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Abstract

A Laurent-Ore algebra L over a field F is a mathematical abstraction of common prop-

erties of linear partial differential and difference operators. A linear (partial) functional

system is of the form A(z) = 0 where A is a matrix over L and z is a vector of unknowns.

Typically, it is a system consisting of linear partial differential, shift and q-shift operators,

or any mixture thereof.

We associate to a linear functional system A(z) = 0 an L-module MA, which is called

the module of formal solutions. For our purpose, the dimension of an L-module is defined

to be the dimension of the module as a vector space over F . A system A(z) = 0 is said to

be ∂-finite if MA has finite dimension.

A Picard-Vessiot extension for a ∂-finite system A(z) = 0 is a ring containing “all”

solutions of A(z) = 0. We prove the existence of Picard-Vessiot extensions for all ∂-finite

linear functional systems and show that the dimension of the solution space of a ∂-finite

system equals the dimension of its module of formal solutions.

The Gröbner basis techniques for left ideals in Ore algebras are extended to left submod-

ules over Laurent-Ore algebras. This extension enables us to determine whether a linear

functional system is ∂-finite.

We present an algorithm for finding all submodules of an L-module with finite dimension.

This algorithm allows us to find all “subsystems” whose solution spaces are contained in

that of a given ∂-finite linear functional system.
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Marc Gaëtano and Stéphane Dalmas for their valuable assistances.

I appreciate many members of the Key Laboratory of Mathematics and Mechanization for

their help, particularly, Wen-tsun Wu for his great influence on mathematics-mechanization,

and Xiaoshan Gao for recommending me to join in the Sino-France Scientific Cooperation

Programme and for offering sincere advices on my graduate study.

Much of the work in this thesis was greatly inspired by the book Galois Theory of Linear

Differential Equations by Marius van der Put and Michael F. Singer. Especially, I thank

Michael F. Singer for his encouragement and valuable comments.



Acknowledgements iii

I have spent three months in the ORCCA Laboratory at the University of Western Ontario

in the winter of 2003. I am grateful to Stephen Watt for inviting and hosting me in the

laboratory. My thanks go to Marc Moreno Maza for his helpful lectures on advanced

computer algebra and the introduction to Aldor, to Arne Storjohann for his patience in

explaining one of his papers to me and to Rob Corless, David Jeffrey and Greg Reid for

their warm greetings. I thank Xiaofang Xie, Yuzhen Xie, Wenqin Zhou and many other

“lab-mates” for their assistance and the happy time they brought to me.

My special thanks go to Wen-shin Lee and Ha Le for friendship and timely help.
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Chapter 1

Introduction

1.1 Motivation

A (partial) linear functional system consists of linear partial differential, shift, and q-shift

operators. The following is an example:
P ′′(x, k)− 2x

1−x2P
′(x, k) + k(k+1)

1−x2 P (x, k) = 0

P (x, k + 2)− (2k+3)x
k+2 P (x, k + 1) + k+1

k+2P (x, k) = 0 .
(1.1)

The sequence of the Legendre polynomials {P (x, k)}∞k=1 is a solution of (1.1) with the initial

conditions:

P (0, 0) = 0, P ′(0, 0) = 0, P (0, 1) = 0, P ′(0, 1) = 1.

Given a linear functional system L, we are interested in the following questions: (i) Does L

have a nonzero solution? (ii) Is there a ring containing “all” the solutions of L? (iii) How

does one compute the dimension of the solution space of L? (iv) How does one find (if it ex-

ists) a “subsystem” whose solution space is properly contained in that of L? (v) Determine

whether the solution space of L can be written as a direct sum of those of its subsystems?

This thesis is intended for answering these questions algorithmically for ∂-finite linear

functional systems.

1



2 §1.1 Motivation

In terms of Picard-Vessiot extensions (Definition 2.4.13) and modules of formal solu-

tions (Definition 2.4.5), the above questions translate respectively to: (i) Is a module M

of formal solutions trivial? (ii) Does there exist a Picard-Vessiot extension for a given sys-

tem? (iii) How does one compute the dimension of M? (iv) How does one find a nontrivial

submodule of M? (v) Is M decomposable?

We now briefly review some related work.

A Picard-Vessiot extension for a linear ordinary differential (resp. difference) equation is

a field (resp. ring) that contains “all” solutions of the equation. For the historical develop-

ment of Picard-Vessiot extensions and the associated Galois theory, please see [36, 37, 52, 53]

and the references therein. Picard-Vessiot fields for integrable systems of PDEs have been

studied by Kolchin [38] who proved their existence and developed the associated Galois

theory. Cassidy and Singer generalize Kolchin’s method in [17].

In [15, 16], Buchberger introduces the notion of Gröbner bases for ideals of commuta-

tive polynomials and designs an algorithm for computing Gröbner bases. The theory and

applications of Gröbner bases are described in two excellent books [23, 24]. Buchberger’s

algorithm has been extended to a class of polynomial rings [35] intermediate between the

commutative and the most general noncommutative case. An extension [19] of these results

shows that for a large class of Ore algebras, (left) Gröbner bases can be computed by a

noncommutative version of Buchberger’s algorithm. Algorithms are presented in [27, 42]

for noncommutative Gröbner bases in Poincaré-Birkhoff-Witt extensions.

The problem of factoring linear ODEs was first studied by Beke [9] and Schlesinger [57]

who brought forward the associated equations method. Schwarz [58] presents an algorithmic

description of their method, and Bronstein [12] proposes an efficient way to the actual gen-

eration of the associated equations. In [61], Tsarev describes the Plücker relation among the

factors of linear ODEs. Van Hoeij [34] develops an efficient algorithm, partially based on the

associated equations method, to factor linear ODEs. His algorithm has been implemented

in Maple.

The associated equations method also carries over to the difference case. Based on
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this method, Bronstein and Petkovšek develop a unified approach to factoring both linear

differential and difference equations in [14].

In [44, 45], Li, Schwarz and Tsarev generalize the associated equations method to factor

linear PDEs with finite-dimensional solution spaces. Their work motivates us to search for

an algorithm to factor linear (partial) functional systems.

The problem of factoring linear ODEs in positive characteristic has been studied in [51]

and [53, Ch.13]. One of the motivations for this study lies in the observation that, for

the factorization of differential operators over Q(x), the reduction modulo prime numbers

provides useful information. Giesbrecht proposes a factorization algorithm for skew polyno-

mials over finite fields in [26]. This algorithm has been extended in [28] by him and Zhang

to factor Ore polynomials in positive characteristic. At the same time, Cluzeau presents

an algorithm for the factorization of differential systems in positive characteristic [20]. Re-

cently, Barkatou, Cluzeau and Weil propose in [6, 21] a generalized algorithm for factoring

linear PDEs in positive characteristic with finite-dimensional solution spaces.

The associated equations method has been formulated in terms of (partial) differential

modules in [53], which translates the problem of factoring linear ODEs or PDEs into that of

finding submodules of their associated differential modules. The advantages of this module-

theoretic formulation are the following: (i) it is more concise since the bases of vector spaces

are used instead of bases of ideals; (ii) it is more powerful because of the convenience for

using multi-linear algebra and module theory. (iii) it is intrinsic in the sense that differential

modules for equivalent systems are isomorphic to each other. These advantages inspire us

to write our factorization algorithm in a module-theoretic setting.

The main results in this thesis include three aspects: a natural generalization of Picard-

Vessiot extensions for (∂-finite) linear functional systems; an algorithm for computing

Gröbner bases in finitely generated free modules over Laurent-Ore algebras; and an algo-

rithm for finding all submodules of a finite-dimensional module over a Laurent-Ore algebra.
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1.2 Outline of the Thesis

The outline of the thesis is as follows.

Chapter 2. The notion of (∂-finite) linear functional systems is defined. We consider the

following question. Given a linear functional system A(z) = 0, does there exist an extension

that contains “all” solutions of the system? This question can be answered by generalizing

Picard-Vessiot extensions of linear ordinary differential (difference) equations. We describe

a proper setting for studying solutions of A(z) = 0 by extending Ore algebras to Laurent-

Ore algebras L (Definition 2.4.2) and by associating an L-module M (Definition 2.4.5)

to A(z) = 0.

The main results of this chapter include the existence of fundamental matrices and

Picard-Vessiot extensions for ∂-finite linear functional systems (Theorem 2.4.13), an ap-

proach to completing partial solutions of a fully integrable system and an algorithm for

computing the linear dimension of an integrable system.

Chapter 3. We extend the classical Gröbner basis techniques in the usual commuta-

tive case to finitely generated free modules over Ore algebras. Based on this extension, we

present an algorithm for computing Gröbner bases of submodules over Laurent-Ore Alge-

bras. This algorithm allows us to determine whether a linear functional system is ∂-finite.

Chapter 4. We present an algorithm FactorModule for finding all “submodules” of a

finite-dimensional module M over a Laurent-Ore algebra. This algorithm has two build-

ing blocks: finding one-dimensional submodules of the exterior power ∧dM and deciding

whether a one-dimensional submodule is generated by a decomposable element. In addition,

we present an algorithm for determining the eigenring of M .

Chapter 5. We conclude our contribution and propose some research topics.

Many results in this thesis can be viewed as natural generalizations of their ordinary

counterparts of linear differential or difference equations. These generalizations are how-

ever necessary in view of their wider applicability and the complications caused by the

appearance of several differential and difference operators.
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1.3 Notation and Abbreviations

Throughout the thesis, rings are not necessarily commutative and have arbitrary charac-

teristic, unless otherwise specified. Ideals, modules and vector spaces are left ideals, left

modules and left vector spaces. For a ring R, the commutator of two elements a, b ∈ R

is [a, b] = ab − ba. We write 1R for the identity map on R and 0R for the zero map on R,

and we omit the subscripts when the context is clear. The notation ∼=R means “isomorphic

as R-modules”.

Fields are always assumed to be commutative. For a field F , let F ∗ = F \ {0}.

Denote by R p×q the set of all p× q matrices with entries in R, and by ein, for 1≤i≤n,

the unit vector in R1×n with 1 in the ith position and 0 elsewhere. For a field F , we

write GLn(F ) for the set of all invertible matrices of size n with entries in F . The no-

tation (·)τ denotes the transpose of a vector or matrix, and 1n is the identity matrix of

size n. Vectors are represented by the boldfaced letters u,v,w, etc. Vector of unknowns

are denoted x,y, z, etc.

The symbols C, N, Q, Z denote the complex numbers, the nonnegative integers, the

rational numbers and the integers, respectively.

In all examples throughout this thesis, the ground field is F = C(x, k), and δx and σk

denote respectively the ordinary differentiation with respect to x and the shift operator

with respect to k, unless otherwise specified.
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Chapter 2

Picard-Vessiot Extensions for

Linear Functional Systems

The goal of this chapter is to generalize fundamental matrices and Picard-Vessiot extensions

to linear functional systems. The notion of Picard-Vessiot extension fields was first defined

in [10] for fields with operators, which are more general fields where the operators do not

necessarily commute. While the associated Galois theory was developed there, the existence

of Picard-Vessiot extensions was not shown. Indeed, with automorphisms allowed, there are

fully integrable systems for which no Picard-Vessiot field exists. Picard-Vessiot fields for

integrable systems of partial differential equations have been studied by Kolchin who proved

their existence and developed the associated Galois theory [17, §2][38]. In [52, 53], Picard-

Vessiot rings for linear ordinary differential and difference systems are defined. Generalizing

the definition of Picard-Vessiot rings used for difference equations [52, (Errata)], we obtain

Picard-Vessiot rings together with a construction proving their existence. Our definition is

compatible with the previous ones: for differential systems, Picard-Vessiot rings turn out to

be integral domains, and the Picard-Vessiot fields of [38] are their fields of fractions; for ∆-

rings, the Picard-Vessiot rings are generated by elements satisfying linear scalar operator

equations, which is the defining property of the Picard-Vessiot fields of [10].

This chapter is organized as follows. The notion of (∂-finite) linear functional systems

7
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is introduced in Section 2.1. In Section 2.2, we construct Picard-Vessiot extensions for fully

integrable systems, which is a common special case of linear functional systems. In Sec-

tion 2.3, we apply Picard-Vessiot extensions to show that all the solutions of a factor of a

fully integrable system can be completed to solutions of the original system. In Section 2.4,

Picard-Vessiot extensions are generalized to ∂-finite linear functional systems. Some tech-

niques are presented in Section 2.5 to determine in practice whether a linear functional

system is ∂-finite.

Many of the results in this chapter are from [13]. New additions include Lemma 2.4.5,

Proposition 2.4.6 and the results in Sections 2.4.4 and 2.5.

2.1 Orthogonal ∆-Rings

In this section, we describe a general setting for linear functional systems.

Let R be a ring. A derivation on R is an additive map δ : R→ R satisfying

δ(ab) = δ(a)b+ aδ(b), for a, b ∈ R.

Let σ be an endomorphism of R. A σ-derivation ([19]) on R is an additive map δ : R→ R

satisfying the Leibniz rule: δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ R. Obviously, derivations

are 1R-derivations.

Definition 2.1.1 A ∆-ring (R,Φ) is a ring R endowed with a set Φ={(σ1, δ1), . . . , (σm, δm)}

where each σi is an automorphism of R, δi is a σi-derivation on R and the commuta-

tors [σi, σj ] = [δi, δj ] = [σi, δj ] = 0 for all i 6= j. When R is a field, (R,Φ) is called

a ∆-field.

Note that a ∆-ring is a (partial) differential ring if σi = 1 for all i, and a (partial)

difference ring if δi = 0 for all i.

Definition 2.1.2 We say that a ∆-ring (R,Φ) is orthogonal if δi = 0 for each i such

that σi 6= 1. By reordering the indices, we can assume that there exists an integer ` ≥ 0
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such that σi = 1 for 1 ≤ i ≤ ` and δi = 0 for ` < i ≤ m. We write (R,Φ, `) for such an

orthogonal ∆-ring.

Clearly, all the δi in an orthogonal ∆-ring are usual derivations.

Let (F,Φ) be a ∆-field where Φ = {(σ1, δ1), . . . , (σm, δm)}. The Ore algebra [19] over F

is the ring S := F [∂1;σ1, δ1] · · · [∂m;σm, δm] of polynomials in ∂i with coefficients in F ,

with the usual addition and a multiplication defined by the following rule: ∂i∂j = ∂j∂i

and ∂ia = σi(a)∂i+δi(a) for a ∈ F and 1 ≤ i ≤ m. Suppose that for each i such that σi 6= 1,

there exists ai ∈ F such that σi(ai) 6= ai and σj(ai)−ai = δj(ai) = 0 for all j 6= i. Replacing

the xi by the ai in the proof of Theorem 1 in [39], one sees that the Ore algebra S is

isomorphic to an Ore algebra B = F [∆1, . . . ,∆n] whose multiplicative rules are:

(i) ∆i∆j = ∆j∆i, (ii) ∆ia = a∆i + δi(a) if σi = 1, (iii) ∆ia = σi(a)∆i if σi 6= 1.

We call B an orthogonal Ore algebra. There are however orthogonal ∆-fields that do not

contain such ai’s, for example, the field F = C(x) together with Φ = {(1, d
dx), (σx,0)}

where σx is the automorphism of F over C that sends x to x − 1. This field is used in

modelling differential-delay equations, and does not match the definition of orthogonality

given in [39].

Definition 2.1.3 Let (F,Φ, `) be an orthogonal ∆-field. A linear functional system over F

is a system of the form A(z) = 0 where A is a p×q matrix with entries in the Ore algebra S

and z is a column vector of q unknowns. Here the action of ∂i is meant to be δi for i ≤ `

and to be σi for i > `.

Let us look at some examples for linear functional systems.

Example 2.1.4 Let F be an orthogonal ∆-field and S be the Ore algebra over F . A sys-

tem of the form {L1(z) = 0, . . . , Lp(z) = 0} with Li ∈ S can be rewritten as A(z) = 0

where A=(L1, . . . , Lp)τ ∈ Sp×1.
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Similarly, the system (1.1), satisfied by the Legendre polynomials, can be rewritten as

the linear functional system A(z) = 0 where

A =
(
∂2

x −
2x

1− x2
∂x +

k(k + 1)
1− x2

, ∂2
k −

(2k + 3)x
k + 2

∂k +
k + 1
k + 2

)τ

,

with ∂x the differentiation with respect to x and ∂k the shift operator with respect to k. �

Definition 2.1.5 Let (F,Φ, `) be an orthogonal ∆-field. A commutative ring E ⊇ F is

called an orthogonal ∆-extension of (F,Φ, `) if the σi and δi can be extended to automor-

phisms and derivations of E satisfying: (i) the commutators [σi, σj ] = [δi, δj ] = [σi, δj ] = 0

on E for all i 6= j; (ii) σi = 1E for i ≤ ` and δi = 0E for j > `.

We remark that, although ∆-rings are not necessarily commutative, all orthogonal ∆-

extensions are commutative by Definition 2.1.5.

Let E and Ẽ be two orthogonal ∆-extensions of F . A map φ : E → Ẽ is called

a morphism if φ is a ring homomorphism leaving F fixed and commutes with all the δi

and σi. Two orthogonal ∆-extensions of F are said to be isomorphic if there exists a

bijective morphism between them.

2.2 Picard-Vessiot Extensions of Fully Integrable Systems

A common special case of linear functional systems consists of fully integrable systems, which

are of the form {∂i(z) = Aiz}1≤i≤m, and correspond to the linear functional system A(z) = 0

where the matrix A is given by the stacking of blocks of the form (∂i−Ai). Fully integrable

systems are of interest to our study, since to every ∂-finite linear functional system, we can

associate a fully integrable system whose solution space is isomorphic to that of the original

system (See Proposition 2.4.12).

In this section, we generalize fundamental matrices and Picard-Vessiot extensions of lin-

ear ordinary differential and difference equations to fully integrable systems. In addition, if

the field of coefficients has characteristic 0 and has an algebraically closed field of constants,

then Picard-Vessiot extensions for such systems contain no new constants.
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2.2.1 Fully Integrable Systems

Definition 2.2.1 A system of the form

δi(z) = Aiz, 1 ≤ i ≤ ` , σi(z) = Aiz, `+ 1 ≤ i ≤ m, (2.1)

where Ai ∈ Fn×n and z is a column vector of n unknowns, is called an integrable system

of size n over F if the following compatibility conditions are satisfied:

σi(Aj)Ai + δi(Aj) = σj(Ai)Aj + δj(Ai), for all i, j. (2.2)

The integrable system (2.1) is said to be fully integrable if the matrices A`+1, . . . , Am are

invertible.

Using Ore algebra notation, we write {∂i(z) = Aiz}1≤i≤m for the system (2.1) where the

action of ∂i is meant to be δi for i ≤ ` and to be σi for i > `, as given in Definition 2.1.3.

Observe that the conditions (2.2) are derived from the condition ∂i(∂j(z)) = ∂j(∂i(z))

and are exactly the matrix-analogues of the compatibility conditions for first-order scalar

equations in [39].

Example 2.2.2 Let F = C(x, k). The system A : { δx(z) = Axz, σk(z) = Akz } is a fully

integrable system where

Ax=

 x2−kx−k
x(x−k)(x−1)

x2−kx+3k−2x
kx(x−k)(x−1)

k(kx+x−x2−2k)
(x−k)(x−1)

x3+x2−kx2−2x+2k
x(x−k)(x−1)

 and Ak=

 k+1+kx2−xk2−x
(x−k)(x−1) −k+1+kx−k2−x

k(x−k)(x−1)

x(k+1)(k+1+kx−k2−x)
(x−k)(x−1)

(k+1)(x2−2kx−x+k2)
k(x−k)(x−1)

.
�

2.2.2 Fundamental Matrices and Picard-Vessiot Extensions

A square matrix with entries in a commutative ring is said to be invertible if its determinant

is a unit in that ring. As in Chapter 1 and Appendix D of [53] for the purely differential

case and in [52] for the ordinary difference case, we define



12 §2.2 Fully Integrable Systems

Definition 2.2.3 Let (F,Φ, `) be an orthogonal ∆-field and {∂i(z) = Aiz}1≤i≤m be a fully

integrable system of size n over F . An n × n matrix U with entries in an orthogonal ∆-

extension E of F is a fundamental matrix for the system {∂i(z) = Aiz}1≤i≤m if U is in-

vertible and ∂i(U) = AiU for each i, i.e., each column of U is a solution of the system.

A (two-sided) ideal I of a commutative ∆-ring R is said to be invariant if δi(I) ⊂ I

and σi(I) ⊂ I for all 1 ≤ i ≤ m. The ring R is said to be simple if its only invariant ideals

are (0) and R.

Lemma 2.2.1 Let E be an orthogonal ∆-extension of F and I a maximal invariant ideal

in E. Then

(i) R := E/I is a simple orthogonal ∆-extension of F .

(ii) CR is a field.

Proof. (i) Let Ī =
{
σ

k`+1

`+1 · · ·σ
km
m (a) | a ∈ I and k`+1, . . . , km ∈ Z

}
. Clearly, I ⊆ Ī.

Let r1 and r2 be in Ī. Then r1 = σ
k`+1

`+1 · · ·σ
km
m (a1) and r1 = σ

h`+1

`+1 · · ·σhm
m (a2) for a1, a2 ∈ I

and ki, hi ∈ Z. Set gi = min(ki, hi) for i = `+ 1, . . . ,m. Then r1 + r2 = σ
g`+1

`+1 · · ·σ
gm
m (a) for

some a ∈ I and thus r1 + r2 ∈ Ī. Let r = σ
k`+1

`+1 · · ·σ
km
m (a) ∈ Ī where a ∈ I and ki ∈ Z. For

any b ∈ E, there exists b′ ∈ E such that b = σ
k`+1

`+1 · · ·σ
km
m (b′) since the σi are automorphisms.

Thus br = σ
k`+1

`+1 · · ·σ
km
m (b′a) belongs to Ī because b′a ∈ I. So Ī is an ideal of E. Moreover,

the commutativity of the σi and δj implies that Ī is invariant. Clearly, Ī contains I and 1

is not in Ī, for otherwise I would be E. The maximality of I then implies that Ī = I.

The δi and σj can be viewed respectively as derivations and surjective endomorphisms

on R = E/I via the formulas δi(a+ I) = δi(a) + I and σj(a+ I) = σj(a) + I for all a ∈ E.

If σj(a + I) = I then σj(a) ∈ I = Ī. Therefore σj(a) = σ
k`+1

`+1 · · ·σ
km
m (b) with b ∈ I and

the ks ∈ Z. By applying σ−1
j , we have a ∈ Ī = I. So, the σj are automorphisms on R and R

is an orthogonal ∆-extension of F .

Let J̄ be a nonzero invariant ideal of R. Then J̄ = J/I where J is an ideal of E

containing I. For any r ∈ J , we have r + I ∈ J̄ and δi(r) + I = δi(r + I) ∈ J̄ for i ≤ `,
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since J̄ is invariant. Thus δi(r) + I = r′ + I for some r′ ∈ J and δi(r)− r′ ∈ I ⊆ J , which

implies that δi(J) ⊂ J for i ≤ `. Similarly, σj(J) ⊂ J for j > ` and therefore J is invariant.

The maximality of I then implies J = E and J̄ = R. So R is simple.

(ii) Let c be a nonzero constant of R. Then the (two-sided) ideal (c) of R generated

by c is invariant. Since R is simple, (c) contains 1 and c is invertible. �

The existence of fundamental matrices is stated in the next theorem.

Theorem 2.2.2 Every fully integrable system has a fundamental matrix whose entries lie

in a simple orthogonal ∆-extension of F .

