · · + k ak,jL1 + (k + 1) ak+1,j)
∂

∂zj


 (H)z=ẑe

.

Let us set

Qk+1 = Lk

∂

∂z1
+

n∑

j=2

(2 a2,jLk−1 + · · · + k ak,jL1)
∂

∂zj

. (3.40)

We prove inductively that

Qk+1 = (k + 1)Pk+1. (3.41)

Hence, we have

L̃k(H ′(z) · λ)(z,λ)=(ẑe,λ̂e)

=
(
(k + 1)Pk+1 + (k + 1)ak+1,2

∂
∂z2

+ · · · + (k + 1)ak+1,n
∂

∂zn

)
(H)z=ẑe

= (k + 1)Lk+1(H)z=ẑe
= 0.

(3.42)

From (3.38), (3.39) and (3.42), we derive that (3.37) is true for 1 ≤ k ≤ µ − 2.
Corollary 3.9. Suppose F (x) is a polynomial system which has x̂e as an iso-

lated exact singular solution with the multiplicity µ and the corank of F ′(x̂e) is one.
Let r1 be the null vector of F ′(x̂e) and ‖r1‖ = 1. For any random vector h ∈ Cn

satisfying h∗r1 6= 0, the augmented polynomial system

J(x, ν) :=





F (x),
F ′(x) · ν,
h∗ν − 1,

(3.43)

has (x̂e,
r1

h∗r1
) as an isolated singular solution with the multiplicity µ − 1.

Proof. Let {r1, . . . , rn} be a normal orthogonal basis of C
n, then h = (h∗r1)r1 +

· · · + (h∗rn)rn. If h∗r1 6= 0, performing the linear transformation

x = R z, ν = R λ,
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where R =
[

r1

h∗r1
, r2 − h∗r2

h∗r1
r1, . . . , rn − h∗rn

h∗r1
r1

]
is a regular matrix, we obtain the

augmented polynomial system

G(z, λ) :=





H(z),
H ′(z) · λ,
λ1 − 1,

where

H(z) = F (R z), H ′(z) · λ = F ′(x) · R · R−1ν, λ1 − 1 = h∗ν − 1.

According to Theorem 3.8, we know that (ẑe, λ̂e) is an isolated singular solution of

G with the multiplicity µ − 1, where ẑe = R−1x̂e and λ̂e = [1, 0, . . . , 0]T . Hence, by

Theorem 3.3 and Remark 3.5,
(
x̂e,

r1

h∗r1

)
is an isolated singular solution of J(x, ν)

with the multiplicity µ − 1.
Remark 3.10. It is well known that the augmented polynomial system J(x, ν)

defined in (3.43) has an isolated singular solution
(
x̂e,

r1

h∗r1

)
with the multiplicity less

than µ, see [18, 5]. Here, we proved the conjecture in [5] that the multiplicity of the
singular solution of the augmented polynomial system (3.43) drops by one exactly in
the breadth one case.

Remark 3.11. For the system H(z) and its approximate singular solution ẑ de-

fined in (3.9) and (3.11), the augmented polynomial system defined in (3.30) has (ẑ, λ̂)

(λ̂ = [1, 0, . . . , 0]T ) as an approximate solution. Suppose {L0, . . . , Lµ−1} is a closed
basis of the approximate local dual space of the system H at ẑ constructed according to
Theorem 2.4, from L0 = D(0, . . . , 0) and L1 = D(1, 0, . . . , 0), then {L̃0, L̃1, . . . , L̃µ−2}
constructed according to Theorem 3.8 is a closed basis of the approximate local dual
space of the system G at (ẑ, λ̂), satisfying





‖L̃k(H)(z,λ)=(ẑ,λ̂)‖ = ‖Lk(H)z=ẑ‖ = O(ε),

‖L̃k(H ′λ)(z,λ)=(ẑ,λ̂)‖ = ‖(k + 1)Lk+1(H)z=ẑ‖ = O(ε),

‖L̃k(λ1)(z,λ)=(ẑ,λ̂)‖ = 0,

for 1 ≤ k ≤ µ − 2.
Theorem 3.12. Let F (x) be a polynomial system which has x̂e as an isolated

exact singular solution with the multiplicity µ and the breadth one. Suppose x̂ is an
approximate solution of F which satisfies