Proof. Let {∂i(z) = Aiz}1≤i≤m be a fully integrable system of size n over F , U = (ust) be

a matrix of n2 distinct indeterminates and E = F [u11, . . . , u1n, . . . , un1, . . . , unn]. For i ≤ `,

the δi are extended to derivations of E via δi(U) = AiU and for j > `, the σj are extended

to automorphisms of E via σj(U) = AjU (σj is bijective because Aj is invertible, and

the action of σ−1
j is given by σ−1

j (U) = σ−1
j (A−1

j )U .) It follows from the conditions (2.2)

that these extended maps turn E into a well-defined orthogonal ∆-extension of F and

that ∂i(U) = AiU for 1 ≤ i ≤ m. Let D = det(U) and E be the localization of E with

respect to D. Extend the δi and σj via the formulas δi
(

1
D

)
= − δi(D)

D2 and σj

(
1
D

)
= 1

σj(D)

(note that σj(D) = det(Aj)D for j > `), respectively. Then E becomes an orthogonal ∆-

extension of F . Let I be a maximal invariant ideal of E and R = E/I. By Lemma 2.2.1, R

is a simple orthogonal ∆-extension of F . Moreover, the image of U in Rn×n is a fundamental

matrix for the system. �

The following proposition reveals that any two fundamental matrices differ by a constant

matrix.

Proposition 2.2.3 Let {∂i(z) = Aiz}1≤i≤m be a fully integrable system of size n over F

and U ∈ En×n be its fundamental matrix where E is an orthogonal ∆-extension of F .

If V ∈ En×d with d ≥ 1 is a matrix whose columns are solutions of the system then V = UT

for some T ∈ C n×d
E . In particular, any solution of {∂i(z) = Aiz}1≤i≤m in En is a linear

combination of the columns of U over CE.
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Proof. Let T = U−1V . We have ∂i(V ) = AiV for each i, since each column of V is

a solution of {∂i(z) = Aiz}1≤i≤m. Thus δi(T ) = −U−1δi(U)U−1 + U−1AiV = 0 for i ≤ `

and σj(T ) = σj(U−1)σj(V ) = (AjU)−1AjV = T for j > `. This implies that all the entries

of T belong to CE . The second statement follows by taking d = 1. �

Definition 2.2.4 Let {∂i(z) = Aiz}1≤i≤m be a fully integrable system over F . A Picard-

Vessiot ring for this system is a (commutative) ring E such that:

(i) E is a simple orthogonal ∆-extension of F .

(ii) There exists some fundamental matrix U with entries in E for the system such that E

is generated by the entries of U and det(U)−1 over F .

We now construct Picard-Vessiot rings by the same approach used in [52, 53].

Lemma 2.2.4 If F has characteristic 0, CF is algebraically closed and R is a finitely

generated algebra over F then CR = CF .

Proof. Suppose that b ∈ CR but b /∈ CF . By the argument used in the proof of

Lemma 1.8 in [52], there exists a nonzero monic polynomial g over F with minimal degree d

such that g(b) =
(
bd +

∑d−1
k=0 gkb

k
)

= 0. Apply the δi and σj to g(b), respectively, we

obtain
(∑d−1

k=0 δi(gk)bk
)

= 0 for i ≤ ` and
(∑d−1

k=0(σj(gk)− gk)bk
)

= 0 for j > `. The

minimality of d then implies gk ∈ CF for 0 ≤ k < d. So b ∈ CF since CF is algebraically

closed, a contradiction. �

The existence of the Picard-Vessiot extensions is stated in the next theorem.

Theorem 2.2.5 Every fully integrable system over F has a Picard-Vessiot ring R. If F has

characteristic 0 and CF is algebraically closed, then CR = CF . Furthermore, that extension

is minimal, meaning that no proper subring of R satisfies condition (ii) of Definition 2.2.4.

Proof. Let {∂i(z) = Aiz}1≤i≤m be a fully integrable system of size n over F . From

the proof of Theorem 2.2.2, it has a fundamental matrix U = (ust) with entries in the
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simple orthogonal ∆-extension R = F [u11, . . . , unn,det(U)−1]. By Definition 2.2.4, R is a

Picard-Vessiot ring for the system.

Assume further that F has characteristic 0 and CF is algebraically closed. Then CR

equals CF by Lemma 2.2.4. Let S = F [V,det(V )−1] be a subring of E where V is some

fundamental matrix of the system. By Proposition 2.2.3, there exists T ∈ Cn×n
R such

that V = UT . Since U and V are invertible, so is T . Since CR = CF , all the entries of U

and the inverse of det(U) are contained in S. Hence S = R and R is minimal. �

From Theorem 2.2.5, if the field of coefficients has characteristic 0 and has an alge-

braically closed field of constants, then Picard-Vessiot extensions for fully integrable systems

contain no new constants.

As a direct generalization of Proposition 1.20 in [53] and Proposition 1.9 in [52], we have

Proposition 2.2.6 Suppose that F has characteristic 0 and CF is algebraically closed.

Then any two Picard-Vessiot rings for a fully integrable system over F are isomorphic as

orthogonal ∆-extensions.

Proof. Let {∂i(z) = Aiz}1≤i≤m be a fully integrable system over F . Suppose that R1

and R2 are two Picard-Vessiot rings for the system, with the respective fundamental ma-

trices U1 and U2. Then R1 ⊗F R2 can be viewed as an orthogonal ∆-ring extension

of F via δi(r1 ⊗ r2) = δi(r1) ⊗ r2 + r1 ⊗ δi(r2) and σj(r1 ⊗ r2) = σj(r1) ⊗ σj(r2) for

all r1 ∈ R1, r2 ∈ R2, i ≤ ` and j > `. Choose a maximal invariant ideal I of R1 ⊗F R2 and

define R3 := (R1 ⊗F R2)/I. Since R1 and R2 are simple, the canonical maps φi : Ri → R3

are injective morphisms for i = 1, 2. Hence φ1(U1) and φ2(U2) are invertible matrices

and moreover fundamental matrices over the ring R3. From the construction of Picard-

Vessiot rings, Ri is generated over F by the entries of Ui and det(Ui)−1, therefore φi(Ri)

is generated over F by the entries of φi(Ui) and φi(det(Ui)−1), for i = 1, 2. From Proposi-

tion 2.2.3, φ1(U1) and φ2(U2) differ by a matrix with entries in CR3 , which is CF according

to Lemma 2.2.4. It follows that φ1(R1) = φ2(R2) and R1 and R2 are isomorphic. �

Definition 2.2.5 Let {∂i(z) = Aiz}1≤i≤m and {∂i(z∗) = A∗i z
∗}1≤i≤m be two fully inte-

grable systems of size n over F . They are said to be equivalent if there exists T ∈ GLn(F )
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such that

A∗i = T−1AiT − T−1δi(T ), for i ≤ ` and A∗j = σj(T−1)AjT, for j > `. (2.3)

We have

Proposition 2.2.7 Let {∂i(z) = Aiz}1≤i≤m and {∂i(z∗) = A∗i z
∗}1≤i≤m be two equivalent

fully integrable systems over F . Then E is a Picard-Vessiot ring of the first system if and

only if it is of the second one.

Proof. Let n be the size of these systems. By Definition 2.2.5, there exists T ∈ GLn(F )

such that (2.3) holds. Suppose that E is a Picard-Vessiot ring for the second system, which

is generated over F by the entries of the fundamental matrix U and det(U)−1. Set V = TU .

From (2.3), δi(V ) = (δi(T )+TA∗i )U = AiTU = AiV and σj(V ) = σj(T )A∗jU = AjTU=AjV

for i ≤ ` and j > `, thus V is a fundamental matrix for the first system. Clearly, E is

generated by the entries of V and det(V )−1 over F . By definition, E is a Picard-Vessiot

ring for the first system. The converse is by symmetry. �

Assume that the ground field F has characteristic 0 with an algebraically closed field

of constants. Let R be a Picard-Vessiot ring for a fully integrable system of size n over F

and U ∈ Rn×n be the corresponding fundamental matrix. By Proposition 2.2.3, any solution

of the system in Rn is a CR-linear combination of the n columns of U , which are linearly

independent over CR because U is invertible. Since CR = CF , all the solutions of the system

in Rn form a CF -vector space of dimension n.

2.2.3 Examples

In this section, we present a few examples for Picard-Vessiot extensions.

Example 2.2.6 Consider the fully integrable system of size one:

∂i(z) = aiz where ai ∈ F and i = 1, . . . ,m. (2.4)

Let E = F [T, T−1] be the orthogonal ∆-extension such that δi(T ) = aiT and σj(T ) = ajT

for i ≤ ` and j > `. There are two cases to be considered.
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Case 1. There does not exist an integer k > 0 and a nonzero r ∈ F such that

δi(r) = kair, for i ≤ ` and σj(r) = ak
j r, for j > `. (2.5)

Since every ideal in E is principal, we define the canonical generator of a nontrivial ideal

of E to be the monic polynomial in the intersection of the ideal with F [T ] whose degree

is minimal. Suppose that E has a nontrivial invariant ideal I whose canonical generator

is f = T d +
∑d−1

s=0 fsT
s where fs ∈ F . We may assume further that d > 0 and f0 6= 0,

since T−1 is in E. Note that for i ≤ `,

δi(f) = dT d−1δi(T ) +
d−1∑
s=0

(
δi(fs)T s + sfs δi(T )T s−1

)
= d ai T

d +
d−1∑
s=0

(δi(fs) + s ai fs)T s,

and for j > `,

σj(f) = σj(T )d +
d−1∑
s=0

σj(fs)σj(T )s = ad
j T

d +
d−1∑
s=0

σj(fs)as
jT

s.

Since I is invariant, δi(f) = daif for i ≤ ` and σj(f) = ad
jf for j > `. By comparing the

coefficients of T 0, we have δi(f0) = daif0 for i ≤ ` and σj(f0) = ad
jf0 for j > `, i.e., d

and f0 satisfy (2.5), a contradiction to the assumption. So E is simple and therefore a

Picard-Vessiot ring of (2.4).

Case 2. Assume that the integer k > 0 is minimal so that the system (2.5) has a nonzero

solution r ∈ F . Clearly, the ideal (T k + r) is neither 0 nor E. In addition,

δi(T k + r) = kai(T k + r) for i ≤ ` and σj(T k + r) = ak
j (T

k + r) for j > `,

therefore the ideal (T k + r) is invariant. We write F [T, T−1]/(T k + r) as F [t, t−1] where

t = T + (T k + r). Then tk = −r + (T k + r), δi(t) = ait for i ≤ ` and σj(t) = ajt for j > `.

We claim that F [t, t−1] is a Picard-Vessiot ring of (2.4). It suffices to show that F [t, t−1]

is simple. Let I be a nonzero invariant ideal of F [t, t−1]. Every element of F [t, t−1] can be

written uniquely as
∑k−1

i=0 bit
i with bi ∈ F . Let 0 ≤ d < k be minimal such that I contains

a nonzero f =
∑d

i=0 bit
i. Assume that d > 0 and that bd = 1. The minimality of d implies

that b0 6= 0. Since I is invariant, the elements δi(f) − daif and σj(f) − ad
jf belong to I
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for i ≤ ` and j > `, all with degree less than d. Hence all these elements are 0. It follows

that δi(b0) = daib0 for i ≤ ` and σj(b0) = ad
j b0 for j > `, which contradicts the minimality

of k. So d = 0, 1 ∈ I and F [t, t−1] is a Picard-Vessiot ring of (2.4). �

Example 2.2.7 We now describe a Picard-Vessiot ring of the fully integrable system A

in Example 2.2.2. By computing the hyperexponential solutions of the system, as described

in [39], we find a change of variable z = Ty where

T =

 x−k
x x2

(x− k)k x2k

 ∈ F 2×2,

transforms A into B : { δx(y) = Bxy, σk(y) = Bky } where

Bx =

 1 0

0 0

 and Bk =

 1 0

0 k

 .

From z = Ty it follows that δx(T ) + TBx = AxT and σk(T )Bk = AkT. By Defini-

tion 2.2.5, A and B are equivalent. Proposition 2.2.7 implies that a Picard-Vessiot ring

for B is also a Picard-Vessiot ring for A. So it suffices to find a Picard-Vessiot ring of B.

Let U be a 2 × 2 matrix with indeterminate entries u11, u12, u21 and u22 over F . De-

fine δx(U) = BxU and σk(U) = BkU to turn E = F [u11, u12, u21, u22,det(U)−1] into an

orthogonal ∆-extension. Clearly, I = (u12, u21) is an invariant ideal of E. Set R = E/I.

Since

det(U)−1 + I = (u11u22 − u12u21)−1 + I = (u11 + I)−1(u22 + I)−1,

one has R = F [u11, u22, (u11)−1, (u22)−1] with uii = uii + I for i = 1, 2. We now show

that R is simple. Suppose that J is a nontrivial invariant ideal of R. Let f be a nonzero

polynomial in J ∩ F [u11, u22] with the smallest number of terms. Then f can not be a

monomial, for otherwise, J would be R since (u11)−1 and (u22)−1 are in R. We write

f = u d1
11 u

d2
22 + r u e1

11 u
e2

22 + other terms,

with r ∈ F nonzero and (d1, d2) 6= (e1, e2). From δx(u11) = u11 and δx(u22) = 0, we have

δx(f) = d1 u
d1

11 u
d2

22 + (δx(r) + e1r)u e1
11 u

e2
22 + other terms,
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in which each monomial has already appeared in f . Thus δx(f) − d1f must be zero, be-

cause it is in I but has fewer terms. It follows that δx(r) = (d1 − e1)r. In the same

way, from σk(u11) = u11 and σk(u22) = ku22 one shows that σk(f) − kd2f = 0 and there-

fore σk(r) = kd2−e2r. But the existence of such a rational element r would imply that d1 = e1

and d2 = e2, a contradiction. Thus R is simple, and so a Picard-Vessiot ring for B, hence

also for the system A. Since

δx(u11) = u11, σk(u11) = u11, δx(u22) = 0, σk(u22) = ku22,

we may understand u11 as ex and u22 as Γ(k), then U = U + I =

(
ex 0

0 Γ(k)

)
is a

fundamental matrix for B in R = F [ex, e−x,Γ(k),Γ(k)−1] and

TU =

 x−k
x ex x2Γ(k)

k(x− k)ex x2Γ(k + 1)


is for the system A. �

Example 2.2.8 We describe a simple orthogonal ∆-extension that contains a solution of

the inhomogeneous (compatible) system of size one

δi(z) = ai for i ≤ ` and σj(z) = z + aj for j > `, (2.6)

where the ai and aj belong to a simple orthogonal ∆-ring E of characteristic zero. This is

an extension of Example 1.18 in [53].

Due to the commutativity of the δi and σj, the ai and aj must satisfy the following

integrability conditions:
δi(aj) = δj(ai), for 1 ≤ i, j ≤ `,

δi(aj) = σj(ai)− ai, for i ≤ `, j > `,

σi(aj)− aj = σj(ai)− ai, for ` < i, j ≤ m.

(2.7)

If (2.6) has a solution in E, then there is nothing to do. Otherwise, let R = E[α] and extend

the δi and σj on R via the formulas: δi(α) = ai for i ≤ ` and σj(α) = α + aj for j > `.
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The integrability conditions (2.7) imply that R becomes a well-defined orthogonal ∆-ring.

Let I be a nontrivial invariant ideal of R and f = fdα
d + fd−1α

d−1 + · · ·+ f0 be a nonzero

element of I with minimal degree, where fi ∈ E and fd 6= 0. Let J be the set consisting of

zero and leading coefficients of elements of I with degree d. Clearly, J is a nonzero ideal

of E since it contains fd. Moreover, our extensions of δi and σj imply that J is invariant.

Since E is simple, 1 ∈ J and, therefore, we may assume d > 0 and fd = 1. One verifies

that the δi(f) and σj(f)−f are elements of I, with degrees less than d. Since d is minimal,

they are both 0. It follows that δi
(
−fd−1

d

)
= ai for i ≤ ` and σj

(
−fd−1

d

)
= −fd−1

d + aj

for j > `, i.e., −fd−1

d is a solution of (2.6) in E, a contradiction to our assumption. Thus R

is simple and contains a solution α of (2.6). �

Example 2.2.9 This example is a generalization of Example 2.2.8 for the vector case.

Consider the inhomogeneous system of size n

δi(z) = bi, for i ≤ ` and σj(z) = z + bj , for j > `, (2.8)

where the bi and bj are vectors with entries in some simple ∆-ring E of characteristic 0. In

addition, these vectors satisfy the integrability conditions (2.7) with the ai and aj replaced

by the bi and bj, respectively.

Set bi = (bi1, . . . , bin)τ for 1 ≤ i ≤ m. Without loss of generality, we may assume that

we have already found a partial solution zs := (r1, . . . , rs)τ ∈ Es of (2.8) with 1 ≤ s ≤ n.

In other words, for every k with 1 ≤ k ≤ s, there exists rk ∈ E satisfying that δi(rk) = bik

and σj(rk) = rk +bjk for i ≤ ` and j > `. If there is rs+1 ∈ E satisfying that δi(rs+1)=bi,s+1

for i ≤ ` and σj(rs+1) = rs+1 + bj,s+1 for j > `, then (r1, . . . , rs, rs+1)τ is a partial solu-

tion of (2.8). Now assume that there does not exist such rs+1 in E. Set E = E[α] and

define δi(α) = bi,s+1 for i ≤ ` and σj(α) = α + bj,s+1 for j > `. This turns E into an

orthogonal ∆-extension of F . One can show that E is simple by similar argument to that

in Example 2.2.8. So, zs+1 := (r1, . . . , rs, α)τ ∈ E
s+1 is a partial solution of (2.8) with

one more completed entry rs+1. Continuing in this way, we will eventually get a complete

solution of (2.8). �
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2.3 Completing Partial Solutions

In this section, we use Picard-Vessiot extensions for fully integrable systems to complete so-

lutions of reducible systems, i.e., systems that can be put into simultaneous block-triangular

form by a change of variable y = Tz for some invertible matrix T in Fn×n. We motivate

them by showing that the solutions of a factor can always be extended to solutions of the

complete system.

Theorem 2.3.1 Let A: {∂i(z) = Aiz}1≤i≤m be a fully integrable system of size n over F ,

and suppose that there exist a positive integer d < n and matrices Bi in F d×d, Ci in F (n−d)×d

and Di in F (n−d)×(n−d) such that

Ai =

(
Bi 0

Ci Di

)
for 1 ≤ i ≤ m. (2.9)

Then

(i) The systems B: {∂i(x) = Bix}1≤i≤m and D: {∂i(y) = Diy}1≤i≤m are both fully inte-

grable.

(ii) (0, . . . , 0, ζd+1, . . . , ζn)τ is a solution of A whenever (ζd+1, . . . , ζn)τ is a solution of D.

(iii) For any solution (η1, . . . , ηd)τ of B in an orthogonal ∆-extension of F , there exists

an orthogonal ∆-extension of F containing η1, . . . , ηd as well as ηd+1, . . . , ηn such

that (η1, . . . , ηn)τ is a solution of A.

Proof. (i) Let z = (z1, . . . , zn)τ , x = (z1, . . . , zd)τ and y = (zd+1, . . . , zn)τ . The system A

can then be rewritten into a homogeneous system and an inhomogeneous system: ∂i(x) = Bix,

∂i(y) = Diy + Cix,
for 1 ≤ i ≤ m. (2.10)

Since A is fully integrable, the matrices Ai satisfy (2.2) and Aj is invertible for j > `.

Hence the Bj and Dj for j > ` must also be invertible since det(Aj) = det(Bj) det(Dj). In
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addition, a routine calculation shows that for all 1 ≤ i, j ≤ m,

σi(Aj)Ai + δi(Aj) =

 σi(Bj)Bi + δi(Bj) 0

σi(Cj)Bi + σi(Dj)Ci + δi(Cj) σi(Dj)Di + δi(Dj)

 . (2.11)

The compatibility conditions of A then implies that the Bi and Di also satisfy the compat-

ibility conditions (2.2). Therefore, B and D are both fully integrable.

(ii) It is immediate from (2.10).

(iii) Since D is fully-integrable, by Theorem 2.2.2 there is a (simple) orthogonal ∆-

extension R of F and a fundamental matrix U with entries in R for D. Let η = (η1, . . . , ηd)τ

be a solution of B in some orthogonal ∆-extension E of F . Viewing R and E as commu-

tative F -algebras, we can extend the δi and σj to the commutative R-algebra R ⊗F E

via δi(r ⊗ e) = δi(r)⊗ e+ r ⊗ δi(e) for i ≤ ` and σj(r ⊗ e) = σj(r)⊗ σj(e) for j > `. Then

δi(1⊗ η1, . . . , 1⊗ ηd)τ = Bi (1⊗ δi(η1), . . . , 1⊗ δi(ηd))
τ , for i ≤ `,

and

σj(1⊗ η1, . . . , 1⊗ ηd)τ = Bj (1⊗ σj(η1), . . . , 1⊗ σj(ηd))
τ , for j > `,

and (1⊗η1, . . . , 1⊗ηd)τ is a solution of B. So, replacing E by R⊗F E, we can assume with-

out loss of generality that E contains R. Substitute η into (2.10) to get ∂i(y)=Diy+Ciη

for each i. Let v = (v1, . . . , vn−d)τ where the vk are distinct indeterminates over E,

and G = E[v1, . . . , vn−d]. We extend the δi and σj to G via δi(v) = bi and σj(v) = v + bj

where b1, . . . ,bm ∈ En−d are given by bi = U−1Ciη for i ≤ ` and bj = U−1Dj
−1Cjη

for j > `.

To turn G into an orthogonal ∆-extension of E, all the δi and σj on G should commute,

which is equivalent to that the bi and bj satisfy the integrability conditions (2.7). Although

the conditions (2.7) are generally not satisfied for arbitrary bi’s, we verify that they are

satisfied in our case. Since the Ai satisfy the compatibility conditions (2.2), it follows from

the bottom-left block in (2.11) that

σi(Cj)Bi + σi(Dj)Ci + δi(Cj) = σj(Ci)Bj + σj(Di)Cj + δj(Ci), for 1 ≤ i, j ≤ m. (2.12)
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For 1 ≤ i, j ≤ `, we have δi(bj) = δi
(
U−1Cjη

)
= −U−1 (DiCj − δi(Cj)− CjBi) η, which,

together with σi = σj = 1 for 1 ≤ i, j ≤ ` and (2.12) implies that

δi(bj)− δj(bi) = −U−1 (DiCj − δi(Cj)− CjBi −DjCi + δj(Ci) + CiBj) η = 0 .

For i ≤ ` and j > `, we have

δi(bj) = U−1
(
−DiD

−1
j Cj −D−1

j δi(Dj)D−1
j Cj +D−1

j δi(Cj) +D−1
j CjBi

)
η

= U−1
(
−D−1

j (DjDi + δi(Dj))D−1
j Cj +D−1

j δi(Cj) +D−1
j CjBi

)
η

= U−1
(
−D−1

j (σj(Di)Dj)D−1
j Cj +D−1

j δi(Cj) +D−1
j CjBi

)
η

= U−1
(
D−1

j (CjBi + δi(Cj)− σj(Di)Cj)
)
η

= U−1
(
D−1

j (σj(Ci)Bj −DjCi)
)
η = U−1

(
D−1

j σj(Ci)Bj − Ci

)
η,

where the last four equalities use (2.12) and the compatibility conditions on the Di.

Hence δi(bj)− (σj(bi)− bi) = 0. Finally, for ` < i, j ≤ m, we have

σi(bj)− bj = U−1
(
D−1

i σi(Dj)−1σi(Cj)Bi −D−1
j Cj

)
η

= U−1
(
D−1

j σj(Di)−1σi(Cj)Bi −D−1
j Cj

)
η

= U−1
(
D−1

j σj(Di)−1(σi(Cj)Bi − σj(Di)Cj)
)
η

= U−1
(
D−1

i σi(Dj)−1(σj(Ci)Bj − σi(Dj)Ci)
)
η,

where (2.12) and the compatibility conditions on the Di are used in the last three equalities.

So, σi(bj)−bj = σj(bi)−bi and the integrability conditions (2.7) are satisfied. Therefore G

is an orthogonal ∆-extension of E, hence of F . Let ζ = Uv ∈ Gn−d. Then

∂i(ζ) = δi(ζ) = δi(U)v + Uδi(v) = DiUv + Ubi = Diζ + Ciη, for i ≤ `,

and ∂j(ζ) = σj(ζ) = σj(U)σj(v) = DjU(v + bj) = Djζ + Cjη for j > `. So,

∂i

 η

ζ

 =

 Biη

Diζ + Ciη

 =

 Bi 0

Ci Di

 η

ζ

 , 1 ≤ i ≤ m,

and (ητ , ζτ )τ is a solution of the initial system A. �

We point out here but omit detailed explanation that in the differential case, the quotient

systems in [45] yield an alternative approach to completing solutions of factors.
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Example 2.3.1 Let F = C(x, k). Consider the fully integrable system

δx(z) =

 Bx 0

Cx Dx

 z, σk(z) =

 Bk 0

Ck Dk

 z, (2.13)

where z = (z1, z2, z3)τ , Bx = x+k
x , Bk = (k+1)x

k ,

Cx =

 2x2−k2+2x−kx
x(x−k)

x3−x2k+2x2−kx+2x−k2

(x−k)x

 , Ck =

 (k+1)(x3−2x2k−3x2+k2x+4kx+x−k2)
k(x−k−1)2

x2(k+1)
k − (k+1)(x−k)2

k(x−k−1)2 − xk(x− 1)

 ,

and

Dx =

 −2−x+k
x−k 0

−2x−x2+k2

(x−k)x
k
x

 , Dk =

 (k+1)(x−k)2

k(x−k−1)2 0

(k+1)(x−k)2

k(x−k−1)2 − kx xk

 .

We complete the solution η1 = kexxk of the system given by Bx and Bk to a solution

of (2.13). First, we compute a fundamental matrix

U =

 0 ke−x

(x−k)2

Γ(k)xk ke−x

(x−k)2

 ∈ E2×2

and a Picard-Vessiot ring E = F [ex, xk,Γ(k), e−x, x−k,Γ(k)−1], for the system given by Dx

and Dk. Following the proof of Theorem 2.3.1, we let

b1=

 kx
Γ(k)e

x

(x− k)(2x2 − k2 + 2x− kx)xk−1e2x

,b2=

 x+kx+k2−xk2−k−1
Γ(k+1) ex

(x3 − 2kx2 − 3x2 + k2x+ 4kx+ x− k2)xke2x

.
By integration-summation, we find

v =

 Γ(k)−kex+xkex

Γ(k)

xk+2e2x − 2xk+1ke2x + xkk2e2x + 1


satisfying δx(v) = b1 and σk(v)− v = b2. Therefore,

 η1

U−1v

 =


kexxk

kexxk + ke−x

(x−k)2

xk+1kex + ke−x

(x−k)2 + Γ(k)xk


is a solution of (2.13). �
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Theorem 2.3.1 also yields fundamental matrices for reducible systems. Consider a fully

integrable system {∂i(z)=Aiz}1≤i≤m where the Ai are as in (2.9). Let U = (uij)∈Ed×d

and V ∈ R(n−d)×(n−d) be the respective fundamental matrices for {∂i(x) = Bix}1≤i≤m

and {∂i(y) = Diy}1≤i≤m, where E and R are orthogonal ∆-extensions of F . As in the

procedure of completing solutions, we can assume without loss of generality that E con-

tains R. Then a fundamental matrix for the initial system can be constructed as fol-

lows: for each 1 ≤ i ≤ d, following the procedure of completing solutions, we can find

an orthogonal ∆-extension Gi of E and ξi ∈ Gn−d
i such that (u1i, . . . , udi, ξ

τ
i )τ ∈ Gn

i is a

solution of {∂i(z) = Aiz}1≤i≤m. Viewing all the entries of U , V and the ξj as elements

of G = G1 ⊗F · · · ⊗F Gd, the matrix

W =

(
U 0

ξ1 . . . ξd V

)
∈ Gn×n

is easily seen to be a fundamental matrix for {∂i(z) = Aiz}1≤i≤m (it is invertible be-

cause det(W ) = det(U) det(V )).

2.4 Picard-Vessiot Extensions of Linear Functional Systems

In this section, we generalize the previous notions and results to ∂-finite linear functional

systems, which include in particular all (fully) integrable systems.

This section is organized as follows. In Section 2.4.1, we define the notion of cokernels

over a matrix over an arbitrary ring R. This notion corresponds to “generic solutions” of

a linear functional system over R. The notion of Laurent-Ore algebras L is introduced in

Section 2.4.2. In Section 2.4.3, we define the modules of formal solutions by specializing R

to L, and show that the modules of formal solutions capture some general properties of

the solutions of a linear functional systems. A connection between ∂-finite linear func-

tional systems and fully integrable systems is given in Section 2.4.4. With the help of this

connection, we define the notions of fundamental matrices and Picard-Vessiot extensions

for ∂-finite linear functional systems based on the results in Section 2.2.
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2.4.1 Cokernels of Matrices over Arbitrary Rings

We study the problem of finding solutions of linear functional systems in a similar way to

introduce “generic solutions” for algebraic equations.

Let R be an arbitrary ring. Denote by Z(R) the center of R, the set of all elements

that commute with every element in R. Then, Z(R) is a subring of R. Consider a p × q

matrix A = (aij) with entries in R. For any R-module N , we can associate to A a Z(R)-

linear map λ : N q → Np given by

ξ :=


ξ1
...

ξq

 7→ Aξ =


∑q

j=1 a1jξj
...∑q

j=1 apjξj

 .

Note that λ is in general not R-linear. We therefore say that ξ ∈ N q is a solution “in N” of

the system A(z) = 0 if A(ξ) = 0, and write solN (A(z) = 0) for the set of all solutions in N .

Clearly, solN (A(z) = 0) is a Z(R)-module.

As in the case of D-modules [47], we can associate to A ∈ Rp×q an R-module as follows:

the matrix A induces the R-linear map ρ : R1×p→R1×q given by (r1, . . . , rp) 7→ (r1, . . . , rp)A.

Let M = R1×q/(R1×pA), which is simply the quotient of R1×q by the image of the map ρ.

We call M the R-cokernel of A and denote it by cokerR(A). Clearly, cokerR(A) is an R-

module. Let e1p, . . . , epp and e1q, . . . , eqq be the canonical bases of R1×p and R 1×q, re-

spectively. Denote by π the canonical map from R1×q to cokerR(A), and set ej = π(ejq)

for 1 ≤ j ≤ q. Since π is surjective, M is generated by e1, . . . , eq over R. Note that ρ(eip)

is the i-th row of A. Hence

0 = π(ρ(eip)) = π

 q∑
j=1

aijejq

 =
q∑

j=1

aijπ(ejq) =
q∑

j=1

aijej for 1 ≤ i ≤ p,

which implies that A(e1, . . . , eq)τ = 0 and (e1, . . . , eq)τ is a solution of A(z) = 0 in M .

Given two R-modules N1 and N2, denote by HomR(N1, N2) the set of all R-linear maps

from N1 to N2. Clearly, HomR(N1, N2) is a Z(R)-module.

As illustrated by the following theorem, Proposition 1.1 of [47] remains true when D is

replaced by an arbitrary ring R.



Chapter 2. Picard-Vessiot Extensions 27

Theorem 2.4.1 Let R be a ring, A ∈ Rp×q and M := cokerR(A) = R1×q/
(
R1×pA

)
.

Then HomR(M,N) and solN (A(z) = 0) are isomorphic as Z(R)-modules, for any R-

module N .

Proof. Although the proof of Proposition 1.1 in [47] can be adapted to this theorem

in a straightforward way (see [13]), we give here a slightly different but elementary proof.

Let e1q, . . . , eqq be the canonical basis ofR1×q and e1, . . . , eq be their respective images inM .

Consider the map π : HomR(M,N) → solN (A(z) = 0) given by φ 7→ (φ(e1), . . . , φ(eq))τ .

Since (e1, . . . , eq)τ is a solution of A(z) = 0 and φ is R-linear, π is well-defined. In ad-

dition, π is Z(R)-linear, and injective because e1, . . . , eq generate M as an R-module. It

remains to show that π is surjective. Let s1, . . . , sq be in N such that (s1, . . . , sq)τ is a

solution of A(z) = 0. Consider the R-linear map ϕ : R1×q → N that sends eiq to si

for each i. The map ϕ̄ : R1×q/ ker(ϕ) → N is well-defined and R-linear. Set A = (aij).

From R1×pA=
∑p

i=1ReipA, any element of R1×pA has the form
∑p

i=1 ri(ai1, . . . , aiq), then

its application to (s1, . . . , sq)τ is zero since A(s1, . . . , sq)τ = 0. Thus ker(ϕ) contains R1×pA.

It follows that the map ψ : M → R1×q/ ker(ϕ) given by a + R1×pA 7→ a + ker(ϕ) is well-

defined and R-linear. Moreover, ϕ̄◦ψ ∈ HomR(M,N) sends ei to si. Thus π is surjective. �

2.4.2 Laurent-Ore Algebras

Let (F,Φ, `) be an orthogonal ∆-field and S = F [∂1;σi, δi] · · · [∂m;σm, δm] be the corre-

sponding Ore algebra over F . Given a linear functional system A(z) = 0 over F . In the

differential case, an S-module is classically associated to such a system [47, 53]. However,

in the difference case, S-modules may not have appropriate dimensions, as illustrated by

the following counterexample.

Example 2.4.1 Let σ 6= 1 be an automorphism of F and S = F [∂;σ,0] be the correspond-

ing Ore algebra. The equation ∂(y) = 0 cannot have a fundamental matrix (u) in any

difference ring extension of (F, σ), for otherwise, 0 = ∂(u) = σ(u), thus u = 0. There-

fore the equation ∂(y) = 0 has only trivial solution in any difference extension. However,

the S-module S/S∂ has dimension one as an F -vector space. �
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In [52], modules over Laurent algebras are used instead to avoid the above problem. It

is therefore natural to introduce in our setting the following extension of S: let θ`+1, . . . , θm

be indeterminates independent of the ∂i. Since the σ−1
j are automorphisms of F ,

S = S[θ`+1;σ−1
`+1,0] · · · [θm;σ−1

m ,0]

is also an Ore algebra. Since

(∂jθj)a = ∂jσ
−1
j (a)θj = σj(σ−1

j (a))∂jθj = a∂jθj

for all a ∈ F and j > `, ∂jθj is in the center of S̄. Therefore the left ideal

T =
m∑

j=`+1

S̄(∂jθj − 1)

is a two-sided ideal of S̄ and L := S̄/T = F [∂1, . . . , ∂m, θ`+1, . . . , θm] is a factor ring

where the ∂i and θj denote the canonical images of ∂i and θj , respectively. It follows

that ∂ia = ∂ia = σi(a)∂i + δi(a), θja = θja = σ−1
i (a)θj and ∂jθj = θj∂j = 1 for all a ∈ F

and i, j with 1 ≤ i ≤ m, ` + 1 ≤ j ≤ m. Identifying ∂i with ∂i and writing ∂−1
j for θj , we

can write L = F [∂1, . . . , ∂m, ∂
−1
`+1, . . . , ∂

−1
m ] and view it as an extension of S.

Definition 2.4.2 Let (F,Φ, `) be an orthogonal ∆-field, S̄ and T be as above. We call the

factor ring S̄/T the Laurent-Ore algebra over F , and write it by convention

L = F [∂1;1, δ1] · · · [∂`;1, δ`][∂`+1, ∂
−1
`+1;σ`+1,0] · · · [∂m, ∂

−1
m ;σm,0],

where [∂j , ∂
−1
j ;σj ,0] means that the ∂j and ∂−1

j are pseudo-linear operators ([14]) associated

to (σj ,0) and (σ−1
j ,0), respectively. Simply, we write L = F [∂1, . . . , ∂m, ∂

−1
`+1, . . . , ∂

−1
m ].

For linear ordinary difference equations, L = F [σ, σ−1] is the algebra used in [52].

For linear partial difference equations with constant coefficients, L is the Laurent poly-

nomial ring used in [49, 63]. We remark that, except for the purely differential case

where `=0, Laurent-Ore algebras L = F [∂1, . . . , ∂m, ∂
−1
`+1, . . . , ∂

−1
m ] are not Ore algebras,

because the ∂j∂
−1
j = ∂−1

j ∂j = 1.
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Remark 2.4.3 Every element of L can be written as an element of S multiplied by some

monomial in ∂−1
`+1, . . . , ∂

−1
m , either from the left-hand side or from the right-hand side.

Let us revisit the equation in Example 2.4.1 with the newly defined Laurent-Ore algebras.

Example 2.4.4 Let L = F [∂, ∂−1] be the corresponding Laurent-Ore algebra. Since ∂ is

invertible, the left ideal generated by ∂ in L is L, therefore the L-module L/(L∂) = 0 and

has zero dimension over F . �

2.4.3 Modules of Formal Solutions

The introduction of Laurent-Ore algebras allows us to construct fundamental matrices and

Picard-Vessiot extensions for linear functional systems.

Let (F,Φ, `) be an orthogonal ∆-field, S and L be the corresponding Ore and Laurent-

Ore algebras, respectively. Given a linear functional systemA(z) = 0 whereA ∈ Sp×q⊆Lp×q,

we can construct both its S-cokernel cokerS(A) and L-cokernel cokerL(A). However, as il-

lustrated by Examples 2.4.1 and 2.4.4, when difference operators are involved, cokerS(A)

may not have the right dimension while cokerL(A) always has the right one. This motivates

us to define

Definition 2.4.5 Let A ∈ Sp×q ⊆ Lp×q. The L-module M = L1×q/(L1×pA) is called the

module of formal solutions of the system A(z) = 0. The dimension of M as an F -vector

space is called the linear dimension of the system. The system is said to be of finite linear

dimension, or simply, ∂-finite, if 0 < dimF M < +∞.

Remark 2.4.6

(i) The notion of modules of formal solutions for systems has already appeared in [2].

(ii) We choose to exclude in our definition the systems A(z) = 0 with dimF M = 0,

since dimF M = 0 implies that L1×q = L1×pA, consequently the system has only

trivial solution in any L-module, which includes all orthogonal ∆-extensions of F .
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(iii) Let e1, . . . , eq be the images of the e1q, . . . , eqq in M . Then A(e1, . . . , eq)τ = 0. There-

fore M always contains a set of L-generators that solve A(z) = 0.

As we saw earlier, although a linear functional system may be represented by a form

other than A(z) = 0, it can always be rewritten equivalently into the latter form. We

therefore understand the module of formal solutions for A(z) = 0 to be the module of

formal solutions for the original system.

In terms of modules of formal solutions for linear functional systems, Theorem 2.4.1 can

be rephrased as

Theorem 2.4.2 Let A ∈ Sp×q and M be the module of formal solutions for the sys-

tem A(z) = 0. Then HomL(M,N) and solN (A(z) = 0) are isomorphic as CF -vector spaces

for any L-module N . In particular, HomL(M,E) and solE(A(z) = 0) are isomorphic as CF -

vector spaces for any orthogonal ∆-extension E of F .

Remark 2.4.7 Since every orthogonal ∆-extension E of F is turned into an L-module via

the actions ∂i(e) = δi(e) for i ≤ `, ∂j(e) = σj(e) and ∂−1
j (e) = σ−1

j (e) for j>`, solE(A(z)=0)

in Theorem 2.4.2 is well-defined.

Proposition 2.4.3 Let A ∈ Sp×q and B ∈ Sn×d, and MA and MB be the modules of

formal solutions of A(z) = 0 and B(x) = 0, respectively. If MA is isomorphic to MB

as L-modules, then there exists Q ∈ Lq×d such that for any orthogonal ∆-extension E of F ,

the correspondence ξ 7→ Qξ is an isomorphism of CE-modules between solE(B(x) = 0)

and solE(A(z) = 0).

Proof. To simplify notation, we denote solE(A(z)=0) and solE(B(x)=0) by WA and WB,

respectively. Let {e1, . . . , eq} and {f1, . . . , fd} be the sets of L-generators of MA and MB

such that A(e) = 0 and B(f) = 0, respectively, where e=(e1, . . . , eq)τ and f=(f1, . . . , fd)τ .

Let π : MA → MB be the L-module isomorphism. Then there exists Q ∈ Lq×d such

that π(e) = Q f . Since π is L-linear, A(Q f) = A(π(e)) = π(A(e)) = 0. Let ξ ∈ WB. By
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Theorem 2.4.2, there exists φ ∈ HomL(MB, E) such that ξ = φ(f). Hence

A(Qξ) = A(Qφ(f)) = φ(A(Q f)) = 0,

so Qξ belongs to WA. Thus the correspondence ξ 7→ Qξ is a homomorphism of CE-modules

from WB to WA.

For every η ∈WA, there exists ψ ∈ HomL(MA, E) such that

η = ψ(e) = ψ(π−1(Q f)) = Qψ(π−1(f)).

Clearly, B(ψ(π−1(f))) = ψ ◦ π−1(B(f)) = 0, thus ψ(π−1(f)) is in WB and the correspon-

dence ξ 7→ Qξ is surjective. If ξ ∈ WB and Qξ = 0, there is ϕ ∈ HomL(MB, E) such

that ξ = ϕ(f). Hence 0 = Qξ = ϕ(Q f) = ϕ(π(e)). This means that ϕ ◦ π maps everything

to 0 as MA is generated by e1, . . . , eq over L. Hence ϕ = (ϕ ◦ π) ◦ π−1 = 0. Thus ξ = 0 and

the correspondence is bijective. �

Proposition 2.4.3 reveals that, for two linear functional systems, if their modules of

formal solutions are isomorphic then there is a one-to-one correspondence between their

solution spaces in an orthogonal ∆-extension of F .

We now establish a connection between submodules of S1×q and those of L1×q.

Recall that a (left) ideal I of S is said to be of finite rank ([39]) if S/I is a finite-

dimensional F -vector space.

Lemma 2.4.4 Let J be a finite-rank left ideal of S and I be the left ideal generated by J

in L. Then every element of L is congruent to some element of S modulo I.

Proof. If J contains some monomial in ∂`+1, . . . , ∂m, then I = L and every f ∈ L is

congruent to 0 modulo I. Assume that J does not contain any monomial in ∂`+1, . . . , ∂m.

Set J̄ to be the contraction I ∩ S and let H be the set of all monomials in ∂`+1, . . . , ∂m.

Since every element of H is invertible in L, one can verify that

J̄ = {a ∈ S |ha ∈ J for some h ∈ H}. (2.14)

Since J ⊆ J̄ , dimF S/J̄ is finite and J̄ is of finite rank. For j > `, let fj be a nonzero poly-

nomial in F [∂j ]∩ J̄ with minimal degree. Then each fj is of positive degree with a nonzero
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coefficient of ∂0
j , for otherwise, J̄ would contain 1, and, hence by (2.14), J would have a

nonempty intersection with H, a contradiction to the assumption. Since ∂−1
j fj∈I, ∂−1

j is

congruent to an element of F [∂j ] modulo I. It follows that every element of L is congruent

to an element of S modulo I. �

The following lemma is a generalization of Lemma 2.4.4 to submodules of free S-modules.

Lemma 2.4.5 Let N be a left submodule of S1×n where n ≥ 1 such that S1×n/N is finite-

dimensional over F , and M be the submodule generated by N in L1×n. Then every element

of L1×n is congruent to some element of S1×n modulo M .

Proof. Let e1, . . . , en be the canonical basis of S1×n and Ji={f∈S | f(ei)∈N} for 1≤i≤n.

Then Ji is a left ideal of S for each i. Since S1×n/N is finite-dimensional over F , there

exists fij ∈ F [∂j ] such that fij(ei) belongs to N for all i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ m.

This implies that a rectangular system([19]) {fi1, . . . , fim} is contained in Ji for each i,

hence Ji is of finite rank by Proposition 2.1 of [19] or by Lemma 2.1 in [43]. Since every

element w of M has the form
∑n

i=1 giui where gi ∈ L and ui ∈ N , we have w = p
∑n

i=1 g
′
iui

where g′i ∈ S and p ∈ P := {∂k`+1

`+1 · · · ∂km
m | kj ≤ 0}. So M = {p · u | p ∈ P, u ∈ N}. Let Ii

be the ideal generated by Ji in L and Hi = {f ∈ L | fei ∈ M} for i = 1, . . . , n. If f ∈ Hi

then fei ∈ M and fei = pu with p ∈ P and u ∈ N . Since ei is the unit vector where 1 is

the ith entry and 0 elsewhere, we must have fei = paei for some a ∈ S and hence u = aei.

It follows that a ∈ Ji and f = pa ∈ Ii. Conversely, if h ∈ Ii then h = a1f1 + · · · + atft

with aj ∈ L and fj ∈ Ji. Since fjei ∈ N for each j, hei ∈M . So h ∈ Hi and Ii = Hi.

For any w ∈ L1×q, we have w =
∑n

i=1 fiei where fi ∈ L. From Lemma 2.4.4 and Ii = Hi,

each fi is congruent to some gi ∈ S modulo Hi, thus fi = gi + hi for some hi ∈ Hi.

So w = (
∑n

i=1 giei) + (
∑n

i=1 hiei) ∈ S1×n +M and the lemma follows. �

Proposition 2.4.6 Let N be a left submodule of S1×n such that S1×n/N has finite dimen-

sion over F , M the submodule generated by N in L1×n and N = M ∩S1×n. Then S1×n/N

and L1×n/M are isomorphic as F -vector spaces.
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Proof. Let φ be the map from S1×n/N to L1×n/M given by u+N 7→ u+M. The map φ is

well-defined because N ⊆M . Suppose that φ(u+N)=u+M=M . Then u ∈M∩S1×n = N

and φ is injective. From Lemma 2.4.5, every w ∈ L1×n is congruent to some u ∈ S1×n

modulo M . Thus w +M = u +M = φ(u +N) and φ is surjective. �

Remark 2.4.8 One can check easily that

N =
{
w ∈ Sn | ∂k`+1

`+1 · · · ∂km
m (w) ∈ N, for some k`+1, . . . , km ∈ N

}
.

When n = 1, Proposition 2.4.6 specializes to Lemma 2 in [13]. For later references, we

recite this specialization as follows.

Corollary 2.4.7 Let J be a finite-rank left ideal of S, I be the left ideal generated by J

in L and I = I ∩ S. Then S/I and L/I are isomorphic as F -vector spaces.

Example 2.4.9 Let A1, . . . , Am be arbitrary matrices in Fn×n and A be the stacking of the

blocks of the form (∂i · 1n −Ai):

A =


∂1 · 1n −A1

...

∂m · 1n −Am

 ∈ Smn×n ⊆ Lmn×n .

The system A(z) = 0 then corresponds to the system {∂i(z) = Aiz}1≤i≤m. Let M be the

module of formal solutions of A(z) = 0. Let e1, . . . , en be the images of e1n, . . . , enn in M ,

respectively. For e = (e1, . . . , en)τ ∈ Mn, we have A(e) = 0 or ∂i(e) = Aie for each i.

Since the entries of Ai are in F , ∂i(ej)∈
∑n

s=1 Fes for all i, j, thus Lej ⊆
∑n

s=1 Fes for

all j. So M =
∑n

s=1 Les =
∑n

s=1 Fes, i.e., {e1, . . . , en} is also a set of F -generators of M .

In particular, dimF M≤n. �

Example 2.4.10 Consider a p×1 matrix A = (L1, . . . , Lp)τ with Li ∈ S. Let J and I be

the ideals generated by L1, . . . , Lp in S and L, respectively. The module of formal solutions

for A(z) = 0 is M = L/I, which by Corollary 2.4.7 is finite-dimensional over F if dimF S/J

is finite. �
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Proposition 2.4.6 indicates that the linear dimension of A(z) = 0 can be computed

without using Laurent-Ore algebras if cokerS(A) is finite-dimensional over F . However, the

following example shows that there are systems whose S-cokernels are infinite-dimensional

over F . �

Example 2.4.11 Let A = (L1, L2)τ with L1 = ∂1∂2(∂1 + 1) and L2 = ∂1∂2(∂2 + 1), J the

ideal in S generated by L1 and L2, and M = cokerL(A) (i.e., the module of formal solutions

of A(z) = 0). Since ∂1 and ∂2 are invertible in L,

M = L/(LL1 + LL2) = L/(L(∂1 + 1) + L(∂2 + 1)),

thus dimF M = 1. However, S/J is infinite-dimensional over F . �

Example 2.4.12 Consider the case ` = 0 and m = 2. Let A = ∂1 + 1. Then both its S-

cokernel S/SA and its L-cokernel L/LA are infinite-dimensional over F . Systems of this

kind are out of scope of the thesis. �

2.4.4 Integrable Connections

In this section, we study systems of the form {∂i(z) = Aiz}1≤i≤m. We are interested in

systems of this kind, because the problem of finding solutions of a general linear functional

system can be finally reduced to that of finding solutions of such a system.