‖x̂ − x̂e‖ = Θ(ε) and ‖F (x̂)‖ = O(ε2), (3.44)

for a small positive number ε. Let σ1, . . . , σn be the singular values of F ′(x̂) satisfying
σi = Θ(1), 1 ≤ i ≤ n − 1 and σn = O(ε). Suppose r1 is the right singular vector
corresponding to σn. We form a unitary matrix R = [r1, . . . , rn] and set H(z) =
F (R z). Suppose {L0, . . . , Lµ−1} is a closed basis of the approximate local dual space
of the system H at ẑ = R−1 x̂ constructed according to Theorem 2.4 from L0 =
D(0, . . . , 0) and L1 = D(1, 0, . . . , 0), then

‖Li(H)z=ẑ‖ = O(ε2), for i = 0, . . . , µ − 2.
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Remark 3.13. Under Assumption 1, according to Theorem 3.2, we can always
perform the regularized Newton iteration to obtain an approximate singular solution
x̂ satisfying (3.44). Moreover, it should also be noticed that all discussions in Section
3.1 after Theorem 3.2 are valid if we start with an approximate singular solution
satisfying (3.44).

Proof. According to (3.13) and Theorem 3.7, we know that Theorem 3.12 is true
for µ = 2 and µ = 3.

Now let us assume that Theorem 3.12 is true for µ = k and k ≥ 3. For µ = k +1,
we form the augmented polynomial system G(z, λ) = {H(z), H ′(z) · λ, λ1 − 1}.

According to Theorem 3.3, the root ẑe defined in (3.10) is an exact singular
solution of H(z) with the multiplicity µ and the corank of H ′(ẑe) is one. Let v be
the null vector of H ′(ẑe) and ‖v‖ = 1. Since

‖H ′(ẑ)v‖ = ‖[H ′(ẑ) − H ′(ẑe)]v‖ = O(ε), (3.45)

[
∂H(ẑ)

∂z2
, . . . , ∂H(ẑ)

∂zn

]
is of full column rank, combining with (3.14), we derive that

v1 = Θ(1), and vi = O(ε), for 2 ≤ i ≤ n. (3.46)

Set h = [1, 0, . . . , 0]T , we have h∗v = v1 = Θ(1) 6= 0.
According to Corollary 3.9, the augmented polynomial system G(z, λ) has

(
ẑe,

v
h∗v

)
=

(ẑe, λ̂e), where

λ̂e =

[
1,

v2

v1
, . . . ,

vn

v1

]T

,

as an isolated singular solution with the multiplicity µ − 1, which is equal to k.
According to Remark 3.11, (ẑ, λ̂) (λ̂ = [1, 0, . . . , 0]T ) is an approximate solution of
G(z, λ). Moreover, by (3.15) and (3.46), we have

‖(ẑ, λ̂) − (ẑe, λ̂e)‖ =

√
‖ẑ− ẑe‖2 + ‖λ̂ − λ̂e‖2 = Θ(ε).

Furthermore, from (3.13) and (3.28), we have

‖G(ẑ, λ̂)‖ =

√

‖H(ẑ)‖2 +

∥∥∥∥
∂H(ẑ)

∂z1

∥∥∥∥
2

= O(ε2).

We have assumed that Theorem 3.12 is true when the multiplicity is equal to
k. Therefore, for the augmented polynomial system G(z, λ), we can form a unitary
matrix R̄ with r1 = 1

a
[1, 0, . . . , 0, 2a2,2, . . . , 2a2,n]T as its first column, where a =√

1 + 4(a2
2,2 + · · · + a2

2,n), then generating a new system J(w) = G(R̄ w) which has an

approximate singular solution ŵ with the multiplicity k. By the inductive assumption,
we have

‖L̄i(J)w=ŵ‖ = O(ε2), for 0 ≤ i ≤ k − 2,

where L̄i is the i-th differential condition of J at ŵ constructed by Theorem 2.4 from
L̄0 = D(0, . . . , 0) and L̄1 = D(1, 0, . . . , 0). According to Theorem 3.3,

L̄i(J)w=ŵ = ΓR̄(L̄i)(G)(z,λ)=(ẑ,λ̂).
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Since {L̃0, L̃1, . . . , L̃k−1} and {ΓR̄(L̄0), ΓR̄(L̄1), . . . , ΓR̄(L̄k−1)} are both closed basis

of the approximate local dual space of the system G at (ẑ, λ̂), and

ΓR̄(L̄0) = L̃0, and ΓR̄(L̄1) =
1

a
L̃1,

we derive that ΓR̄(L̄i) is a linear combination of {L̃0, L̃1, . . . , L̃i}. Hence, we have
‖L̃i(G)(z,λ)=(ẑ,λ̂)‖ = O(ε2), and

‖Li+1(H)z=ẑ‖ =

∥∥∥∥
1

i + 1
L̃i(H

′λ)(z,λ)=(ẑ,λ̂)

∥∥∥∥ = O(ε2).

Therefore, Theorem 3.12 is true for µ = k + 1.

3.3. An Algorithm for Refining Approximate Singular Solutions.

Algorithm 1. MultipleRootRefinerBreadthOne

Input: An approximate solution x̂ of a polynomial system F which is close to an
isolated exact singular solution of F with the multiplicity µ in the breadth one case,
and a tolerance τ .
Output: Refined solution x̂.

1. Regularized Newton Iteration: Solve the regularized least squares problem

(A∗A + σnIn)ŷ = A∗b,

where b = −F (x̂), A∗ is the Hermitian (conjugate) transpose of A = F ′(x̂),
In is the n × n identity matrix and σn is the smallest singular value of A.

2. Compute the null vector r1 of F ′(x̂ + ŷ) with respect to τ , form a unitary
matrix R with r1 as its first column and perform the linear transformation

H(z) := F (R z),

and set ẑ := R−1(x̂ + ŷ).
3. Construct a closed basis of the approximate local dual space of I = (h1, . . . , hn)

at ẑ with respect to τ :

△(µ−1)
ẑ

(I) := Span(L0, L1, . . . , Lµ−1)

by Algorithm MultiplicityStructureBreadthOneNumeric in [20].
4. Solve the linear system

[
Pµ(H)z=ẑ,

∂H(ẑ)

∂z2
, . . . ,

∂H(ẑ)

∂zn

]
v = −Lµ−1(H)z=ẑ, (3.47)

where v = [v1, · · · , vn]T and Pµ is the differential operator of order µ com-
puted by formulas in Theorem 2.4. Set δ := v1

µ
.

5. Return

x̂ := x̂ + ŷ + δ r1.

Remark 3.14. The size of matrices involved in the algorithm MultipleRootRe-

finerBreadthOne is bounded by n×n, whereas the size of matrices used in the deflation
method is bounded by (µ n) × (µ n) [5, 18].

Remark 3.15. In fact, in order to keep the sparse structure of the original
polynomial system, we should avoid performing the linear transformation. Moreover,
it is expensive to compute and store all differential conditions. Since we only need
their evaluations to solve (3.47), it’s possible to compute and store only the necessary
evaluations of these differential conditions. We will discuss these issues in forthcoming
papers.
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3.4. Quadratic Convergence of the Algorithm.

Theorem 3.16. Under Assumptions 1, the refined singular solution x̂ returned
by Algorithm MultipleRootRefinerBreadthOne satisfies

‖x̂− x̂e‖ = O(ε2). (3.48)

Proof. According to Theorem 3.12, we have Li(H)z=ẑ = O(ε2), for 0 ≤ i ≤ µ− 2.
Since

Φk(Li) ∈ Span(L0, . . . , Lµ−2), for 1 ≤ k ≤ n,

we have

‖Li((zk−ẑk)H)z=ẑ‖ = ‖Φk(Li)(H)z=ẑ‖ = O(ε2), for 1 ≤ k ≤ n, 0 ≤ i ≤ µ−1. (3.49)