We first look at some properties of L-modules of finite dimension.

Proposition 2.4.8 Let M be an L-module with a finite basis b1, . . . ,bn over F . Sup-

pose that ∂i(b1, . . . ,bn)τ = Bi(b1, . . . ,bn)τ where Bi ∈ Fn×n for 1 ≤ i ≤ m. Then the

system {∂i(x) = Bix}1≤i≤m is fully integrable.

Proof. Set b=(b1, . . . ,bn)τ . Since ∂i and ∂j commute for any i and j, ∂i(∂j(b))=∂j(∂i(b)).

From ∂i(b) = Bib and the linear independence of b1, . . . ,bn over F , it follows that

σi(Bj)Bi + δi(Bj) = σj(Bi)Bj + δj(Bi), for 1 ≤ i, j ≤ m,
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i.e., B1, . . . , Bm satisfy the compatibility conditions (2.2). Therefore {∂i(x) = Bix}1≤i≤m

is integrable.

Suppose that Bt is singular for some t > `. Then there is a nonzero v ∈ F 1×n

such that vBt = 0, thus v∂t(b)=vBtb = 0. Since M is an L-module on which ∂−1
t

acts, 0=∂−1
t (v∂t(b))=σ−1

t (v)∂−1
t (∂t(b))=σ−1

t (v)b, which implies that b1, . . . ,bn are lin-

early dependent over F , a contradiction. So the Bj are invertible for ` + 1 ≤ j ≤ m and

the system {∂i(x) = Bix}1≤i≤m is fully integrable. �

As we saw in Example 2.4.9, for a system {∂i(z) = Aiz}1≤i≤m, the dimension of its

module of formal solutions over F is not greater than the size of the system. Furthermore,

Proposition 2.4.9 A system {∂i(z) = Aiz}1≤i≤m over F is fully integrable if and only if

the dimension of its module M of formal solutions over F is equal to the size of the system.

Proof. Let n be the size of the system and {e1, . . . , en} be a set of L-generators of M such

that ∂i(e1, . . . , en)τ = Ai(e1, . . . , en)τ . If dimF M = n, then e1, . . . , en form an F -basis

of M , therefore {∂i(z) = Aiz}1≤i≤m is fully integrable by Proposition 2.4.8. Conversely,

if {∂i(z) = Aiz}1≤i≤m is fully integrable, then by Theorem 2.2.2 it has a fundamental ma-

trix U = (u1, . . . , un) ∈ En×n where the uj are columns of U and E is a (simple) orthog-

onal ∆-extension of F . Since uj is a solution of {∂i(z) = Aiz}1≤i≤m, by Theorem 2.4.2

there exists ϕj ∈ HomL(M,E) such that uj = ϕj(e) for 1 ≤ j ≤ n. Let
∑n

i=1 λiei = 0

where λi ∈ F . It follows that (λ1, . . . , λn)uj = (λ1, . . . , λn)ϕj(e) = 0 for 1 ≤ j ≤ n,

i.e., (λ1, . . . , λn)U = 0. Since U is invertible, λi = 0 for each i and e1, . . . , en are linearly

independent over F . �

Recall the notion of a tensor product of modules over noncommutative rings given in [54].

Let R be a noncommutative ring, M a right R-module and N a left R-module. We can

define the abelian group M ⊗RN , called the tensor product of M and N over R, as the free

abelian group generated by the Z-linear combinations of all the pairs (u,v) with u ∈ M

and v ∈ N , modulo the subgroup generated by the expressions of the form

(u + u′,v)− (u,v)− (u′,v), (u,v + v′)− (u,v)− (u,v′), (u r,v)− (u, r v),



36 §2.4 Linear Functional Systems

for all u,u′ ∈ M , v,v′ ∈ N and r ∈ R. The equivalence class of (u,v) ∈ M × N is

denoted u⊗ v in M ⊗R N .

For a matrix A ∈ Sp×q ⊆ Lp×q, we can construct its S-cokernel cokerS(A) and L-

cokernel cokerL(A). Since L is a right S-module and cokerS(A) is a left S-module, the

tensor product L ⊗S cokerS(A) is well-defined by the above argument and we have the

following relations in L ⊗S cokerS(A):

(l + l′)⊗ v = l ⊗ v + l′ ⊗ v, l ⊗ (v + v′) = l ⊗ v + l ⊗ v′, l s⊗ v = l ⊗ sv,

for l, l′ ∈ L, v,v′ ∈ cokerS(A) and s ∈ S. Further, with L viewed as a left L-module, the

tensor product L ⊗ cokerS(A) becomes a left L-module endowed with the action

l′(l ⊗ v) = (l′l)⊗ v, for all l, l′ ∈ L, v ∈ cokerS(A).

Lemma 2.4.10 Let A ∈ Sp×q. Then cokerL(A) and L ⊗ cokerS(A) are isomorphic as L-

modules.

Proof. Let e∗1, . . . , e
∗
q and e1, . . . , eq be the respective images of e1q, . . . , eqq in cokerS(A)

and cokerL(A). Let π be the map L ⊗ cokerS(A) → cokerL(A) given by

q∑
i=1

li ⊗ e∗i 7→
q∑

i=1

liei, where li ∈ L,

and λ the map cokerL(A) → L⊗ cokerS(A) given by
∑q

i=1 liei 7→
∑q

i=1 li⊗e∗i where li ∈ L.

We need to show that λ is well-defined since any element in cokerL(A) may be written in

various combinations of e1, . . . , eq. Suppose that
∑q

i=1 liei =
∑q

i=1 kiei with li, ki ∈ L. Let

us set A = (ast)1≤s≤p, 1≤t≤q where ast ∈ S. It follows that
∑q

i=1(li − ki)eiq ∈ L1×pA and

there exist h1, . . . , hp ∈ L such that

q∑
i=1

(li − ki)eiq = h1(a11, . . . , a1q) + · · ·+ hp(ap1, . . . , apq),
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which implies that li − ki = h1a1i + · · ·+ hpapi for i = 1, . . . , q. Hence

λ

(
q∑

i=1

liei −
q∑

i=1

kiei

)
=

q∑
i=1

(li − ki)⊗ e∗i =
q∑

i=1

(h1a1i + · · ·+ hpapi)⊗ e∗i

= (h1 ⊗ (a11e∗1) + · · ·+ hp ⊗ (ap1e∗1)) + · · ·+
(
h1 ⊗ (a1qe∗q) + · · ·+ hp ⊗ (apqe∗q)

)
= h1 ⊗ (a11e∗1 + · · ·+ a1qe∗q) + · · ·+ hp ⊗ (ap1e∗1 + · · ·+ apqe∗q)

= h1 ⊗ ((a11, . . . , a1q) + S1×pA) + · · ·+ hp ⊗ ((ap1, . . . , apq) + S1×pA) = 0.

Thus λ is well-defined. In addition, one can verify that π ◦ λ and λ ◦ π are identity maps

on cokerL(A) and L ⊗ cokerS(A), respectively. So cokerL(A) ∼=L L ⊗ cokerS(A). �

From Lemma 2.4.10, for any matrix A over S, its linear dimension, dimF cokerL(A), is

not greater than dimF cokerS(A).

Let A(z)=0 with A ∈ Sp×q be a system of finite linear dimension n and M=cokerL(A)

be its module of formal solutions with an F -basis b1, . . . ,bn satisfying

∂i(b1, . . . ,bn)τ = Bi(b1, . . . ,bn)τ , where Bi ∈ Fn×n, 1 ≤ i ≤ m.

According to Proposition 2.4.8, {∂i(x) = Bix}1≤i≤m is a fully integrable system, which is

called an integrable connection of A(z) = 0 with respect to a basis b1, . . . ,bn of M . Observe

that the integrable connections of A(z) = 0 with respect to different F -bases of M are

equivalent to each other. Indeed, let {∂i(x) = Bix}1≤i≤m and {∂i(x̃) = B̃ix̃}1≤i≤m be the

integrable connections of A(z) = 0 with respect to two F -bases b1, . . . ,bn and b̃1, . . . , b̃n

of M , respectively. Write b = (b1, . . . ,bn)τ and b̃ = (b̃1, . . . , b̃n)τ . Let T ∈ GLn(F ) be

given by b̃ = Tb. From ∂i(b) = Bib and ∂i(b̃) = B̃ib̃, we get that

B̃iT = TBi + δi(T ), for i ≤ ` and σj(T )Bj = B̃jT, for j > `.

By Definition 2.2.5, {∂i(x) = Bix}1≤i≤m and {∂i(x̃) = B̃ix̃}1≤i≤m are equivalent. So in the

sequel, we sometimes omit mentioning the basis when referring to an integrable connection.

Proposition 2.4.11 Let A,b1, . . . ,bn, B1, . . . , Bm be as above, and B be the stacking of

the blocks (∂i · 1n −Bi). We have the following two statements:
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(i) cokerL(A) ∼=L cokerL(B).

(ii) Suppose that cokerS(A) has a finite F -basis f1, . . . , fd and ∂i(f1, . . . , fd)τ = Di(f1, . . . , fd)τ

where Di ∈ F d×d for 1 ≤ i ≤ m. Let D be the stacking of the blocks (∂i · 1d −Di). Then

cokerS(A) ∼=S cokerS(D) and cokerL(A) ∼=L cokerL(D).

Proof. (i) Let e1, . . . , en denote the images of e1n, . . . , enn in cokerL(B), respectively.

Set b = (b1, . . . ,bn)τ and e = (e1, . . . , en)τ . As seen in Example 2.4.9, {e1, . . . , en} is a set

of F -generators of cokerL(B). Since B(b) = 0, there exists an L-module homomorphism ϕ

from cokerL(B) to cokerL(A) such that ϕ(e) = b by Theorem 2.4.1 or by Theorem 2.4.2.

The F -linear independence of b1, . . . ,bn then implies that of e1, . . . , en. So e1, . . . , en form

an F -basis of cokerL(B) and ϕ is bijective.

(ii) cokerS(A) ∼=S cokerS(D) follows from a similar argument to the proof of (i), by

replacing L with S, the bi with the fi, and B with D. From Lemma 2.4.10, we have

cokerL(A) ∼=L L ⊗ cokerS(A) and cokerL(D) ∼=L L ⊗ cokerS(D).

It then follows that cokerL(A) ∼=L cokerL(D). �

Proposition 2.4.11 (i) reveals that, for a ∂-finite system A(z) = 0, its module of formal

solutions is isomorphic to that of its integrable connection {∂i(x) = Bix}1≤i≤m. Conse-

quently, Proposition 2.4.3 implies that there is a one-to-one correspondence between all

solutions of A(z) = 0 and those of {∂i(x) = Bix}1≤i≤m. In fact, this correspondence is

given by a matrix over F , as shown in the following

Proposition 2.4.12 Let A(z)=0 with A ∈ Sp×q be a system of finite linear dimension n, MA

be its module of formal solutions, {e1, . . . , eq} be a set of L-generators for MA and b1, . . . ,bn

be an F -basis of MA such that A(e1, . . . , eq)τ = 0 and ∂i(b1, . . . ,bn)τ = Bi(b1, . . . ,bn)τ

where Bi ∈ Fn×n for each i. Then there exists P ∈ F q×n such that for any orthogo-

nal ∆-extension E of F , the correspondence ξ 7→ Pξ is an isomorphism of CE-modules

between solE({∂i(x) = Bix}1≤i≤m) and solE(A(z) = 0).

Proof. Let B be the stacking of the blocks of the form (∂i · 1n −Bi), MB be the module

of formal solutions for B(x) = 0 and {ē1, . . . , ēn} be a set of L-generators of MB such
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that ∂i(ē1, . . . , ēn)τ = Bi(ē1, . . . , ēn)τ for each i. As seen in Example 2.4.9, {ē1, . . . , ēn}

is a set of F -generators of MB. From Proposition 2.4.11 (i), MA
∼=LMB, thus ē1, . . . , ēn

form an F -basis of MB. With the L-generators f1, . . . , fd of MB in the proof of Proposi-

tion 2.4.3 replaced by the F -basis ē1, . . . , ēn, one sees that the matrix Q ∈ Lq×d in the

proof of Proposition 2.4.3 can be chosen to be a matrix in F q×d, which gives the desirable

correspondence. �

Let A ∈ Sp×q. Suppose that cokerS(A) has finite dimension d over F and has an F -

basis f1, . . . , fd such that ∂i(f1, . . . , fd)τ = Di(f1, . . . , fd)τ where Di ∈ F d×d for 1 ≤ i ≤ m.

One can show that {∂i(z) = Aiz}1≤i≤m is an integrable system by a similar argument to

the first part of the proof for Proposition 2.4.8. From Proposition 2.4.11 (ii), cokerL(A) is

isomorphic to the L-cokernel of {∂i(y) = Diy}1≤i≤m. Hence, for a system A(z) = 0 such

that cokerS(A) is finite-dimensional, to compute its linear dimension it suffices to compute

the linear dimension of the integrable system {∂i(y) = Diy}1≤i≤m. This task is discussed

later in Section 2.5.

2.4.5 Fundamental Matrices and Picard-Vessiot Extensions

Based on the results in previous sections, we now generalize the notions and results of

fundamental matrices and Picard-Vessiot extensions for ∂-finite linear functional systems.

Definition 2.4.13 Let A(z) = 0 with A ∈ Sp×q be a ∂-finite system, M be its module of

formal solutions, {e1, . . . , eq} be a set of L-generators of M and b1, . . . ,bn be an F -basis

of M such that A(e1, . . . , eq)τ = 0 and (e1, . . . , eq)τ = P (b1, . . . ,bn)τ where P ∈ F q×n.

A q × n matrix V with entries in an orthogonal ∆-extension E of F is called a funda-

mental matrix for A(z) = 0 if V = PU where U ∈ En×n is a fundamental matrix of the

integrable connection of A(z) = 0 with respect to b1, . . . ,bn.

A Picard-Vessiot ring for the integrable connection of A(z) = 0 is called a Picard-Vessiot

ring for A(z) = 0.

Although this is not stated in the definition, it follows from Proposition 2.4.12 that the

columns of a fundamental matrix form a CE-basis of the CE-module solE(A(z)=0): de-
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note solE(A(z)=0) and solE({∂i(x) = Bix}1≤i≤m) by WA and WB respectively. Then the

columns of V=PU are in WA by Proposition 2.4.12. Let c∈Cn×1
E be such that 0=Vc=PUc.

Since Uc ∈ WB, we have Uc = 0 by Proposition 2.4.12, hence c = 0 since U is invertible.

Thus the columns of V are linearly independent over CE . For any η ∈ WA there ex-

ists ξ∈WB such that η = Pξ. By Proposition 2.2.3 there exists c ∈ Cn×1
E such that ξ=Uc.

Hence η=PUc = V c.

As remarked earlier, integrable connections with respect to different F -bases of M are

equivalent to each other. Therefore the last part of Definition 2.4.13 is justified by Propo-

sition 2.2.7.

As a final consequence of Theorems 2.2.2 and 2.2.5, we have

Theorem 2.4.13 Every ∂-finite system A(z) = 0 has a fundamental matrix in some simple

orthogonal ∆-extension of F and has a Picard-Vessiot ring E. If F has characteristic 0

and CF is algebraically closed, then CE = CF .

Proof. Let n > 0 be the linear dimension of A(z) = 0, M be its module of formal

solutions, {e1, . . . , eq} be a set of L-generators of M and b1, . . . ,bn be an F -basis of M such

that A(e1, . . . , eq)τ = 0 and ∂i(b1, . . . ,bn)τ = Bi(b1, . . . ,bn)τ for each i. Let P ∈ F q×n

be given by (e1, . . . , eq)τ = P (b1, . . . ,bn)τ . Since {∂i(x) = Bix}1≤i≤m is a fully integrable

system, there exists, by Theorem 2.2.2, a fundamental matrix U ∈ En×n for that system

where E is a simple orthogonal ∆-extension of F . Then V := PU ∈ Eq×n is a fundamental

matrix for A(z) = 0. The existence of the Picard-Vessiot ring and the second statement

follow directly from Theorem 2.2.5. �

Assume that F has characteristic 0 with an algebraically closed field of constants.

Let E be a Picard-Vessiot ring for the system A(z) = 0. As mentioned after Theo-

rem 2.2.5, solE({∂i(x) = Bix}1≤i≤m) is of dimension n over CF . But that space is isomor-

phic to solE(A(z) = 0) by Proposition 2.4.12. Therefore, the dimension of solE(A(z) = 0)

as a CF -vector space equals the linear dimension of A(z) = 0, whenever the latter is finite.
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Example 2.4.14 Let F=C(x, k) and A be the system {δx(z)=Axz, σk(z)=Akz} where

Ax =


x+1

x
k(x+1−k)
x2(k−1)

−k(x+1−k)
x2(k−1)

x+ 1 xk−k2+2x2+kx2+k−1
x(k−1) −xk−k2+2x2+kx2

x(k−1)

x+ 1 xk+2x2+kx2−2k2+k
x(k−1) −xk+2x2+kx2−2k2+1

x(k−1)

 ,

Ak =


k+1

k
k+1−xk−x

x(k−1)
xk+x−k−1

x(k−1)

x(k+1)
k

1−2x+k−xk+x3

k−1
2x+xk−x3−k−1

k−1

x(k+1)
k

1−2xk−2x+k+x3

k−1
2xk+2x−k−x3−1

k−1

 .

Note that Ax and Ak satisfy the compatibility conditions (2.2) but Ak is singular, so the

system is not fully integrable. We will show in Example 2.5.2 that all solutions z of A can

be found by a change of variable z = Py where

P =


1 0

0 1
x(k−1)
x2−1

x2−k
x2−1


and y is a solution of the fully integrable system B : {δx(y) = Bxy, σk(y) = Bky} with

Bx =

 −x+x3−1+x2−xk−k+k2

x(x2−1)
k(x+1−k)
x2(x2−1)

−x−xk+x3−1−x2+k2−kx2

x2−1
−k2+xk+kx2+3x2−1

x(x2−1)

 ,

Bk =

 xk+x+k2+2k+1
k(x+1) − k+1

x(x+1)

− (kx2−x−k2−2k−1)x
k(x+1)

x2+x−1−k
x+1

 .

So it suffices to compute a Picard-Vessiot extension of B. The same method to construct a

fundamental matrix for the system in Example 2.2.2 yields a fundamental matrix for B:

U =

 xkex −kxk

kx2ex (x2 − k − 1)xk+1

 ,

hence PU is for A. In addition, a Picard-Vessiot ring E = C(x, k)[ex, e−x, xk, x−k] for B

is a Picard-Vessiot ring for A. �
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2.5 Computing Linear Dimension of Integrable Systems

In this section, we present an algorithm for computing linear dimensions of integrable sys-

tems by linear algebra. For general linear functional systems, their linear dimensions will

be computed by Gröbner basis techniques described in Chapter 3.

2.5.1 Notation

As in previous sections, let S and L be the Ore algebra and the Laurent-Ore algebra over F .

Given a linear functional system A(z) = 0 where A ∈ Sp×q, by the submodule NA defined

by the system we mean the submodule generated by the row vectors of A over L. Clearly,

the quotient module L1×q/NA is the module of formal solutions of the system.

Let z = (z1, . . . , zn)τ be a vector of unknowns. Two subvectors u = (zi1 , . . . , zid)
τ

and v = (zj1 , . . . , zjn−d
)τ form a partition of z if {zi1 , . . . , zid} and {zj1 , . . . , zjn−d

} form a

partition of {z1, . . . , zn}. Let u = (zi1 , . . . , zid)
τ be a subvector of z and B be a square

matrix of size n over L. The submatrix of B consisting of its i1th, . . . , idth rows is de-

noted Bu. Assume that {u,v} is a partition of z. Then the submodule defined by the

system {∂i(z) = Aiz}1≤i≤m where Ai ∈ Fn×n equals that defined by

∂i(u) = Au
i z, ∂i(v) = Av

i z, i = 1, . . . ,m.

2.5.2 Linear Reduction

Lemma 2.5.1 Let A be the linear functional system consisting of

{∂i(z) = Aiz}1≤i≤m and Pz = 0,

where P is a matrix over F with n columns. Set d = n − rank(P ). Then one can either

assert that {∂i(z) = Aiz}1≤i≤m has only trivial solution or find a partition {u,v} for z such

that the system B consisting of

v = Qu, ∂iu = Biu, Riu = 0, i = 1, . . . ,m, (2.15)
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defines the same submodule as A, where u is a column vector of size d, Q and Ri belong

to F (n−d)×d and the matrices Bi belong to F d×d.

Proof. If all the entries of P are zero, then we set u to be z and Bi to be Ai. If d = 0

then all the zi are zero. Thus we may assume that 0 < d < n.

Solve the linear algebraic system Pz = 0 to get a partition {u,v} of z such that v=Qu,

where u has size d and v has size (n− d). Using the linear relations v=Qu to eliminate all

the unknowns in v that appear in the system ∂i(u)=Au
i z yields ∂i(u)=Biu, for i = 1, . . . ,m.

Using v=Qu and ∂i(u) = Biu to eliminate the ∂i(v) and v in ∂i(v) = Av
i z yields Riu=0,

for i = 1, . . . ,m.

Note that any matrix representation of the system B has n columns since z is also the

vector of unknowns for B.

Let NA and NB be the submodules defined by the systems A and B, respectively. The

submodule NB is contained in NA, because all the row vectors in the matrix representa-

tion (2.15) of B belong to NA. Conversely, the row vectors in the matrix representation

of Pu = 0 are in the submodule defined by v = Qu; the row vectors in the matrix repre-

sentation of ∂i(u) = Au
i z are in the submodule defined by v = Qu and ∂i(u) = Biu; and

the row vectors in the matrix representation of ∂i(v) = Av
i z are in the submodule defined

by v = Qu, ∂i(u) = Biu and Riu = 0. Thus NA = NB. �

The proof of Lemma 2.5.1 contains an algorithm for separating unknowns of the sys-

tem A by linear algebra.

We present formulas for the matrices Bi and Ri in (2.15). These formulas have an

interesting consequence to be described in Lemma 2.5.2. Without loss of generality, assume

that u and v in (2.15) are (z1, . . . , zd)τ and (zd+1, . . . , zn)τ , respectively, where 1 ≤ d < n.

Partition the matrices

Ai =

 Ai1 Ai2

Ai3 Ai4

 , i = 1, . . . ,m,

where Ai1 ∈ F d×d, Ai2 ∈ F d×(n−d), Ai3 ∈ F (n−d)×d and Ai4 ∈ F (n−d)×(n−d). From v = Qu
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and ∂i(u) = (Ai1, Ai2)(u,v)τ = (Ai1, Ai2)(u, Qu)τ , it follows that

Bi = Ai1 +Ai2Q, i = 1, . . . ,m.

From v = Qu and ∂i(v) = (Ai3, Ai4)(u,v)τ = (Ai3, Ai4)(u, Qu)τ , we obtain

σi(Q)∂i(u) + δi(Q)u = (Ai3 +Ai4Q)u,

hence (σi(Q)Bi + δi(Q))u = (Ai3 +Ai4Q)u because ∂i(u) = Biu. Consequently,

Ri = (σi(Q)Bi + δi(Q))− (Ai3 +Ai4Q), i = 1, . . . ,m. (2.16)

The next lemma plays a key role in our algorithm for computing linear dimension of an

integrable system.

Lemma 2.5.2 If {∂i(z) = Aiz}1≤i≤m in the system A given in Lemma 2.5.1 is integrable

and the Ri in (2.16) are all zero, then the system {∂i(u) = Biu}1≤i≤m in (2.15) is integrable.

Proof. To simplify notation, we assume that u = (z1, . . . , zd)τ and v = (zd+1, . . . , zn)τ .

From (2.16) and Ri = 0, we have

Ai3 = σi(Q)Bi + δi(Q)−Ai4Q, i = 1, . . . ,m. (2.17)

For all i, j with 1 ≤ i, j ≤ m, we have

σi(Aj)Ai + δi(Aj)

=

σi(Aj1)Ai1 + σi(Aj2)Ai3 + δi(Aj1) σi(Aj1)Ai2 + σi(Aj2)Ai4 + δi(Aj2)

σi(Aj3)Ai1 + σi(Aj4)Ai3 + δi(Aj3) σi(Aj3)Ai2 + σi(Aj4)Ai4 + δi(Aj4)

. (2.18)

Substitute (2.17) into the top-left block of (2.18) to yield

σi(Aj1)Ai1 + σi(Aj2)Ai3 + δi(Aj1)

= σi(Aj1)Ai1 + σi(Aj2) (σi(Q)Bi + δi(Q)−Ai4Q) + δi(Aj1)

= αij − σi(Aj2)Ai4Q
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where αij = σi(Aj1)Ai1 + σi(Aj2)σi(Q) (Ai1 +Ai2Q) + σi(Aj2)δi(Q) + δi(Aj1). From the

compatibility conditions (2.2) satisfied by the Ai, it follows that

αij − αji = (σi(Aj2)Ai4 − σj(Ai2)Aj4)Q (2.19)

and

(σi(Aj1)Ai2 + δi(Aj2))− (σj(Ai1)Aj2 + δj(Ai2)) = σj(Ai2)Aj4 − σi(Aj2)Ai4. (2.20)

A routine calculation shows that

σi(Bj)Bi + δi(Bj) = σi(Aj1 +Aj2Q)(Ai1 +Ai2Q) + δi(Aj1 +Aj2Q)

= αij + σi(Aj1)Ai2Q+ δi(Aj2)Q.

From (2.19) and (2.20), we get

(σi(Bj)Bi + δi(Bj))− (σj(Bi)Bj + δj(Bi))

= (αij + σi(Aj1)Ai2Q+ δi(Aj2)Q)− (αji + σj(Ai1)Aj2Q+ δi(Aj2)Q)

= αij − αji + (σi(Aj1)Ai2 + δi(Aj2))Q− (σj(Ai1)Aj2 + δj(Ai2))Q

= αij − αji + (σj(Ai2)Aj4 − σi(Aj2)Ai4)Q = 0,

for all i, j with 1 ≤ i, j ≤ m, i.e., the Bi satisfy the compatibility conditions (2.2).

So {∂i(x) = Bix}1≤i≤m is integrable. �

2.5.3 An algorithm

Given a system {∂i(z) = Aiz}1≤i≤m where A1, . . . , Am ∈ Fn×n. From all those singular

matrices among A`+1, . . . , Am, we can derive linear relations among the coordinates of z.

To see this, assume that Aj is a singular matrix for some ` + 1 ≤ j ≤ m and the rank

of Aj equals rj . From ∂j(z) = Ajz, we derive (n − rj) linear relations among the coordi-

nates of ∂j(z). Applying ∂−1
j to these relations yields (n − rj) linear relations among the

coordinates of z.

We present an algorithm based on Lemmas 2.5.1 and 2.5.2.
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Algorithm LinearReduction: Given a system {∂i(z) = Aiz}1≤i≤m and certain linear

relations Pz = 0, where the Ai ∈ Fn×n and P is a matrix over F with n columns, either

conclude that the system has only trivial solution, or find a partition {u,v} of z, and

matrices Q,B1, . . . , Bm such that

(a) The system consisting of v = Qu and {∂i(u) = Biu}1≤i≤m defines the same submodule

as the given system;

(b) The matrices Bj are invertible for j = `+ 1, . . . ,m.

1. [Initialize] Set P̄ to be P and Āi to be Ai for i = 1, . . . , m. Set n̄ = n to be n and z̄

to be z. Set v to be the null vector and Q to be the null matrix.

2. [Collect new linear relations] For i = ` + 1, . . . , m, compute ri = rank(Āi). If ri<n̄,

then update P̄ by adding (n̄ − ri) linear relations derived from Āi among the co-

ordinates in z̄, as described above. If P̄ is the null matrix, then set u to be z, v

to be the null vector, Q to be the null matrix, and return the partition {u,v}, Q

and Ai, i = 1, . . . ,m.

3. [Solve linear algebraic equations] Solve P̄ z̄ = 0. If z̄ = 0, then exit [the input system

has only trivial solution.] Otherwise, find a partition {ū, v̄} of z̄ such that v̄ = Q̄ū

for some matrix Q̄ over F .

4. [Update the transformation for unknowns] Update v by combining the value of v

and v̄, and update Q by combining the value of Q and Q̄. We then have a new

partition {u,v} of z and a new transformation v = Qu, in which the size of the

current value of v is greater than that of the previous value of v.

5. [Reduce] For i = 1, . . . ,m, reduce ∂i(u) = Āu
i z by v = Qu to get ∂i(u) = Biu, and

reduce ∂i(v) = Āv
i z by v = Qu and ∂i(u) = Biu to get Riu = 0.

6. [Case distinction]
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(i) [new linear relations found by reduction] If Ri 6= 0 for some i ∈ {1, . . . ,m}, then

set P̄ be the matrix consisting all the nonzero row vectors of the Ri. Set Āi to

be Bi. Set n̄ to be the size of u and z̄ to be u. Go to step 2.

(ii) [new linear relations found by rank computation] If Bj is not of full rank for

some j ∈ {`+1, . . . ,m}, then set P̄ to be the matrix given by the linear relations

produced by all the singular matrices among B`+1, . . . , Bm. Set Āi to be Bi.

Set n̄ to be the size of u and z̄ to be u. Go to step 3.

(iii) [Done] Return the partition {u,v}, Q, and Bi, i = 1, . . . ,m.

The termination of the algorithm LinearReduction is guaranteed by step 4 because

the size of v is bounded by n. As shown in the proof of Lemma 2.5.1, the submodule N

defined by the input system contains all the row vectors in the matrix representation of

the system consisting of v = Qu, ∂i(u) = Biu, and Riu = 0 for i = 1, . . . ,m, as the

algorithm proceeds step by step. The new linear relations found by some singular Bj or Āj

for j ∈ {` + 1, . . . ,m}, are contained in N , because N is an L-module, which is closed

under the action of ∂−1
j . Therefore, the output and input systems define the same module

since the Ri are all zero matrices when the algorithm stops, and Pz can be reduced to zero

by v = Qu in every iteration. The algorithm LinearReduction is correct.

If {∂i(z) = Aiz}1≤i≤m in the input system is integrable, then {∂i(u) = Biu}1≤i≤m is

fully integrable by Lemma 2.5.2. Note that the module of formal solutions of the input

system equals that of the output one, which is isomorphic to that of {∂i(u) = Biu}1≤i≤m.

Hence, by Proposition 2.4.9, the linear dimension of the input system is the size of u. The

algorithm LinearReduction has another application in Section 4.2.

Example 2.5.1 Let F = C(k) and σk be the shift operator k 7→ k + 1 on F . Consider

the system σk(z) = Akz where z = (z1, z2)τ and Ak =

 0 1

0 −1

 . Note that Ak is sin-

gular. Solve the linear system (v1, v2)Ak = 0 to yield a basis {(1, 1)} of all its solutions.

Thus σk(z1)+σk(z2) = 0. By an application of σ−1
k , we get z2 = −z1. This relation together
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with Ak yields σk(z1) = −z1, which is obviously a fully integrable system. So the original

system has linear dimension one. �

Example 2.5.2 Let A be the system {δx(z) = Axz, σk(z) = Akz} where Ax and Ak are

given in Example 2.4.14. Note that Ak is singular. Solve the linear system (v1, v2, v3)Ak = 0

to get σk(z3) = xk
x2−1

σk(z1) + x2−k−1
x2−1

σk(z2). An application of σ−1
k then yields

z3 =
x(k − 1)
x2 − 1

z1 +
x2 − k

x2 − 1
z2.

Substitute the above relation into the system A, we get that δx(z1, z2)τ = Bx(z1, z2)τ

and σk(z1, z2)τ = Bk(z1, z2)τ where

Bx=

(
−x+x3−1+x2−xk−k+k2

x(x2−1)
k(x+1−k)
x2(x2−1)

−x−xk+x3−1−x2+k2−kx2

x2−1
−k2+xk+kx2+3x2−1

x(x2−1)

)
and Bk=

(
xk+x+k2+2k+1

k(x+1) − k+1
x(x+1)

− (kx2−x−k2−2k−1)x
k(x+1)

x2+x−1−k
x+1

)
.

A straightforward but tedious calculation shows that both R1 and R2 in (2.16) are zero.

Hence the system B given by Bx and Bk is fully integrable since Bk is invertible. So A has

linear dimension two. �

To conclude, we explain how to determine whether a linear functional system is ∂-finite.

In practice, it suffices to compute the dimension of its module M of formal solutions as

an F -vector space. As seen in previous sections, when the system is given as an integrable

system, we have a set of generators ofM over F , so computing dimF M can be done by linear

algebra (as explained in the algorithm LinearReduction). Note that dimF M = n if and

only if this integrable system is fully integrable. When the system is given by an ideal in S,

Corollary 2.4.7 shows that either M = 0 (if the ideal contains a monomial in ∂`+1, . . . , ∂m)

or an F -basis of M can be computed via Gröbner bases of ideals in S. There are algorithms

and implementations for this task [18, 19]. For more general matrices A ∈ Sp×q, one can

use the Gröbner basis technique to be developed in Chapter 3 for computing F -bases of L-

modules. However, if cokerS(A) has finite dimension over F , it suffices to compute the

linear dimension of an integrable system according to Proposition 2.4.12. The algorithm

LinearReduction in this section supplies a tool for this task. Therefore, Gröbner basis

techniques in L are only necessary when cokerS(A) is infinite-dimensional over F .



Chapter 3

Gröbner Basis Computation in

Laurent-Ore Algebras

Recall some terminologies introduced in Section 2.4.2. We denote by S the Ore alge-

bra F [∂1, . . . , ∂m], by S̄ the Ore algebra F [∂1, . . . , ∂m, θ`+1, . . . , θm] and by L the Laurent-

Ore algebra F [∂1, . . . , ∂m, ∂
−1
`+1, . . . , ∂

−1
m ] over F .

As discussed in Chapter 2, we are interested in finding a linear basis of modules of

formal solutions for a linear functional system. This problem can be formulated as: Let M

be an L-submodule of Ln. Decide whether Ln/M is a finite-dimensional vector space over F .

Moreover, find a basis of Ln/M over F if the dimension is finite.

In this chapter, ei denotes the unit vector in Sn with 1 in the ith position and 0 elsewhere.

Then e1, . . . , en form the canonical basis of Sn, S̄n, as well as Ln.

Let I be the ideal of S̄ generated by ∂`+1θ`+1−1, . . . , ∂mθm−1. By definition, L = S̄/I.

Then Ln = ⊕n
i=1Lei

∼=L ⊕n
i=1(S̄/I) ei. On the other hand, let In be the submodule of S̄n

generated by ∂jθjei − ei for 1 ≤ i ≤ n and `+ 1 ≤ j ≤ m. Then, the map

S̄n/In → (S̄/I) e1 ⊕ · · · ⊕ (S̄/I) en, (s1, . . . , sn) + In 7→ (s1 + I, . . . , sn + I),

with si ∈ S̄, is an isomorphism of S̄-modules. Since (S̄/I) e1 ⊕ · · · ⊕ (S̄/I) en is naturally

an L-module, so is S̄n/In. It follows that S̄n/In ∼=L Ln. This observation enables us to

49
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introduce Gröbner bases for submodules of Ln by Zampieri’s approach [63].

This chapter has two sections. In Section 3.1, we describe the notion of Gröbner bases

in finitely generated free modules over Ore algebras. The results of this section are rather

straightforward. In Section 3.2, we extend Zampieri’s approach to computing Gröbner bases

in finitely generated free modules over Laurent-Ore algebras.

3.1 Gröbner Bases for Modules over Ore Algebras

In this section, R denotes a general Ore algebra F [∂1;σ1, δ1] · · · [∂m;σm, δm] over a field F

where σi is a monomorphism on F and δi is a σi-derivation on F . Both S and S̄ are special

instances of R. We follow the approach in [24, Ch.5] to extend the notion of Gröbner bases

for ideals of R to Rn.

Let P be the set of all power products ∂k1
1 · · · ∂km

m in R for all k1, . . . , km ∈ N. Note

that P is a commutative monoid as in the usual commutative case.

We recall some terminologies given in [23]. A monomial in Rn is understood as an

element of the form p ei for some p ∈ P and some i ∈ {1, . . . , n}. The set of all monomials

in Rn is denoted Pn, which forms a basis for Rn over F . For two monomials p ei and q ej ,

we say that p ei divides q ej if i equals j and p divides q in P . We note that Dickson’s

lemma holds for Pn, that is, for every subset S of Pn, there exists a finite subset D ⊂ S

such that every element of S is divisible by some element of D.

Remark that we do not use the notion of terms, which are usually referred as elements

of the form fu with f ∈ F and u ∈ Pn, because the product of a power product in P and

a term is not necessarily a term due to the presence of derivation operators.

A basic theory of Gröbner bases involves three things: orderings on monomials, a division

algorithm and the Buchberger algorithm. Let us consider them one by one.

An ordering relation � on Pn is called a monomial order if the following conditions are

satisfied:

1. � is a total order,
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2. for every pair u,v ∈ Pn with u � v, we have pu � pv for every p ∈ P ,

3. pu � u for all u ∈ Pn and p ∈ P with p 6= 1.

Dickson’s lemma implies that a monomial order is a well-ordering, i.e., every infinite

descending sequence of monomials stabilizes.

From now on we fix a monomial order � on Pn.

For an element u ∈ Rn, we use lm(u) and lc(u) to denote the leading monomial and

leading coefficient of u, respectively. For a subset G of Rn, denote lm(G) = {lm(g) | g ∈ G}.

Let G = {g1, . . . ,gk} be a finite subset of nonzero elements in Rn. Every g ∈ Rn can

be written as

g = q1 g1 + . . .+ qk gk + r,

where q1, . . . , qk ∈ R, lm(qigi) � lm(g), and either r = 0 or r is an F -linear combination

of monomials, none of which is divisible by any of lm(g1), . . . , lm(gk). One can devise

a division algorithm for finding q1, . . . , qk and r in the same way as in the commutative

case ([24]). We call r the remainder of g on division by G.

For a submodule M of Rn, we say that a finite set G = {g1, . . . ,gk} ⊂M is a Gröbner

basis if the leading monomial of any element of M is divisible by some lm(gi). As in the

commutative case, if G is a Gröbner basis of M , then, for every g ∈ Rn, g is in M if and

only if its remainder on division by G is zero.

A characterization of commutative Gröbner bases with respect to division extends im-

mediately to Rn in the following

Proposition 3.1.1 Let M be a submodule of Rn generated by a finite set G. Let V be

the F -vector space generated by all the monomials not divisible by any element of lm(G).

Then G is a Gröbner basis of M if and only if Rn is the direct sum of M and V as F -vector

spaces.

Let u and v be two nonzero elements of Rn with lm(u) = p ei and lm(v) = qej where p

and q are in P . If i = j, we define the S-polynomial of u and v to be

S(u,v) =
(
t

p

)
lc(u)−1u−

(
t

q

)
lc(v)−1v,
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where t is the least common multiple of p and q. If i 6= j, the S-polynomial of u and v is

defined to be zero. One can verify that, if i = j, the leading monomial of the S-polynomial

of u and v is lower than lcm(p, q) ei.

Now we prepare for proving Buchberger’s criterion.

By the same telescoping trick in §6 of [23, Ch.2], one has

Lemma 3.1.2 Let u1, . . . ,ur be elements of Rn with the same leading monomial p ei. If the

leading monomial of the sum u = a1u1+ . . .+arur, where a1, . . . , ar ∈ F , is lower than p ei,

then u is an F -linear combination of the S-polynomials S(uj ,uk) where 1 ≤ j < k ≤ r. In

particular, the leading monomial of S(uj ,uk) is lower than p ei.

Observe that, for p = ∂k1
1 · · · ∂km

m ∈ P and a ∈ F , the product p a is not necessarily a

term R. In fact, the multiplication rules in R imply

p a = σk1
1 ◦ · · · ◦ σkm

m (a)p+
∑

i

aipi, (3.1)

where ai ∈ F and the pi are proper divisors of p. This observation motivates us to prove the

following lemma, which is trivial in the usual commutative case (see the equality between

equations (4) and (5) in §6 of [23, Ch.2]).

Lemma 3.1.3 Let u and v be in Rn such that lm(u) = s ei and lm(v) = t ei where s, t ∈ P .

Let p, q ∈ P be such that p s = q t, which is denoted w. Then

S(pu, q v)−
(

w

lcm(s, t)

)
S(u, v) = g u + hv, (3.2)

where g, h ∈ R such that lm(gu) and lm(hv) are both lower than w ei, which is equal

to lm(pu) and lm(q v).

Proof. Suppose that lcm(s, t) = f s = g t with f, g ∈ P . Since w is a common multiple

of s and t, w = rlcm(s, t) for some r ∈ P . It follows that p = rf and q = rg. We have

rS(u,v) = r f lc(u)−1u− r g lc(v)−1 v

= p lc(u)−1 u− q lc(v)−1 v

= lc(pu)−1(p+ g0)u− lc(q v)−1(q + h0)v (by (3.1))

= S(pu, q v) + lc(pu)−1g0u− lc(qv)−1h0v,
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where g0 and h0 are in R such that lm(g0) is lower than p, and lm(h0) is lower than q.

Then g = −lc(pu)−1g0 and h = lc(q v)−1h0 are as desired. �

With the aid of Lemmas 3.1.2 and 3.1.3, we get the Buchberger criterion in the same

way as in the usual commutative case.

Proposition 3.1.4 Let M be a submodule generated by G = {g1, . . . ,gk} in Rn. Then G

is a Gröbner basis of M if and only if the remainder of S(gi,gj) on division by G is zero

for all i < j.

Proof. The proof is the same as that of Theorem 6 in §6 of [23, Ch.2] except that we need

to replace the equality between equations (4) and (5) on page 83 of [23] by (3.2). �

The Buchberger algorithm is again the same as its commutative counterpart. Its cor-

rectness is guaranteed by Proposition 3.1.4 and its termination is by Dickson’s lemma.

Similar to the usual commutative case, a Gröbner basis G is said to be reduced if, for

every g ∈ G, lc(g) = 1 and g is reduced with respect to G \ {g}. By the same proof to

Proposition 6 in [23, Ch.2, §7], one can show

Proposition 3.1.5 For a given monomial order, every submodule M of Rn has a unique

reduced Gröbner basis G.

Example 3.1.1 Let R = S and {∂i(z) = Aiz}1≤i≤m be an integrable system of size n

over F . Consider the corresponding matrices (∂i · 1n −Ai) for i = 1, . . . , m. Let M be the

submodule generated by the row vectors of those matrices over S. These row vectors form a

Gröbner basis of M with respect to a monomial order in which ∂iej � ek for all 1 ≤ i ≤ m

and 1 ≤ j, k ≤ n. This is because compatibility conditions (2.2) imply that all the remainders

of S-polynomials on division by those vectors are zero. But such a system may have only

trivial solution in any orthogonal ∆-extension (see Example 2.4.1). �

Example 3.1.2 Let R = S̄ and Tn = {∂jθjei−ei | 1 ≤ i ≤ n, `+1 ≤ j ≤ m} ⊂ S̄n. Recall

that In is the submodule generated by Tn over S̄. A straightforward calculation verifies

that Tn is a (reduced) Gröbner basis of In with respect to every monomial order. Denote
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by P T
n the set of all the monomials in Pn that are not divisible by any element of lm(Tn)

with respect to Tn. Clearly, P T
n consists of all the monomials of the form p ei such that ∂j

and θj do not appear simultaneously in p for all i, j with 1 ≤ i ≤ n and `+ 1 ≤ j ≤ m. �

3.2 Gröbner Bases for Modules over Laurent-Ore Algebras

Set the Ore algebra R in Section 3.1 to be S̄. Based on the observation that Ln∼=LS̄n/In,

the previous results can be applied to develop a Gröbner basis technique in Ln.

Let P ∗ ⊂ L be the set of all power products ∂k1
1 · · · ∂k`

` ∂
k`+1

`+1 · · · ∂km
m for all k1, . . . , k` ∈ N

and k`+1, . . . , km ∈ Z. Since all monomials of the form ∂
k`+1

`+1 · · · ∂km
m constitute a commuta-

tive group, the usual divisibility on monomials is not useful for our purpose.

Definition 3.2.1 Let p and q be two elements of P ∗. We say that p divides q in the sense

of Laurent, if the following conditions are satisfied:

1. deg∂k
p ≤ deg∂k

q for all k with 1 ≤ k ≤ `,

2. either 0 ≤ deg∂k
p ≤ deg∂k

q or deg∂k
q ≤ deg∂k

p ≤ 0, for `+ 1 ≤ k ≤ m.

Remark 3.2.2 Unlike in the usual sense, ∂−s
k does not divide ∂t

k in the sense of Laurent

for s, t ∈ Z+ and any k with `+ 1 ≤ k ≤ m, by the condition 2 of Definition 3.2.1.

A monomial of Ln is an element of the form p ei with p ∈ P ∗ and i ∈ {1, . . . , n}. The

set of monomials in Ln is denoted P ∗n . We say that a monomial p ei divides q ej in the sense

of Laurent if i equals j and p divides q in the same sense.

Let Pn be the set of all monomials in S̄n, and P T
n be the same as in Example 3.1.2.

Define ρ to be the map P T
n → P ∗n that sends ∂i to ∂i for 1 ≤ i ≤ m, θj to ∂−1

j for `+1 ≤ j≤m,

and ek to ek for 1 ≤ k ≤ n. Clearly, ρ is bijective. Moreover, for any pair p ei, q ej in P ∗n , p ei

divides q ej in the sense of Laurent if and only if ρ−1(p ei) divides ρ−1(q ej). Consequently,

Dickson’s lemma holds for the divisibility in Definition 3.2.1. Remark that ρ extends to an

isomorphism from the F -vector space generated by P T
n to Ln.
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Let� be a monomial order on Pn. Then� is a total order on P T
n . For two monomials p ei

and q ej in P ∗n , we define p ei � q ej if ρ−1(p ei) � ρ−1(q ej) in P T
n . Such an ordering is

called an induced order on P ∗n . Leading monomials and leading coefficients for elements

of Ln are then defined likewise. As an induced order on P ∗n is a well-ordering, a division

algorithm can be devised in the same way.

Then the following definition is quite natural.

Definition 3.2.3 Let M be a submodule of Ln. A finite subset G ⊂M is called a Gröbner

basis with respect to an induced order on P ∗n , if the leading monomial of every element of M

is divisible in the sense of Laurent by the leading monomial of some element of G.

One can easily show that, if G is a Gröbner basis of a submodule M of Ln, then an

element u ∈ Ln is in M if and only if the remainder on division of u is zero. Moreover,

Proposition 3.2.1 Let G be a Gröbner basis of a submodule M in Ln and V be the F -

vector space generated by the elements of P ∗n that are not divisible in the sense of Laurent

by any element of lm(G). Then Ln = M ⊕ V where ⊕ denotes a direct sum of F -vector

spaces.

Example 3.2.4 Let {∂i(z) = Aiz}1≤i≤m be a fully integrable system over F . We then

have ∂−1
j (z) = σ−1

j

(
A−1

j

)
z for all j with `+ 1 ≤ j ≤ m. Consider the matrices

∂i · 1n −Ai, i = 1, . . . ,m, and ∂j · 1n − σ−1
j

(
A−1

j

)
, j = `+ 1, . . . ,m.

Let M be the submodule generated by the row vectors of these matrices over L. We show

that these row vectors form a Gröbner basis of M with respect to an induced order in

which ∂iek � el and ∂−1
j ek � el for all i, j and 1 ≤ k, l ≤ n. Indeed, if p ek ∈ lm(M) is not

divisible in the sense of Laurent by any of ∂iek and ∂−1
j ek, then p must be one. It follows

that there exists a nontrivial F -linear combination among e1, . . . , en in M . On the other

hand, e1, . . . , en are all the possible monomials that are not divisible in the sense of Laurent

by any element of lm(M). Thus Ln/M has dimension less than n over F , a contradiction

to Proposition 2.4.9. �
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As described in Section 2.5.1, there is a surjective S̄-module homomorphism φ from S̄n

to Ln that replaces θ`+1, . . . , θm appearing in an element of S̄n by ∂−1
`+1, . . . , ∂

−1
m , respectively.