The matrix in (3.47) is of full rank. We solve the linear system (3.47) to obtain
the vector v = [v1, . . . , vn]T such that Lµ(H)z=ẑ = 0 for

Lµ := Lµ−1 + v1 · Pµ + v2 ·
∂

∂z2
+ · · · + vn · ∂

∂zn

. (3.50)

It should be noticed that the vector v satisfies ‖v‖ = O(ε) since ‖Lµ−1(H)z=ẑ‖ =
O(ε). Moreover,

Φk(Lµ) ∈ Span(L0, . . . , Lµ−2), for 2 ≤ k ≤ n,

we have

‖Lµ((zk − ẑk)H)z=ẑ‖ = ‖Φk(Lµ)(H)z=ẑ‖ = O(ε2), for 2 ≤ k ≤ n. (3.51)

For k = 1, since ‖Φ1(v1Pµ)(H)z=ẑ‖ = ‖v1Lµ−1(H)z=ẑ‖ = O(ε2), we have

‖Lµ((z1 − ẑ1)H)z=ẑ‖ = ‖Φ1(Lµ)(H)z=ẑ‖ = O(ε2). (3.52)

From (3.49) and (3.52), for i = 0, 1, . . . , µ − 2, µ, we have

‖Li(p · H)z=ẑ‖ = O(ε2), ∀p ∈ {(z1 − ẑ1)
α1 · · · (zn − ẑn)αn , α1 ≥ 0, . . . , αn ≥ 0}.

Especially, we have

‖Mµ+1 · Li(v(z)µ)z=ẑ‖ = O(ε2),

where Mµ+1 is the coefficient matrix of the Taylor expansion of the system H and all
its prolongations up to the degree µ at ẑ, and

v(z)µ =
[
(z1 − ẑ1)

µ, (z1 − ẑ1)
µ−1(z2 − ẑ2), . . . , z1 − ẑ1, . . . , zn − ẑn, 1

]T
.

It is important to notice that, based on the closedness conditions, we obtain the
null space of Mµ+1 with matrices of size n × n instead of generating the big matrix
Mµ+1. Similarly to the analysis in [39, Remark 18], the trace of the multiplication

matrix M̃z1
formed from approximate null vectors Li(v(z)µ)z=ẑ has the following

property

1

µ
Tr(M̃z1

) =
1

µ
Tr(Mz1

) + O(ε2) = −ẑ1,ǫ + O(ε2). (3.53)
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It is interesting to notice that, by using the approximate basis {L0, . . . , Lµ−2, Lµ} and

the normal set
{

1, ∂
∂z1

, . . . , ∂µ−1

∂z
µ−1

1

}
, we can form the multiplication matrix

M̃z1
·




l0 0 · · · 0

0 l1
. . .

...
...

. . .
. . . 0

0 · · · 0 lµ−1




=




0 l1 0 · · · 0

0 0 l2
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . lµ−1

0 · · · · · · 0 v1 · lµ−1




,

where li is the coefficient of ∂i

∂zi
1

in Li. Hence, the trace of M̃z1
is v1. Therefore, there

is no need to form the multiplication matrix! According to (3.53), we have

v1

µ
+ ẑ1,ǫ = O(ε2). (3.54)

Since the last n − 1 elements of ẑ have already been refined quadratically, by
updating ẑ1 := ẑ1 + δ for δ := v1

µ
, we have

‖x̂− x̂e‖ = ‖R (ẑ − ẑe)‖ = O(ε2).

Remark 3.17. The algorithm MultipleRootRefinerBreadthOne also works well for
some overdetermined polynomial systems, i.e., the number of polynomials is bigger
than the number of variables, see the example Menzel1 in Table 4.

4. Experiments. We implement the algorithm MultipleRootRefinerBreadthOne

in Maple. The following experiments are done in Maple 15 under Windows 7 for
Digits := 14. Let t and s be the number of polynomials and variables respectively,
µ be the multiplicity. The last column lists the increase in the number of correct
digits from the initial guess to the final approximation, and gives the number of
iterations necessary to get the desired precision. The first 5 examples are cited from
the PHCpack demos by Jan Verschelde. Systems DZ3 and Dayton2 are quoted from
[3, 5]. Menzel1 and SY5 are cited from [23] and [33] respectively. The last three
examples GLSY1, GLSY2, GLSY3 correspond to Example 2 in [10] for N = 5, 10, 20
respectively. Example 1 is kindly provided by the reviewer.