Clearly, the kernel of φ is In, the submodule generated by Tn. Moreover, ρ is the restriction

of φ on the F -vector space generated by P T
n in S̄n.

Lemma 3.2.2 Let p ei ∈ P T
n and q ej ∈ Pn. If p ei � q ej, then φ(p ei) � φ(q ej).

Proof. Write q = q1q2 where q1 ∈ P T
n and q2 is a power product of ∂`+1θ`+1, . . . , ∂mθm.

Then q ej � q1 ej , and, consequently, p ei � q1 ej . The lemma then follows from the fact

that φ(q ej) = φ(q1 ej). �

The next proposition yields an algorithm for computing Gröbner bases in Ln.

Proposition 3.2.3 Let M be a submodule of Ln and φ be defined as above. If G is a

Gröbner basis of φ−1(M) with respect to a monomial order �, then φ(G) is a Gröbner basis

of M with respect to the induced order on P ∗n .

Proof. Let u =
∑

i aiui be in M with ai ∈ F and ui ∈ P ∗n . Then ũ =
∑
aiρ

−1(ui) is

in φ−1(M). Suppose that lm(u) = u1. Then lm(ũ) = ρ−1(u1). Since G is a Gröbner basis

of φ−1(M), there exists g ∈ G such that lm(g) divides ρ−1(u1). Consequently, lm(g) is

in P T
n . By Lemma 3.2.2, lm(φ(g)) is equal to ρ(lm(g)), which divides u1 in the sense of

Laurent. Hence, φ(G) is a Gröbner basis of M . �

By Proposition 3.2.3 we compute a Gröbner basis of a submodule M of Ln as follows.

Let s1, . . . , sm be a set of generators of M over L. Then ρ−1(s1), . . . , ρ−1(sm) and the

elements of Tn form a set of generators of φ−1(M) over S̄. Apply the Buchberger algorithm

in Section 3.1 for R = S̄, we compute a Gröbner basis G of φ−1(M). Then φ(G) is a

Gröbner basis of M .

Example 3.2.5 Let S = F [∂1, ∂2], L1 = ∂1∂2(∂1 + 1) and L2 = ∂1∂2(∂2 + 1) be as given

in Example 2.4.11. Then S̄ = F [∂1, ∂2, θ1, θ2] and L = F [∂1, ∂2, ∂
−1
1 , ∂−1

2 ]. Let us compute

a Gröbner basis of the ideal I generated by L1 and L2 in L. View L1, L2 as elements in S̄

and let g1 = ∂1θ1−1 and g2 = ∂2θ2−1. We compute a Gröbner basis of the ideal generated
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by H = {L1, L2, g1, g2} in S̄ with respect to a total degree order. The remainders on division

by H of S(L1, g1), S(L1, g2), S(L2, g1) and S(L2, g2) are

r11 = ∂1∂2 + ∂2, r12 = ∂2
1 + ∂1, r21 = ∂2

2 + ∂2 and r22 = ∂1∂2 + ∂1,

respectively. Set H1 = H ∪ {r11, r12, r21, r22}. Both the remainder of S(r11, g2) and that

of S(r12, g1) on division by H1 are h1 = ∂1+1, while both the remainder of S(r21, g2) and that

of S(r22, g1) on division by H1 are h2 = ∂2+1. Note that all the elements of H1\{g1, g2} can

be reduced to zero by {h1, h2} and that the remainders of g1 and g2 on division by {h1, h2}

are h3 = θ1 + 1 and h4 = θ2 + 1, respectively. Let G = {h1, h2, h3, h4}. One can easily

verify that G is a Gröbner basis of the ideal J generated by H in S̄. Proposition 3.2.3 then

implies that {∂1 + 1, ∂2 + 1, ∂−1
1 + 1, ∂−1

2 + 1} is a Gröbner basis of I. Hence the linear

dimension of the system in Example 2.4.11 equals one. �
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Chapter 4

Factorization of Modules over

Laurent-Ore Algebras

The work of this chapter is motivated by the algorithm FactorWithSpecifiedLeaders

in [44, 45], where the idea of associated equations is fully generalized to factor linear PDE’s

with finite-dimensional solution spaces. In terms of modules over an Ore algebra

S = F [∂1;1, δ1] · · · [∂`;1, δ`][∂`+1;σ`+1,0] · · · [∂m;σm,0],

where ` = m, the problem solved by their algorithm can be formulated as follows: given

a submodule N of Sn such that M = Sn/N is finite-dimensional over the field F , find

all submodules of Sn that contain N . Such a submodule is called a factor of N since all

its solutions are solutions of N . In their algorithm a factor is represented by a Gröbner

basis with respect to a pre-chosen monomial order. Observe that, for a (right) factor of

a given order, there is only one possibility for its leading derivative in the ordinary case,

whereas, there are many possibilities in the partial case. Due to this complication, the

algorithm has to check every possibility to compute all the factors of a given order. This is

an ideal-theoretic approach because the quotient module M does not come into play.

In the module-theoretic approach to be described in this chapter, we compute all sub-

modules of the above quotient module M , and then recover the factors of N in the sense

59
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of [44, 45] via the canonical map from Sn to M . As all submodules of M are repre-

sented by linear bases over F , the problem of guessing leading derivatives goes away. The

same idea carries over to L-modules of finite dimension and results in a factorization algo-

rithm for ∂-finite linear functional systems. Recall that L denotes the Laurent-Ore alge-

bra F [∂1, . . . , ∂m, ∂
−1
`+1, . . . , ∂

−1
m ].

This chapter is organized as follows. We present some constructions on L-modules in

Section 4.1, and propose an algorithm for computing hyperexponential solutions of fully

integrable systems in Section 4.2. Two building blocks of the factorization algorithm are

described in Section 4.3, and a factorization algorithm together with some examples is given

in Section 4.4. Finally in Section 4.5, we discuss the eigenring method for factoring L-

modules of finite dimension.

4.1 Constructions on Modules over Laurent-Ore Algebras

Let R be a ring. The notions of reducibility of R-modules are defined in [55] as follows.

An R-module M is reducible if M has a submodule other than 0 and M . Otherwise, M

is irreducible or simple.

An R-module M is completely reducible or semisimple if for every submodule N1 there

exists a submodule N2 such that M = N1 ⊕ N2. Note that an irreducible module is

completely reducible as well.

An R-module M is decomposable if M can be written as N1 ⊕N2 where N1 and N2 are

nontrivial submodules of M . Otherwise, M is indecomposable.

Clearly, an R-module M is reducible if it is decomposable, and M is irreducible when

it is both indecomposable and completely reducible.

By factoring an R-module, we mean finding its R-submodules.

Let F be an orthogonal ∆-field with C the field of constants, S = F [∂1, . . . , ∂m]

and L = F [∂1, . . . , ∂m, ∂
−1
`+1, . . . , ∂

−1
m ] be the corresponding Ore algebra and Laurent-Ore

algebra, respectively. Throughout this chapter, assume that F has characteristic 0 and C

is algebraically closed.
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Ordinary and partial differential modules in [53] are special cases of L-modules. The

constructions in [53, §2.2] can be carried on L-modules in a similar way.

Let N be a submodule of M . The F -vector space M/N endowed with the induced

actions: ∂i(w+N)=∂i(w)+N for 1 ≤ i ≤ m and ∂−1
j (w+N)=∂−1

j (w)+N for `+1 ≤ j ≤ m,

becomes an L-module, which is called the quotient module.

Let M1 and M2 be two L-modules. The direct sum of M1 and M2 is M1⊕M2 equipped

with the actions: ∂i(w1 + w2) = ∂i(w1) + ∂i(w2) and ∂−1
j (w1 + w2) = ∂−1

j (w1) + ∂−1
j (w2)

for w1 ∈M1, w2 ∈M2, 1 ≤ i ≤ m and `+ 1 ≤ j ≤ m.

Recall that the F -vector space M1⊗F M2 is formed by the free abelian group generated

by the Z-linear combination of all the pairs (w1,w2) ∈ M1 ×M2, modulo the subgroup G

generated by expressions of the form:

(w1 + w∗
1,w2)− (w1,w2)− (w∗

1,w2), (w1,w2 + w∗
2)− (w1,w2)− (w1,w∗

2),

(aw1,w2)− a(w1,w2), (w1, aw2)− a(w1,w2),

for all w1,w∗
1 ∈M1, w2,w∗

2 ∈M2 and a ∈ F . Define

∂i(w1,w2) = (∂i(w1),w2) + (w1, ∂i(w2)) and ∂s
j (w1,w2) = (∂s

j (w1), ∂s
j (w2)),

for i ≤ `, j > ` and s ∈ {−1, 1}. One can verify that G is closed under the actions of all

the ∂i and ∂−1
j . Thus, endowed with the induced actions:

∂i(w1 ⊗w2) = ∂i(w1)⊗w2 + w1 ⊗ ∂i(w2) and ∂s
j (w1 ⊗w2) = ∂s

j (w1)⊗ ∂s
j (w2)

for w1 ∈ M1, w2 ∈ M2, i ≤ `, j > ` and s ∈ {−1, 1}, M1 ⊗F M2 becomes an L-module,

which is called the tensor product of M1 and M2, and denoted by M1 ⊗M2. The tensor

product of several L-modules can be defined similarly.

Consider the tensor product M ⊗ · · · ⊗M of d copies of an L-module M . Denote by W

the subspace of this tensor product generated by the expressions of the form w1⊗ · · · ⊗wd

where there are (at least) indices i 6= j with wi = wj . The exterior power ∧d
FM is defined

to be the quotient space of M ⊗ · · · ⊗M and W . One can verifies that W is closed under

the actions of all ∂i and ∂−1
j , so ∧dM becomes an L-module with the induced actions and

is called the d-th exterior power of M .
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Let M be an L-module. The internal Hom of two L-modules M and N is the F -vector

space HomF (M,N) of all the F -linear maps from M to N endowed with the ∂i given by

(∂iϕ)(w) = ∂i(ϕ(w))−ϕ(∂i(w)) for i ≤ ` and (∂jϕ)(w) = ∂j(ϕ(∂−1
j (w))) for j > ` ,

for ϕ ∈ HomF (M,N) and w ∈M . A straightforward calculation shows that

(∂i(∂jϕ))(w) = ∂i∂j(ϕ(w))− ∂i(ϕ(∂jw))− ∂j(ϕ(∂iw)) + ϕ(∂i∂jw), 1 ≤ i < j ≤ `,

(∂i(∂jϕ))(w) = ∂i∂j(ϕ(∂−1
j ∂−1

i w)), `+ 1 ≤ i < j ≤ m,

and

(∂i(∂jϕ))(w) = ∂i∂j(ϕ(∂−1
j (w)))− ∂j(ϕ(∂−1

j ∂iw)) = (∂j(∂iϕ))(w),

for 1 ≤ i ≤ ` and `+ 1 ≤ j ≤ n. Hence HomF (M,N) is a well-defined L-module. It follows

that

HomL(M,N) = {ϕ ∈ HomF (M,N) | ∂iϕ = 0 for i ≤ ` and ∂jϕ = ϕ for j > `}.

A special case of internal Hom is the dual module M∗ := HomF (M,F ) of an L-module M .

Let M be an L-module with an F -basis e1, . . . , en. Suppose that

∂i(e1, . . . , en)τ = Bi(e1, . . . , en)τ , i = 1, . . . ,m,

where Bi ∈ Fn×n. Then the Bj are invertible for j > `. Let M∗ be the dual module

of M and e∗1, . . . , e
∗
n be its dual basis such that e∗i (ej) is 1 if i = j and is 0 otherwise.

Write Bi = (bikl) for i ≤ ` and B−1
i = (aikl) for i > `. For i ≤ `, we have

∂i

(
e∗j
)
(ek) = δi

(
e∗j (ek)

)
− e∗j (∂i(ek)) = −e∗j

(
n∑

l=1

biklel

)
= −bikj ,

for k = 1, . . . , n, thus ∂i(e∗j ) = −
∑n

s=1 bisje
∗
s, and for i > `,

(∂ie∗j )(ek) = ∂i(e∗j (∂
−1
i (ek))) = ∂i

(
e∗j

(
n∑

l=1

σ−1
i (aikl)el

))
= ∂i(σ−1

i (aikj)) = aikj ,

for k = 1, . . . , n, thus ∂i(e∗j ) =
∑n

s=1 aisje∗s. The above argument leads to

∂i(e∗1, . . . , e
∗
n)τ=−Bτ

i (e∗1, . . . , e
∗
n)τ for i≤` and ∂i(e∗1, . . . , e

∗
n)τ=(B−1

i )τ (e∗1, . . . , e
∗
n)τ for i>`.
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We call the sequence of matrices

−Bτ
1 , . . . , −Bτ

` , (B−1
`+1)

τ , . . . , (B−1
m )τ , (4.1)

the dual sequence of B1, . . . , Bm.

As a consequence of Proposition 2.4.8, we have

Lemma 4.1.1 Let B1, . . . , Bm ∈ Fn×n where the Bj are invertible for j > `. Then they

satisfy the compatibility conditions (2.2) if and only if its dual sequence (4.1) satisfies (2.2).

Remark 4.1.1 Lemma 4.1.1 can be proved alternatively by a straightforward but tedious

verification of the conditions (2.2) for these matrices.

4.2 Hyperexponential Solutions of Fully Integrable Systems

As a preparation for our factorization algorithm, we present an algorithm for computing

hyperexponential solutions of fully integrable systems.

We first recall some definitions introduced in [39].

Let E be an orthogonal ∆-extension of F . A nonzero element h ∈ E is said to be

hyperexponential over F with respect to ∂i if ∂i(h) = rih for some ri ∈ F . The element h is

hyperexponential over F if it is hyperexponential over F with respect to all ∂i. In the sequel,

we abbreviate “hyperexponential” as “hyperexp”. Two hyperexp elements h1, h2 ∈ E are

said to be similar over F , denoted by h1 ∼ h2, if there exist c1, c2 ∈ CE and r1, r2 ∈ F such

that c1r2h1 + c2r2h2 = 0.

The above two notions can be extended to vectors. We say that a nonzero vector h ∈ En

is hyperexp over F with respect to ∂i if h can be written as hv where v ∈ Fn and h ∈ E is

hyperexp over F with respect to ∂i. The vector h ∈ En is hyperexp over F if h is hyperexp

over F with respect to all ∂i. Observe that h ∈ En is hyperexp over F if and only if h can be

written as hv where v ∈ Fn and h ∈ E is hyperexp over F . Indeed, if h ∈ En is hyperexp

over F then h = hivi where vi ∈ Fn and ∂i(hi) = rihi with ri ∈ F for i = 1, . . . ,m. Fix
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an index j. Since hivi = hjvj , there exists qi ∈ F such that hi = qihj for each i. Applying

the δi, for i ≤ `, and the σi, for i > `, to the above relation yields

δi(hj) =
(
ri − q−1

i δi(qi)
)
hj for i ≤ ` and σi(hj) = riqiσi(qi)−1hj for i > `.

Hence hj is hyperexp over F and h = hjvj is of the desired form.

Unlike in the purely differential case, a hyperexp element of an orthogonal ∆-extension

of F is not necessarily invertible. However, the following lemma shows that a hyperexp

element in a simple orthogonal ∆-ring extension is always invertible.

Lemma 4.2.1 Let E be a simple orthogonal ∆-extension of F . If h ∈ E is hyperexp over F

then it is invertible in E.

Proof. By definition, ∂i(h) and h are linearly dependent over F for i = 1, . . . ,m. If follows

that the algebraic ideal (h) generated by h in E is invariant. Since E is simple, (h) = E

and so h is invertible. �

Remark 4.2.1 From Theorem 2.2.5, every fully integrable system has a Picard-Vessiot

ring E, which is a simple ring containing “all” solutions of the system. So we can assume

that, for every hyperexp solution hv of a fully integrable system, h is invertible. In addition,

we have CE = C, as F has characteristic zero and C is algebraically closed. Hence two

hyperexp elements over F are similar if and only if their ratio is an element of F .

We now describe two algorithms for computing hyperexp solutions of fully integrable

systems.

The first algorithm is a natural generalization of the “cyclic vectors” method used in

purely differential ([53]) and purely difference ([31]) cases.

Let M be an L-module of finite dimension. An element w of M is called a cyclic vector

if there is k ∈ {1, . . . ,m} such that w, ∂k(w), . . . , ∂n−1
k (w), with n ≥ 1, form an F -basis

of M .

Given a fully integrable system {∂i(z) = Aiz}1≤i≤m of size n over F , let A be the stacking

of blocks (∂i · 1n − Ai), M be the module of formal solutions of A(z) = 0 and {e1, . . . , en}
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be a set of L-generators of M such that A(e1, . . . , en)τ = 0, i.e.,

∂i(e1, . . . , en)τ = Ai(e1, . . . , en)τ , i = 1, . . . ,m. (4.2)

Hence {e1, . . . , en} is a set of F -generators of M by Example 2.4.9 and moreover, by Propo-

sition 2.4.8, it is an F -basis of M .

Assume that F contains a nonconstant a. Then either δk(a) 6= 0 for some k ≤ `

or σk(a) 6= a for some k > `. In the former case, M as an F [∂k]-module contains a cyclic

vector by Proposition 2.9 in [53], and in the latter case, a is not periodic, therefore M as

an F [∂k, ∂
−1
k ]-module has a cyclic vector by Theorem 7.2 in [31]. So, in both cases, M

contains a cyclic vector w such that w, ∂k(w), . . . , ∂n−1
k (w) form an F -basis of M . Then

there exists P ∈ GLn(F ) such that (e1, . . . , en)τ = P (w, ∂k(w), . . . , ∂n−1
k (w))τ . Suppose

that

∂i(w, ∂k(w), . . . , ∂n−1
k (w))τ = Bi(w, ∂k(w), . . . , ∂n−1

k (w))τ , i = 1, . . . ,m, (4.3)

where Bi ∈ Fn×n. By Proposition 2.4.8, {∂i(y) = Biy}1≤i≤m with y = (y1, . . . , yn)τ is

a fully integrable system, for which M is the module of formal solutions. Theorem 2.4.1,

together with (4.2) and (4.3), implies that the map y → Py from solE({∂i(y) = Biy}1≤i≤m)

to solE({∂i(z) = Aiz}1≤i≤m) is bijective, for any orthogonal ∆-extension E of F . By linear

algebra, we find a rectangular system L : {L1(y) = 0, . . . , Lm(y) = 0} annihilating y1,

where each Li ∈ F [∂i] is of minimal order. Clearly, there is a one-to-one correspondence

between solE(L) → solE({∂i(y) = Biy}1≤i≤m) given by y 7→ (y, ∂k(y), . . . , ∂n−1
k (y))τ , for

any orthogonal ∆-extension E of F . Hence every hyperexp solution of {∂i(z) = Aiz}1≤i≤m

has the form P
(
h, ∂k(h), . . . , ∂n−1

k (h)
)τ where h is a hyperexp solution of L in E. Therefore

it suffices to find all hyperexp solutions of the system L.

By Proposition 1 in [46], every rectangular system has only a finite number of dissimilar

hyperexp solutions. Apply the main algorithm in [39, 40] to L to compute all its hyperexp

solutions. Suppose that we find

h1r11, . . . , h1r1,t1 , . . . , hsrs1, . . . , hsrs,ts ,
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where h1, . . . , hs are dissimilar hyperexp elements over F and ri1, . . . , ri,ti ∈ F are linearly

independent over C. Every hyperexp solution h of L has the form hi(c1ri1 + · · · + ctiri,ti)

with some i ∈ {1, . . . , s} and cj ∈ C, not all zero.

For i = 1, . . . , s and j = 1, . . . , ti, we get that

P
(
hirij , ∂k(hirij), . . . , ∂n−1

k (hirij)
)τ = hivij ,

where vij ∈ Fn. Since ri1, . . . , ri,ti are linearly independent over C, so are vi1, . . . ,vi,ti .

Thus, every hyperexp solution of {∂i(z) = Aiz}1≤i≤m has the form

hi(c1vi1 + · · ·+ ctivi,ti),

with i ∈ {1, . . . , s} and c1, . . . , cti ∈ C, not all zero.

Although in theory, by finding a cyclic vector, we can reduce the problem of finding

hyperexp solutions of {∂i(z) = Aiz}1≤i≤m to finding hyperexp solutions of the associated

rectangular system L, finding such a system and computing its hyperexp solutions can be

of high complexity.

We now present an alternative approach to computing hyperexp solutions of fully in-

tegrable systems. This algorithm is based on the assumption that we are able to find all

rational solutions of a fully integrable system. Indeed, for the ordinary differential case, an

algorithm to find rational solutions of the system y′ = Ay without using cyclic vectors has

been given in [1, 3], and the method in [39, 40] for finding rational solutions of rectangular

systems can be adapted easily to finding rational solutions of fully integrable systems.

Given a fully integrable system {∂i(z) = Aiz}1≤i≤m where z = (z1, . . . , zn)τ , find by

linear algebra a rectangular system L : {L1(z) = 0, . . . , Lm(z) = 0} annihilating z1 where

each Li ∈ F [∂i] is of minimal order. We then proceed as follows.

Step. 1. Apply the algorithm in [39, 40] to compute all hyperexp solutions of L. If L has

no hyperexp solutions then go to Step 2. Otherwise, suppose that we find {h1r1, . . . , hsrs}

where h1, . . . , hs are pairwise dissimilar hyperexp elements over F and the ri ∈ F may

contain some unspecified constants. For each k ∈ {1, . . . , s}, let y1, . . . , yn be new unknowns
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and substitute z1 = hky1, . . . , zn = hkyn into {∂i(z) = Aiz}1≤i≤m to get

∂i(y1, . . . , yn)τ = B
(k)
i (y1, . . . , yn)τ , i = 1, . . . ,m, (4.4)

where B(k)
i = Ai − δi(hk)

hk
1n for i ≤ ` and B

(k)
i = hk

σi(hk)Ai for i > `. A straightforward

verification shows that (4.4) is a fully integrable system, of which we can find all rational

solutions of (4.4) by the assumption. Suppose that vk1, . . . ,vk,tk form a basis of all rational

solutions of (4.4), for k = 1, . . . , s. Hence,

h1v11, . . . , h1v1,t1 , . . . , hsvs,1, . . . , hsvs,ts

are hyperexp solutions of {∂i(z) = Aiz}1≤i≤m whose first coordinates are nonzero. More-

over, all hyperexp solutions of this system, whose first coordinates are nonzero, are C-linear

combinations of hkvk1, . . . , hkvk,tk for some k ∈ {1, . . . , s}. Indeed, if hv is a hyperexp

solution, where v = (v1, . . . , vn)τ ∈ Fn and v1 6= 0, of this system, then hv1 is a hyperexp

solution of L. Therefore h is similar to some hk with k ∈ {1, . . . , s}. There is r ∈ F such

that h = rhk, thus rhkv is a hyperexp solution of the original system. It follows that rv is

a rational solution of (4.4). Hence

hv = rhkv = hk (c1vk,1 + · · ·+ ctkvk,tk), where c1, . . . , ctk ∈ C, not all zero,

are hyperexp solutions of the original system.

Step. 2. Substitute z1 = 0 into all the first rows in the system {∂i(z) = Aiz}1≤i≤m to yield a

linear system Pz = 0 where P is a matrix over F with n columns. Apply the algorithm Lin-

earReduction to {∂i(z) = Aiz}1≤i≤m and Pz = 0 finally yields a partition {u,v} of z such

that v=Qu where Q is a matrix over F , and a fully integrable system {∂i(u)=Biu}1≤i≤m

over F which has less unknowns than the original one.

The above process can be repeated recursively until we find all hyperexp solutions

of {∂i(u) = Biu}1≤i≤m. We therefore get hyperexp solutions of {∂i(z) = Aiz}1≤i≤m via

the formula v = Qu. Combine all the hyperexp solutions obtained in these two steps, we

obtain all hyperexp solutions of the original system.

Algorithm HyperexpSolutions (Find all hyperexp solutions of a fully integrable system)
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Input: A fully integrable system {∂i(z) = Aiz}1≤i≤m over F where z = (z1, . . . , zn)τ .

Output: All its hyperexp solutions.