Example 1. The system

{32y − 24z + 8u − v − 16,−x2 + y,−y2 + z,−yz + u,−z2 + v}

has a 4-fold solution:

{u = 8, v = 16, x =
√

2, y = 2, z = 4}.

Remark 4.1. It should be noticed that the tolerance has to be chosen carefully
in order to obtain the true multiplicity of the singular solution. You may increase or
decrease the tolerance to achieve the quadratical convergence. For the example DZ3,
we choose the tolerance to be 10−1. For Example 1, the tolerance is set to be 10−8 to
achieve the quadratical convergence. For other examples listed in Table 4, we choose
the tolerance to be 10−2. Since the tolerance can range from 0.1 to 10−10, it is not
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System Zero t s µ # Digits
Ojika1 (1, 2) 2 2 3 2 → 3 → 8 → 16
Ojika2 (1, 0, 0) 3 3 2 2 → 3 → 7 → 14
Ojika3 (−2.5, 2.5, 1) 3 3 2 2 → 4 → 7 → 16
Ojika4 (0, 0, 10) 3 3 3 3 → 4 → 8 → 17

Decker2 (0, 0) 2 2 4 3 → 8 → 25

DZ3 (2
√

7
5 +

√
5

5 ,−
√

7
5 + 2

√
5

5 ) 2 2 5 3 → 8 → 12
Dayton2 (0, 0, 0) 3 3 5 3 → 5 → 10 → 20

SY5 (1, 1) 2 2 2 2 → 4 → 9 → 19
Menzel1 (1, 1) 3 2 2 2 → 4 → 9 → 20

Example 1 (8, 16,
√

2, 2, 4) 4 5 5 3 → 8 → 13
GLSY1 (0, 0, 0) 3 3 4 3 → 5 → 11 → 16
GLSY2 (0, 0, 0) 3 3 4 3 → 6 → 12 → 15
GLSY3 (0, 0, 0) 3 3 4 3 → 5 → 11 → 16

Algorithm Performance

easy for a user to choose a correct tolerance to obtain the correct multiplicity and
achieve the quadratic convergence. We are going to improve our algorithm in future
so that it will not be very sensitive to a user chosen tolerance.

The last three examples from [10] show that our algorithm works also well for
slightly perturbed systems. The output of the algorithm converges quadratically to the
origin. Although it might not be meaningful to compute a solution near a cluster to 15
digits, it is still interesting to see that our algorithm actually converges quadratically
to the true singular solution (0, 0, 0) of the nearby singular system for N = +∞.

The Maple code of the algorithm and test results are available http: // www. mmrc.

iss. ac. cn/ ~ lzhi/ Research/ hybrid/ rootrefinerbreadthone .

5. Conclusion. It is a challenge problem to solve the polynomial systems with
singular solutions. Various symbolic-numeric methods have been proposed for refining
an approximate singular solution to high accuracy [2, 4, 5, 9, 10, 17, 18, 27, 38, 39].
The breadth one case root refinement has been studied in [4, 5, 10, 13]. In this paper,
we show how to apply strategies in [20] to reduce the size of matrices that appear
in [5, 38] to obtain a more efficient algorithm for refining an approximately known
multiple root for this special case. We have proved the quadratic convergence of the
new algorithm when the approximate solution is close to the isolated exact singular
solution. We also notice that when the singular solution x̂e is not well separated
from other solutions of F , it is difficult to ensure that the approximate solution x̂

will converge to x̂e. In [32], they described an algorithm for computing verified error
bounds for double roots of polynomial systems. We will explore ways of computing
the certified bound for ε to guarantee the convergence of our algorithm. It is also
interesting to see whether the approach in the paper can be generalized to refine
singular solutions when the Jacobian matrix is not of corank one.

Acknowledgments. The authors wish to thank the reviewers for valuable sug-
gestions and comments that have improved the presentation of the paper.
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