1. [Initialize] Set H to be the null set.

2. [Construct a rectangular system] Find by linear algebra a rectangular system

L : {L1(z) = 0, . . . , Lm(z) = 0 }

that annihilates z1.

3. [Compute hyperexp solutions whose first coordinates are nonzero] Apply the algorithm

in [39, 40] to compute all hyperexp solutions of L. If L has no hyperexp solutions, then go

to Step 4. Otherwise, suppose that we find {h1r1, . . . , hsrs} where h1, . . . , hs are pairwise

dissimilar hyperexp elements over F and the ri ∈ F may contain some unspecified con-

stants. For g = 1, . . . , s, construct the fully integrable system B(g) : {∂i(y) = B
(g)
i y}1≤i≤m

where B(g)
i = Ai − δi(hg)

hg
1n for i ≤ ` and B

(g)
i = hg

σi(hg)Ai for i > `. If B(g) has only trivial

solution for g = 1, . . . , s, then go to Step 4. Otherwise, suppose that B(j1), . . . ,B(jq) have

nonzero rational solutions where 1 ≤ j1 < · · · < jq ≤ s. Let vjp,1, . . . ,vjp,tjp
be a basis of

rational solutions of B(jp) for p = 1, . . . , q. Set

hj1 = hj1

(
cj1,1vj1,1 + · · ·+ cj1,tj1

vj1,tj1

)
, . . . , hjq = hjq

(
cjq ,1vjq ,1 + · · ·+ cjq ,tjq

vjq ,tjq

)
,

where cjp,1, . . . , cjp,tjp
∈ C, not all zero, for p = 1, . . . , q. Set H to be {hj1 , . . . ,hjq}.

4. [Compute hyperexp solutions whose first coordinates are zero] Substitute z1 = 0 into the

system {∂i(z) = Aiz}1≤i≤m to yield Pz = 0 where P is a matrix over F with n columns.

Apply the algorithm LinearReduction to {∂i(z) = Aiz}1≤i≤m and Pz=0 to finally pro-

duce a partition {u,v} of z such that v = Qu with Q a matrix over F , and a fully integrable

system {∂i(u)=Biu}1≤i≤m over F . Apply the algorithm HyperexpSolutions recursively

to compute hyperexp solutions of the system {∂i(u) = Biu}1≤i≤m. If this system has no

hyperexp solutions, then return H. Otherwise, suppose that we find g1, . . . ,gl where gi may

contain some unspecified constants. Use the formula Qgi for i = 1, . . . , l, to retrieve other

components. We thus obtain some hyperexp solutions {h̃1, . . . , h̃l} of {∂i(z) = Aiz}1≤i≤m.

Update H by combining the values of H and {h̃1, . . . , h̃l}, and return H.
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Remark 4.2.2 The algorithm HyperexpSolutions is applicable when the coefficient field

is the field of rational functions in x1, . . . , xn over Q, and ∂i only acts nontrivially on xi

for 1 ≤ i ≤ n. This is because the algorithm is based on the work in [39, 40].

Example 4.2.3 Let F = C(x, k) and S = F [∂x; 1, δx][∂k;σk, 0]. We now compute hyper-

exponential solutions of the fully integrable system A(2) : {δx(z) = A2xz, σk(z) = A2kz}

where z = (z1, z2, z3, z4, z5, z6)τ ,

A2x =


− 2(x2−x−k2)

(x−k)x
0 0 0 0 0

0 0 a23
x3+x2k−2x2−xk−k2x−k2−k3

x2(x−k)
0 0

0 −1 − 2(x2−x−k2−2k−1)
(x−k−1)x

0 a35 0

0 −1 0 − 2(x2−x−k2)
(x−k)x

a45 0

0 0 −1 −1 a55 0

0 0 0 0 0 − 2(x2−x−k2−2k−1)
(x−k−1)x

 ,

in which

a23 = x3+x2k−x2−3xk−2x−k2x−4k2−5k−2−k3

x2(x−k−1)
, a35 = x3+x2k−2x2−xk−k2x−k2−k3

x2(x−k)
,

a45 = x3+x2k−x2−3xk−2x−k2x−4k2−5k−2−k3

x2(x−k−1)
, a55 = −2(2x3−2x2k−3x2−2k2x+2k3+3k2+k

(x−k)x(x−k−1) ,

and

A2k =



4(x−k−1)2

(x−k)2x2 0
2(x−k−1)
(x−k)x

− 2(x−k−1)
(x−k)x

− 2(x2−2xk−2x+k2+k)
x2(x−k)2

1

2(x2−2xk−4x+k2+3k+2)
(x−k)2x4

(x−k−2)
(x−k)x2 0 − 2(x2−2xk−3x+k2+2k)

x3(x−k)2
0 0

− 2(x−k−2)(x−k−1)
(x−k)2x3 0 0 x−k−2

(x−k)x2 0 0

2(x−k−2)(x−k−1)
(x−k)2x3 0 x−k−2

(x−k)x2 0 − 2(x2−2xk−3x+k2+2k)
x3(x−k)2

0

0 0 0 0 x−k−2
(x−k)x2 0

(x−k−2)2

(x−k)2x4 0 0 0 0 0

 .

By linear algebra, we obtain two annihilators

Lx = ∂x + 2(x2−x−k2)
(x−k)x and Lk = ∂3

k −
3(x−k−3)2

(x−k−2)2x2∂
2
k + 3(x−k−3)2

(x−k−1)2x4∂k − (x−k−3)2

x6(x−k)2
,

of z1 in ∂x and ∂k, respectively, both of minimal order. Applying the algorithm in [39] to

the rectangular system L : {Lx(z1) = 0, Lk(z1) = 0}, we find the common associate of all

hyperexp solutions of L is e−2xx−2k. Substituting zi = e−2xx−2kyi for i = 1, . . . , 6, into A(2)

with the new unknowns yi yields the following system B : {δx(y) = Bxy, σk(y) = Bky}



70 §4.2 Hyperexponential Solutions

where y = (y1, y2, y3, y4, y5, y6)τ ,

Bx=


2

x−k
0 0 0 0 0

0
2(x+k)

x
b23

x3+x2k−2x2−xk−k2x−k2−k3

x2(x−k)
0 0

0 −1
2(k+1)

(x−k−1)x
0 x3+x2k−2x2−xk−k2x−k2−k3

x2(x−k)
0

0 −1 0 2
x−k

x3+x2k−x2−3xk−2x−k2x−4k2−5k−2−k3

x2(x−k−1)
0

0 0 −1 −1 − 2(x3−x2k−2x2−k2x+k3+2k2+k)
(x−k)x(x−k−1) 0

0 0 0 0 0
2(k+1)

(x−k−1)x

,

in which b23 = x3+x2k−x2−3xk−2x−k2x−4k2−5k−2−k3

x2(x−k−1)
, and

Bk=


4(x−k−1)2

(x−k)2
0

2x(x−k−1)
x−k

− 2x(x−k−1)
x−k

− 2(x2−2xk−2x+k2+k)
(x−k)2

x2

2(x2−2xk−4x+k2+3k+2)
x2(x−k)2

x−k−2
x−k

0 − 2(x2−2xk−3x+k2+2k)
x(x−k)2

0 0

− 2(x−k−2)(x−k−1)
x(x−k)2

0 0 x−k−2
x−k

0 0

2(x−k−2)(x−k−1)
x(x−k)2

0 x−k−2
x−k

0 − 2(x2−2xk−3x+k2+2k)
x(x−k)2

0

0 0 0 0 x−k−2
x−k

0

(x−k−2)2

x2(x−k)2
0 0 0 0 0

 .

A basis of all rational solutions of B is {v1,v2,v3,v4,v5,v6} where

v1 =



−x2 + 2xk − k2

− 2k3+k2−2x2−x3+x+k4−2x2k2+3xk+3k2x−4x2k+x4

x3

x+2x3+k3+2xk+k2−3x2k−3x2

x2

−2xk+k+k3+x2k+2k2−x−2k2x
x2

−k+k2+x2−x−2xk
x

−x2−2xk−2x+k2+2k+1
x2


, v2=



−x2 + 2xk − k2

−k2−2xk+k−2x+x2

x2

k+k2+x2−x−2xk
x

−k+k2+x2−x−2xk
x

0

−x2−2xk−2x+k2+2k+1
x2


,

v3=



k3 + 5/2x2 + x2k + 5/2k2 − 2k2x− 5xk

−2x4+2k4+2k2+10xk−k−4x2k2+4k2x+6x−7x2k−5x2−2x3+5k3

x2

−5x2+5xk+k3+3x+2x3−k−3x2k
x

−4k2x+3k3−x2k+5k−5x−9xk+8k2+2x3+x2

x

−2k − 2k2 + 4xk + 2x− 2x2

−10xk+3+8k−6x+2x2k−4k2x+3x2+7k2+2k3

2x2


,
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v4=



−2k2x+ x2 + k2 + x2k − 2xk + k3

−2x−x3+k2+5xk+x4+3k2x−4x2k+k4−2x2−2x2k2+2k3

x2

x2 − 2xk − 2x+ k2 + 2k + 1
x3−3k2x+2k−2x+2k3−4xk+4k2

x

−x2 − k2 − k + x+ 2xk
k(x2−2xk−2x+k2+2k+1)

x2


,

v5 =



−2k3 − 2k2 − 2x2k − 2x2 + 4k2x+ 4xk

−−2k4−k2x−4x+x5+k4x+4x2−2x4+4x2k2−4x3k−2x3k2+8x2k−2k2+4xk3−8xk−4k3

x2

x3 + 4x− 3x2 + 3xk − x2k − 3k − 2 + k3 − k2x

−2x2−3x2k+4x−8k2−2x3−x2k2+9k2x−4k3−4k+x4+10xk−x3k+xk3

x

2k2 − 2x− k2x− 5xk − x3 + 3x2 + 2x2k + 2k

− 2k(x2−2xk−2x+k2+2k+1)
x2


,

v6 =



−2xk3 + 5k3 + 5x2k + k4 + 6x2 − 10k2x+ 6k2 + x2k2 − 12xk
x3−4x3k2−5k2+k−4k4−5k2x−21xk+19x2k+11x2+2k4x−12x−5x4+2x5+11x2k2−10k3−8x3k+6xk3

x2

−−7x3+k+7x2k−x2k2+2x4+11x2−9xk+k4−6x−2x3k
x

−−k4−5x2k−2x3k+11x+25xk−20k2+20k2x−5x3−5x2−3x2k2−11k−10k3+2x4+4xk3

x

−4x2k − 5k + 2x3 − 5k2 + 12xk + 5x+ 2k2x− 7x2

−4x+3x2k+x2k2+k4+2x2+9k2+5k3−2xk3−10xk+2+7k−8k2x
x2


.

So all hyperexp solutions of the original system A are of the form e−2xx−2k
(∑6

i=1 civi

)
where the ci are in C, not all zero. �

4.3 A Module-Theoretic Approach to Factorization

We describe an idea on factoring L-modules, which generalizes the module-theoretic method

for factoring differential modules [53, 62].

4.3.1 Reduction from M to ∧dM

Recall that a decomposable ([48]) element w ∈ ∧dM is an exterior product of d elements

in M , i.e., w = w1 ∧ · · · ∧wd.
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The following theorem is a generalization of Lemma 10 in [22] or the corresponding

statement in [53, §4.2.1]:

Theorem 4.3.1 An L-module M has a d-dimensional submodule if and only if ∧dM has

a one-dimensional submodule generated by a decomposable element.

Proof. Let N be a d-dimensional submodule of M and w1, . . . ,wd be an F -basis of N .

Suppose that ∂i(w1, . . . ,wd)τ = Ai(w1, . . . ,wd)τ where Ai = (aist)1≤s, t≤d ∈ F d×d for

each i. Then ∧d
FN is an F -subspace of ∧d

FM generated by w1 ∧ · · · ∧wd. Moreover,

∂i(w1 ∧ · · · ∧wd) =
∑d

s=1 w1 ∧ · · · ∧ ∂i(ws) ∧ · · · ∧wd

=
∑d

s=1

(
w1 ∧ · · · ∧

(∑d
t=1 aist wt

)
∧ · · · ∧wd

)
= tr(Ai) (w1 ∧ · · · ∧wd) ∈ ∧dN,

for i ≤ ` and ∂j(w1 ∧ · · · ∧wd) = ∂j(w1) ∧ · · · ∧ ∂j(wd) = det(Aj) (w1 ∧ · · · ∧wd) ∈ ∧dN

for j > `, where “tr” and “det” denote respectively the trace and the determinant of a

matrix. So, ∧dN is a one-dimensional submodule generated by w1 ∧ · · · ∧ wd, which is

decomposable.

Conversely, let u = w1 ∧ · · · ∧ wd be a decomposable element of ∧dM that generates

a one-dimensional submodule. Suppose that ∂i(u) = aiu with ai ∈ F for i = 1, . . . ,m.

Clearly, aj 6= 0 for j > ` since M is an L-module. Since u 6= 0, w1, . . . ,wd are linearly

independent over F . Therefore there is a basis B of M containing w1, . . . ,wd. Pick arbi-

trarily a finite number of distinct b1, . . . ,bs in B\{w1, . . . ,wd}. The F -linear independence

of w1, . . . ,wd,b1, . . . ,bs then implies that of b1 ∧ u, . . . ,bs ∧ u. In particular, b ∧ u 6= 0

for any b ∈ B \ {w1, . . . ,wd}.

Consider a map φu : M → ∧d+1M given by v 7→ v ∧ u. Clearly, ker(φu) is a vector

space over F . Let v ∈ ker(φu) then v ∧ u = 0. For i ≤ `, we have

0 = ∂i(v ∧ u) = ∂i(v) ∧ u + v ∧ (aiu) = ∂i(v) ∧ u + ai(v ∧ u),

thus ∂i(v) ∧ u = 0 and ∂i(v) ∈ ker(φu). For j > `, we have

0 = ∂j(v ∧ u) = ∂j(v) ∧ (aju) = aj(∂j(v) ∧ u),
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which implies that ∂j(v) ∧ u = 0 and thus ∂j(v) ∈ ker(φu). Likewise, ∂−1
j (v) ∈ ker(φu)

for j > `. So, ker(φu) is an L-module.

Clearly, ⊕d
i=1Fwi is contained in ker(φu). Let w be in ker(φu) ⊂ M . Then there

exist b1, . . . ,bs in B\{w1, . . . ,wd} such that w =
∑d

i=1 λiwi+
∑s

j=1 µjbj where λi, µj ∈ F.

Therefore 0 = w ∧ u =
∑s

j=1 µj (bj ∧ u) . The F -linear independence of b1 ∧ u, . . . ,bs ∧ u

therefore implies that µj = 0 for each j. So ker(φu) = ⊕d
i=1Fwi and is a d-dimensional

submodule of M . �

Theorem 4.3.1 converts the problem of finding d-dimensional submodules of M into

that of finding one-dimensional submodules of ∧dM whose generator are decomposable,

and thus reduces our factorization problem to two “subproblems”: finding one-dimensional

submodules and determining the decomposability of their generators.

4.3.2 One-Dimensional Submodules

As we saw, a building block for factoring is computing one-dimensional submodules. In the

ordinary differential case, an efficient algorithm for finding one-dimensional submodules is

described in [7] and implemented in the ISOLDE package.

In this section, we first set up a correspondence between one-dimensional submodules of a

finite-dimensional L-module and hyperexponential solutions of its associated fully integrable

system. Such a correspondence results naturally in an algorithm for finding one-dimensional

submodules.

Let M be an L-module with an F -basis e1, . . . , en and let e = (e1, . . . , en)τ . Suppose

that ∂i(e) = Bie where Bi ∈ Fn×n for i = 1, . . . ,m. By Proposition 2.4.8, B1, . . . , Bm satisfy

the compatibility conditions (2.2) and the Bj are invertible for j > `. By applying ∂−1
j to

both sides of ∂j(e) = Bje, we get ∂−1
j (e) = σ−1

j (B−1
j )e for j > `, which means the L-module

structure of M is uniquely determined by the actions of ∂1, . . . , ∂m. Let w =
∑n

i=1 aiei ∈M

with ai ∈ F . Then

∂i(w) = ∂i((a1, . . . , an)e) = (δi(a1, . . . , an) + (a1, . . . , an)Bi) e



74 §4.3 Beke’s Method

for i ≤ ` and ∂j(w) = ∂j((a1, . . . , an)e) = σj(a1, . . . , an)Bje for j > `. The condition

∂i(w) = 0, i ≤ ` and ∂j(w) = w, j > `

has therefore a translation that the vector (a1, . . . , an)τ of coefficients of w is a solution

of the system {∂i(z) = Aiz}1≤i≤m where Ai = −Bτ
i for i ≤ ` and Ai = (B−1

i )τ for i > `.

From Lemma 4.1.1, {∂i(z) = Aiz}1≤i≤m is a fully integrable system, which is called the fully

integrable system associated to M with respect to the basis e1, . . . , en. Let f1, . . . , fn be an-

other F -basis of M with (f1, . . . , fn)=(e1, . . . , en)T for some T∈GLn(F ). Substitute z=Tz∗

into {∂i(z) = Aiz}1≤i≤m, we obtain the fully integrable system {∂i(z∗)=A∗i z
∗}1≤i≤m for the

new basis, where

A∗i = T−1AiT − T−1δi(T ), for i ≤ ` and A∗j = σj(T−1)AjT, for j > `.

By Definition 2.2.5, {∂i(z) = Aiz}1≤i≤m and {∂i(z∗) = A∗i z
∗}1≤i≤m are equivalent. Indeed,

the fully integrable systems associated to a finite-dimensional L-module with respect to its

different bases are equivalent.

Conversely, any fully integrable system {∂i(z) = Aiz}1≤i≤m comes from an L-module

M := Fn with the canonical basis {e1, . . . , en} and the ∂i given by

∂i(e1, . . . , en)τ = −Aτ
i (e1, . . . , en)τ and ∂j(e1, . . . , en)τ = (A−1

j )τ (e1, . . . , en)τ ,

for i ≤ ` and j > `. So we have set up a correspondence between L-modules of finite

dimension and fully integrable systems of equal dimension.

[Convention] Any element of Fn is considered as a column vector.

For convenience of later discussion, we give the following proposition, which is an ana-

logue to Proposition 5.1 in [45]. It describes a correspondence between one-dimensional

submodules of a finite-dimensional L-module and hyperexp solutions of its associated fully

integrable systems. Although this proposition is obvious in the ordinary (differential and

difference) cases, a detailed proof seems necessary because the compatibility conditions

should be taken into account.
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Proposition 4.3.2 Let M be an L-module with an F -basis e1, . . . , en and A be the fully

integrable system associated to M with respect to e1, . . . , en. Then

(i) If hv is a hyperexp solution of A where v ∈ Fn and h is hyperexp over F , then the

element (e1, . . . , en)v generates a one-dimensional submodule of M .

(ii) If the element (e1, . . . , en)v with v ∈ Fn generates a one-dimensional submodule of M ,

then there exists a hyperexp element h over F such that hv is a solution of A.

(iii) For k = 1, 2, let hkvk, where vk ∈ Fn and hk is hyperexp over F , be a hyperexp

solution of A, and Nk be the one-dimensional submodule generated by (e1, . . . , en)vk.

Then N1 is isomorphic to N2 if and only if h1 ∼ h2. In particular, N1 = N2 if and

only if h1 ∼ h2 and v1 and v2 are linearly dependent over F .

Proof. (i) Let u = (e1, . . . , en)hv. Since hv is a solution of A, we have ∂i(u) = 0 for i ≤ `

and ∂j(u) = u for j > `. Set w = u
h = (e1, . . . , en)v ∈M. Then ∂i(w) = − δi(h)

h w for i ≤ `

and ∂j(w) = h
σj(h)w for j > `, so Fw is a one-dimensional submodule of M .

(ii) Let w = (e1, . . . , en)v ∈M . Suppose that ∂i(w) = aiw with ai ∈ F for 1 ≤ i ≤ m.

Proposition 2.4.8 together with Lemma 4.1.1 implies that the system

{ ∂i(y) = −aiy, 1 ≤ i ≤ `, ∂j(y) = a−1
j y, `+ 1 ≤ j ≤ m },

is fully integrable. Thus, either by Theorem 2.2.2 or by Example 2.2.6, this system has a

solution h in a simple orthogonal ∆-extension of F . One sees that ∂i(hw) = 0 for i ≤ `

and ∂j(hw) = hw for j > `, thus hv is a hyperexp solution of A.

(iii) Set wk = (e1, . . . , en)vk for k = 1, 2. By the same argument in (i), we have

∂i(wk) = −δi(hk)
hk

wk, for i ≤ ` and ∂j(wk) =
hk

σj(hk)
wk, for j > `. (4.5)

If h1 ∼ h2 then h2
h1

= r for some r ∈ F by Remark 4.2.1. It follows that the map from N1

to N2 given by w1 7→ rw2 is an isomorphism of L-modules. Conversely, let φ be an

isomorphism of L-modules from N1 to N2 sending w1 to rw2 where r ∈ F . The L-linearity
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of φ, together with the relations (4.5), implies that

δi(h2)
h2

=
δi(h1)
h1

+
δi(r)
r

, for i ≤ ` and
σj(h2)
h2

=
σj(h1)
h1

σj(r)
r

, for j > `,

which implies h1 ∼ h2. The second statement in (iii) is then obvious. �

At the end of this section, we describe an algorithm for finding one-dimensional sub-

modules of L-modules of finite dimension.

Let M be an L-module of dimension n and {∂i(z) = Aiz}1≤i≤m be the fully integrable

system associated to M with respect to a basis e1, . . . , en of M . Suppose that, by apply-

ing the algorithm HyperexpSolutions, we find a finite collection of hyperexp solutions

of {∂i(z) = Aiz}1≤i≤m:

h1v11, . . . , h1v1,t1 , . . . , hsvs1, . . . , hsvs,ts ,

where h1, . . . , hs are pairwise dissimilar hyperexp elements over F and vk,1, . . . ,vk,tk are

linearly independent over C for k = 1, . . . , s. Let hv be a hyperexp solution of the sys-

tem {∂i(z) = Aiz}1≤i≤m. Then h is similar to some hk with 1 ≤ k ≤ s and v is a C-linear

combination of vk1, . . . ,vk,tk . Set wkl = (e1, . . . , en)vkl for l = 1, . . . , tk and

Ik = {F (c1wk1 + · · ·+ ctkwk,tk) | c1, . . . , ctk ∈ C, not all zero} ,

for k = 1, . . . , s. From Proposition 4.3.2, it follows that I1, . . . , Is constitute a partition of

all one-dimensional submodules of M by the equivalence relation “∼=L”, an isomorphism

between L-modules.

Example 4.3.1 [Legendre’s system] Let F = C(x, k) and L = F [∂x, ∂k, ∂
−1
k ] be the

Laurent-Ore algebra. A Gröbner basis of the ideal generated by the Legendre’s system (1.1)

is as follows:

g1 = xk + x+ (x2 − 1)∂x − (k + 1)∂k, g2 = k + 1 + (k + 2)∂2
k − (2xk + 3x)∂k.

Let A = (g1, g2)τ ∈ L2×1, M = L/(Lg1 + Lg2) and e1, e2 be the images of 1 and ∂k in M ,

respectively. Then e1, e2 form a basis of M over F and, in addition,

∂x

 e1

e2

 =

 −xk−x
x2−1

k+1
x2−1

−k−1
x2−1

xk+x
x2−1

 e1

e2

 , ∂k

 e1

e2

 =

 0 1
−k−1
k+2

2xk+3x
k+2

 e1

e2

 .
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Apply the algorithm HyperexpSolutions to the fully integrable system associated to M

with respect to e1, e2. We find that this fully integrable system has no hyperexp solutions.

So M has no one-dimensional submodules, or, M is irreducible. �

4.3.3 Decomposability of Elements of ∧dM

We now return to the problem of finding d-dimensional submodules of a finite-dimensional L-

module M .

Apply the algorithm described in Section 4.3.2 to find all one-dimensional submodules

of ∧dM . Suppose that we obtain a finite collection {Fw1, . . . , Fws} of one-dimensional

submodules of ∧dM , where each wk may contain some unspecified constants. By The-

orem 4.3.1, Fwk corresponds to a d-dimensional submodule of M if and only if wk is

decomposable. It remains to determine the decomposability of each wk, or, in other words,

to find constraints on the unspecified constants, for which wk is decomposable.

For each w in {w1, . . . ,ws}, consider the map φw : M → ∧d+1M given by v 7→ v ∧w.

From Theorem 1.1 in [48, Ch.4] and the proof of Theorem 4.3.1, w is decomposable if

and only if ker(φw) is of dimension d. The latter is equivalent to the condition that the

matrix P of φw has rank (n− d). Hence determining the decomposability of w amounts to

a rank computation of P , i.e., identifying the unspecified constants c1, . . . , ct in w such that

all (n−d+1)×(n−d+1) minors of P are zero and P has a nonzero (n−d)×(n−d) minor.

This further amounts to solving a nonlinear system in c1, . . . , ct. We observe that this is

the Plücker relations described in [53, 61] (for more details, please see [29, 30, 32]). If this

nonlinear system has no solutions in C, then w is not decomposable and does not lead to

any d-dimensional submodule ofM . Otherwise, substitute the values of c1, . . . , ct into P and

compute a basis r1, . . . , rd of the rational kernel of P where rj ∈ Fn. Set uj = (e1, . . . , en)rj

for j = 1, . . . , d. Then ⊕d
j=1Fuj is a d-dimensional submodule of M .

Remark 4.3.2 There are alternative ways to compute ranks of parameterized matrices, for

example, the Gaussian method with branching, a Gröbner basis method using the linear

structure [23] or the algorithm described in [60] for computing the rank of a parameterized
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linear system. These methods may be more efficient than computing minors.

Example 4.3.3 Let M be an L-module with an F -basis e1, e2, e3, e4. Suppose that

∂x(e1, e2, e3, e4)τ = Ax(e1, e2, e3, e4)τ and ∂k(e1, e2, e3, e4)τ = Ak(e1, e2, e3, e4)τ ,

where

Ax =


0 −k(k+1)

x2−1 0 0

−1 2x
x2−1 0 0

0 0 0 − (k+1)(k+2)
x2−1

0 0 −1 2x
x2−1

 and Ak =


(2k+3)x

k+1
2k+3
k+1 1 0

0 (2k+3)x
k+1 0 1

−k+2
k+1 0 0 0

0 −k+2
k+1 0 0

 .

Then {δx(z) = −Aτ
xz, σk(z) = (A−1

k )τz} is the fully integrable system associated to M

with respect to the given basis. Apply the algorithm HyperexpSolutions, we find that the

above system has no hyperexp solutions. So M has no one-dimensional submodules.

In a similar way, we find that the fully integrable system associated to ∧3M with re-

spect to the basis {e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4, e2 ∧ e3 ∧ e4} has no hyperexp

solutions. Thus ∧3M has no one-dimensional submodules and consequently M has no three-

dimensional submodules.

Let us compute all two-dimensional submodules of M . Clearly,

f1 = e1 ∧ e2, f2 = e1 ∧ e3, f3 = e1 ∧ e4, f4 = e2 ∧ e3, f5 = e2 ∧ e4, f6 = e3 ∧ e4,

form a basis of ∧2M over F and, moreover,

∂x(f1, . . . , f6)τ = Bx(f1, . . . , f6)τ and ∂k(f1, . . . , f6)τ = Bk(f1, . . . , f6)τ ,

where

Bx =



2x
x2−1 0 0 0 0 0

0 0 − (k+1)(k+2)
x2−1 −k(k+1)

x2−1 0 0

0 −1 2x
x2−1 0 −k(k+1)

x2−1 0

0 −1 0 2x
x2−1 − (k+1)(k+2)

x2−1 0

0 0 −1 −1 4x
x2−1 0

0 0 0 0 0 2x
x2−1


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and

Bk =



(2k+3)2x2

(k+1)2 0 (2k+3)x
k+1 − (2k+3)x

k+1
2k+3
k+1 1

(k+2)(2k+3)
(k+1)2

k+2
k+1 0 0 0 0

− (k+2)(2k+3)x
(k+1)2 0 0 k+2

k+1 0 0
(k+2)(2k+3)x

(k+1)2 0 k+2
k+1 0 0 0

0 0 0 0 k+2
k+1 0

(k+2)2

(k+1)2 0 0 0 0 0


.

Then {δx(z) = −Bτ
x , σk(z) = (B−1

k )τz} is the fully integrable system associated to ∧2M .

Apply the algorithm HyperexpSolutions to find all its hyperexp solutions:

h = c
(
− 1

x2−1
,− 1

k+1 ,−
x

x2−1
, x

x2−1
, k+1

x2−1
,− 1

x2−1

)τ
, for any c ∈ C∗.

Hence the generator of any one-dimensional submodule of ∧2M has the form

w = − 1
x2−1

f1 − 1
k+1 f2 −

x
x2−1

f3 + x
x2−1

f4 + k+1
x2−1

f5 − 1
x2−1

f6.

Thus ∧2M has only one-dimensional submodule Fw. Consider the map φw : M → ∧3M

given by v 7→ v ∧w. The matrix P of φw is
x

x2−1
1

k+1 − 1
x2−1 0

k+1
x2−1

x
x2−1 0 − 1

x2−1

− 1
x2−1 0 x

x2−1 − 1
k+1

0 − 1
x2−1 − k+1

x2−1
x

x2−1

 ,

and has exactly rank 2. This means that M has two-dimensional submodules. To retrieve

two-dimensional submodules of M , we compute the rational kernel of P and find its F -basis

r1 =
(
xk + x

k + 1
, −k − 1, 1, 0

)τ

∈ F 4, r2 =
(
−x

2 − 1
k + 1

, x, 0, 1
)τ

∈ F 4.

Set

w1 = (e1, e2, e3, e4)r1 =
xk + x

k + 1
e1 − (k + 1)e2 + e3

and

w2 = (e1, e2, e3, e4)r2 = −x
2 − 1
k + 1

e1 + xe2 + e4.
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Then Fw1 ⊕ Fw2 is the only two-dimensional submodule of M . In addition,

∂x

w1

w2

=

 0 − (k+1)(k+2)
x2−1

−1 2x
x2−1

w1

w2

 and ∂k

w1

w2

=

 x −k − 2

−x2−1
k+2 x

w1

w2

 .

We remark that the L-module M in this example is reducible but not completely reducible,

since it has only one two-dimensional submodule. �

4.4 An Factorization Algorithm for L-Modules of Finite Di-

mension

We now describe a factorization algorithm for L-modules of finite dimension.

Algorithm FactorModule (Factor L-modules of finite dimension)

Input: An L-module M with an F -basis e1, . . . , en and the actions of ∂i on this basis:

∂i(e1, . . . , en)τ = Bi(e1, . . . , en)τ , for i = 1, . . . ,m, (4.6)

where B1, . . . , Bm ∈ Fn×n and the Bj are invertible for j > `.

Output: For 0 < d < n, all d-dimensional submodules of M given by their F -bases and

the actions of ∂i on the bases.

1. [Construct the exterior power] From (4.6), construct an F -basis {f1, . . . , fg} of ∧dM

with g=
(

n

d

)
, and the fully integrable system {∂i(z) = B̃iz}1≤i≤m, where B̃i ∈ F g×g,

associated with ∧dM with respect to f1, . . . , fg.

2. [Compute one-dimensional submodules] Apply the algorithm HyperexpSolutions to

find all hyperexp solutions of the system {∂i(z) = B̃iz}1≤i≤m. If the output is NULL,

then exit [M has no d-dimensional submodules]. Otherwise, construct a finite collec-

tion {Fw1, . . . , Fws} of one-dimensional submodules of ∧dM where each wq may contain

unspecified constants c1, . . . , ctq .

3. [Determine the decomposability] For q = 1, . . . , s, consider the map φq : M → ∧d+1M

given by v 7→ v ∧wq. Construct the matrix Pq of φq, which is an
(

n

d + 1

)
× n matrix with
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entries in F (c1, . . . , ctq). The condition that all (n−d+1)×(n−d+1) minors of Pq are zero

and that Pq has a nonzero (n−d) minor then yields a nonlinear system in c1, . . . , ctq , which

we denote by Tq. If none of the systems T1, . . . , Ts has solutions in C, then exit [M has

no d-dimensional submodules]. Otherwise, suppose that, for any q ∈ {l1, . . . , le} ⊆ {1, . . . , s}

with e ≤ s, Tq has a solution in C. For every such q, substitute the values of c1, . . . , ctq

into Pq and compute an F -basis rq1, . . . , rqd for the rational kernel of Pq.

4. [Retrieve d-dimensional submodules] For each q ∈ {l1, . . . , le}, set vqj = (e1, . . . , en)rqj

for j=1, . . . , d. Then {⊕d
j=1Fvl1,j , . . . , ⊕d

j=1Fvle,j} are all d-dimensional submodules of M .

Example 4.4.1 Let F = C(x, k), L = F [∂x; 1, δx][∂k, ∂
−1
k ;σk, 0]. Let M be an L-module

with an F -basis {e1, e2, e3, e4} satisfying that ∂x(e1, e2, e3, e4)τ = Ax(e1, e2, e3, e4)τ and

∂k(e1, e2, e3, e4)τ = Ak(e1, e2, e3, e4)τ where

Ax=

 0 1 0 0

−x3−x2k+2x2+xk+k2x+k2+k3

x2(−x+k)
2(x2−x−k2)

(x−k)x
0 0

0 0 0 1

0 0 −x3−x2k+x2+3xk+2x+k2x+4k2+5k+2+k3

x2(−x+k+1)
− 2(−x2+x+k2+2k+1)

(−x+k+1)x


and

Ak =


0 0 1 0

0 0 0 1

− (x−k)x2

x−k−2 0 2x(x−k−1)
x−k−2 0

−2x(x2−2xk−3x+k2+2k)
(x−k−2)2

− (x−k)x2

x−k−2
2(x2−2xk−4x+k2+3k+2)

(x−k−2)2
2x(x−k−1)

x−k−2

.

Let us compute all two-dimensional submodules of M . Clearly,

f1 = e1 ∧ e2, f2 = e1 ∧ e3, f3 = e1 ∧ e4, f4 = e2 ∧ e3, f5 = e2 ∧ e4, f6 = e3 ∧ e4

form a basis of ∧2M over F . The fully integrable system associated to ∧2M is the A(2) in

Example 4.2.3, whose hyperexp solutions are of the form H = e−2xx−2k
(∑6

i=1 civi

)
where

the vi are as in Example 4.2.3 and the ci are in C, not all zero. Hence every one-dimensional

submodule of ∧2M has a generator of the form w = (f1, f2, f3, f4, f5, f6)
(∑6

i=1 civi

)
. It

remains to determine the decomposability of w. Consider the map M → ∧3M given

by v 7→v ∧ w, whose matrix is some P ∈ F 4×4. The matrix P has rank 2 if and only
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if all its 3× 3 minors are zero and there exists a nonzero 2× 2 minor. This yields four sets

of solutions for the ci:

{ c4 = c4, c1 = c1, c2 = c2, c5 = 0, c3 = 0, c6 = 0 },{
c3 = c3, c1 = c1, c2 = c2, c5 = 0, c6 = 0, c4 = −3c3

2

}
,{

c3 = c3, c5 = c5, c4 = c4, c2 = c2, c6 = 0, c1 = c3(2c4+3c3−4c5)
4c5

}
,{

c3=c3, c5=c5, c4=c4, c1=c1, c6=c6, c2=−
8c6c5−2c3c4−3c23−4c6c4−20c3c6−4c1c6+4c1c5+4c3c5−24c26

4c6

}
.

Therefore M has two-dimensional submodules if and only if the ci in w satisfy one of these

four relations.

Substitute these four relations into P respectively and compute the corresponding F -bases

for the rational kernel of P . Finally, we get all two-dimensional submodules given below:

Ni = {a1ui,1 + a2ui,2 | a1, a2 ∈ F} , i = 1, 2, 3, 4.

For N1,

u1,1=(2c1x2k + c1k2x + c4x5 + c1x2 + 2c1x4 + c2x2k − 2x3c2k − 3x3c1k − 2x4c4k

+x2c2k2 + xk3c1 + x4c2 + c4x3k2 − c2x3 − 2c4x4 − 3c1x3 + c4x3 + 2c4x3k)/(x(2c1x− c1x2 + 2c1xk

−2c2k − c2k2 + k3c4 + 2c2x− c2x2 + 2k2c4 − 2c1k − c1k2 + 2c2xk − 2kc4x− 2k2c4x + kc4x2 + kc4 − c1 − c2))e1

−(c4x3 + c1x2 − kc4x2 − c4x2 − c1xk − c1x)(x− k)/(2c1x− c1x2 + 2c1xk − 2c2k − c2k2 + k3c4 + 2c2x− c2x2

+2k2c4 − 2c1k − c1k2 + 2c2xk − 2kc4x− 2k2c4x + kc4x2 + kc4 − c1 − c2)e2 + e3,

u1,2 = (c1x4 − 2c1x2 + c4x5 + c1x− 2c4x3 − c1x3 − c4x4 + c2x3 − 2c2x2 + 2c4x2 + c1k2 + 2c1k3 + c1k4 − 2c2x2k

+3c1k2x− 4c1x2k + 5kc4x2 + k2c4x + c2xk + 3c1xk − 4c4x3k − 2c4x3k2 − 2c1x2k2 + 2c4xk3 + 3c4x2k2 + c4xk4

+c2xk2)/(x(2c1x− c1x2 + 2c1xk − 2c2k − c2k2 + k3c4 + 2c2x− c2x2 + 2k2c4 − 2c1k − c1k2 + 2c2xk − 2kc4x

−2k2c4x + kc4x2 + kc4 − c1 − c2))e1 − (c4x3 − c2x2 + kc4x2 + c2xk − 2k2c4x + c2x− 2xc4 + c1xk − 4kc4x− c1

−c1k2 − 2c1k)(x− k)/((2c1x− c1x2 + 2c1xk − 2c2k − c2k2 + k3c4 + 2c2x− c2x2 + 2k2c4 − 2c1k − c1k2

+2c2xk − 2kc4x− 2k2c4x + kc4x2 + kc4 − c1 − c2))e2 + e4,

and its L-module structures are given by

∂x

 u1,1

u1,2

 =

 0 1

− (x3+x2k−x2−3xk−2x−k2x−4k2−5k−2−k3)
x2(x−k−1)

2(x2−x−k2−2k−1)
(x−k−1)x

 u1,1

u1,2

 ,

and

∂k

 u1,1

u1,2

 =

 d
(1)
11 d

(1)
12

d
(1)
21 d

(1)
22

 u1,1

u1,2

 ,
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in which

d
(1)
11 =

c4x3−c2x2+kc4x2+c2xk−2k2c4x+c2x−2xc4+c1xk−4kc4x−c1−c1k2−2c1k
(x−k−2)(−c1−c2+kc4+c4) ,

d
(1)
12 = − (x−k−1)(xc4+c1)x

(−c1x−c2x+kc4x+xc4+c2k+2c2+c1k+2c1−k2c4−3kc4−2c4)
,

d
(1)
21 =

(
4c1 − c2xk2 + c4xk4 + c1x4 − c2x3 − c4x4 − 3c1x3 − 6c4x3 + 3c1x− 2c2x + 4c2x2 + 12c1k + 13c1k2 + 2c4x2 + 6c1k3

+c1k4 + 8xc4 − kc4x2 − 4c1x2k + c1k2x + 2c2x2k − 2c4x3k2 − 6c4x3k + 3c1xk − 3c2xk + 22kc4x

+21k2c4x− c4x2k2 + 8c4xk3 − 2c1x2k2 + c4x5
)

/((x− k − 2)2(−c1 − c2 + kc4 + c4)x),

d
(1)
22 = −

(
(c4x3 + c2x2 + 2c1x2 − c4x2 − kc4x2 − c1xk − 4xc4 − 3c1x− 2kc4x− c2xk − 2c2x− 4c1 − 4c1k − c1k2)(x− k − 1)

)
/(

(x− k − 2)(−c1x− c2x + kc4x + xc4 + c2k + 2c2 + c1k + 2c1 − k2c4 − 3kc4 − 2c4)
)

.

For N2,

u2,1 = −(4c1x2k + 2c1k2x + 2c1x2 + 4c1x4 + 2c2x2k + 4c3x3k + c3x5 − 4x3c2k − 6x3c1k

+2x2c2k2 + 2xk3c1 + 2x4c2 + 2x2c3k3 − 4c3x4 − 2c2x3 − 3c3x3k2 − 6c1x3 + 3c3x3 − 2c3x2k)/(x(−4c1x

+2c1x2 + c3k3 − c3k2 − 3c3x2 + 6c3x− 5c3k − 4c1xk + 4c2k + 2c2k2 − 4c2x + 2c2x2 + 4c1k + 2c1k2 + c3x2k + 4c3xk

−4c2xk + 2c1 + 2c2 − 2c3k2x− 3c3))e1 + (c3x3 − c3x2 − c3x2k + 2c1x2 − 2c1xk − 2c1x)(x− k)/(−4c1x + 2c1x2

+c3k3 − c3k2 − 3c3x2 + 6c3x− 5c3k − 4c1xk + 4c2k + 2c2k2 − 4c2x + 2c2x2 + 4c1k + 2c1k2 + c3x2k + 4c3xk

−4c2xk + 2c1 + 2c2 − 2c3k2x− 3c3)e2 + e3,

u2,2 = −(2c1x4 − 4c1x2 + 2c1x− 2c1x3 + 2c2x3 − 4c2x2 + 2c1k2 + 4c1k3 + 2c1k4 − c3x4

+c3x5 + 6c3x2 − 4c3x3 − 4c2x2k + 6c1k2x− 8c1x2k + 2c2xk + 6c1xk − 4c1x2k2 + 2c2xk2 + 5c3x2k − 2c3x3k2

−2c3x3k + 4c3xk3 + c3k2x− 2c3xk + c3xk4 − c3x2k2)/(x(−4c1x + 2c1x2 + c3k3 − c3k2 − 3c3x2 + 6c3x− 5c3k − 4c1xk

+4c2k + 2c2k2 − 4c2x + 2c2x2 + 4c1k + 2c1k2 + c3x2k + 4c3xk − 4c2xk + 2c1 + 2c2 − 2c3k2x− 3c3))e1 + (c3x3

+2c3x2 − 2c2x2 − c3x2k + 2c1xk + 2c2x− 4c3x− 4c3xk + 2c2xk − 4c1k − 2c1 − 2c1k2)(x− k)/(−4c1x + 2c1x2 + c3k3

−c3k2 − 3c3x2 + 6c3x− 5c3k − 4c1xk + 4c2k + 2c2k2 − 4c2x + 2c2x2 + 4c1k + 2c1k2 + c3x2k + 4c3xk − 4c2xk

+2c1 + 2c2 − 2c3k2x− 3c3)e2 + e4,

and its L-module structures are given by

∂x

 u2,1

u2,2

 =

 0 1

− (x3+x2k−x2−3xk−2x−k2x−4k2−5k−2−k3)
x2(x−k−1)

2(x2−x−k2−2k−1)
(x−k−1)x

 u2,1

u2,2


and

∂k

 u2,1

u2,2

 =

 d
(2)
11 d

(2)
12

d
(2)
21 d

(2)
22

 u2,1

u2,2

 ,

in which

d
(2)
11 = − (c3x3+2c3x2−2c2x2−c3x2k+2c1xk+2c2x−4c3x−4c3xk+2c2xk−4c1k−2c1−2c1k2)

(x−k−2)(2c1−2c3+2c2+c3k) ,

d
(2)
12 =

(x−k−1)(c3x+2c1)x

2c1x−2c3x+2c2x+c3xk−4c1−4c2+4c3−c3k2−2c2k−2c1k
,

d
(2)
21 = −

(
8c1 − 2c2xk2 + 2c1x4 − 2c2x3 − 6c1x3 + 6c1x− 4c2x + 8c2x2 + 24c1k + 26c1k2 + 12c1k3 + 2c1k4

−8c3x3k − 2c3x3k2 + 3c3x2k + 24c3xk + 17c3k2x + 3c3x2k2 + c3xk4 + 6c3xk3 + c3x5 − c3x4 − 4c3x3

−6c3x2 + 12c3x− 8c1x2k + 2c1k2x + 4c2x2k + 6c1xk − 6c2xk − 4c1x2k2
)

/
(
(x− k − 2)2(2c1 − 2c3 + 2c2 + c3k)x

)
,

d
(2)
22 =

(
(c3x3 − 3c3x2 + 4c1x2 + 2c2x2 + c3x2k − 2c1xk − 2c2xk − 2c3k2x− 4c2x− 4c3xk − 6c1x− 8c1 − 8c1k − 2c1k2)(x− k − 1)

)
/

(
2c1x− 2c3x + 2c2x + c3xk − 4c1 − 4c2 + 4c3 − c3k2 − 2c2k − 2c1k)(x− k − 2)

)
.
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For N3,

u3,1 = (−9c23x3 + 16c25x4 − 12c25x5 − 8c25x3 + 4c25x6 + 3c23x2 + 6c23x4

−28c3x4c5 + 12c25x4k + 4c3x4c4 + 6c23x2k − 6c3x3c4 − 4c2x3c5 + 4c4x3c5 + 3c23xk2 + 2c3x2c4

−8c5x4c4 + 4c5x5c4 + 8c3x5c5 − 4c3x2c5 − 4c25x4k2 − 4c25x5k + 4c25x3k3 + 4c5x4c2 + 3c23xk3

−12c25x3k + 24c3x3c5 − 9c23x3k − 12c3x2kc5 + 4c3x2kc4 − 4c3xk2c5 − 4c3xk3c5 + 4c2x2k2c5

−8c5x4kc4 − 12c5x4c3k + 2c4xk3c3 + 8c5x3kc4 + 4c4x3k2c5 + 32c3x3kc5 + 4c2x2kc5 + 2c4xk2c3

−6c3x3kc4 + 4c3x2k3c5 − 8c2x3kc5)/(x(6c23x− 2c3c4 + 10c3c5 − 3c23x2 − 16k2c25 − 8c25k

−4c5c2 − 6c23k − 8c25k3 − 3c23k2 − 2c3x2c4 + 10c3x2c5 + 16kc25x + 4c4k3c5 − 4c2k2c5 + 8c2xc5

−8c2kc5 − 20c3xc5 + 4c3xc4 + 6c23xk − 8c25x2k − 4c2x2c5 + 18c3k2c5 − 2c3k2c4 + 16c25xk2 + 4c3k3c5 + 4c5kc4

+8k2c4c5 + 24c3kc5 − 4c3kc4 + 4c3x2kc5 − 8c3xk2c5 + 8c2xkc5 − 8kc4xc5 + 4c5x2kc4 − 8c4xk2c5 − 28c3xkc5

+4c3xkc4 − 3c23))e1 − (−12c25x3 + 4c25x4 − 3c23x + 8c25x2 + 3c23x2 + 8c25x2k − 4c4x2c5 + 8c3x3c5

−4c25x3k − 12c3x2c5 − 4c5x2kc4 + 2c3x2c4 + 4c4x3c5 − 8c3x2kc5 − 2c3xc4 + 4c3xkc5 + 4c3xc5

−2c3xkc4 − 3c23xk)(x− k)/(6c23x− 2c3c4 + 10c3c5 − 3c23x2 − 16k2c25 − 8c25k − 4c5c2 − 6c23k − 8c25k3

−3c23k2 − 2c3x2c4 + 10c3x2c5 + 16kc25x + 4c4k3c5 − 4c2k2c5 + 8c2xc5 − 8c2kc5 − 20c3xc5 + 4c3xc4

+6c23xk − 8c25x2k − 4c2x2c5 + 18c3k2c5 − 2c3k2c4 + 16c25xk2 + 4c3k3c5 + 4c5kc4 + 8k2c4c5 + 24c3kc5

−4c3kc4 + 4c3x2kc5 − 8c3xk2c5 + 8c2xkc5 − 8kc4xc5 + 4c5x2kc4 − 8c4xk2c5 − 28c3xkc5 + 4c3xkc4 − 3c23)e2 + e3,

u3,2 = (3c23x− 3c23x3 − 8c25x5 + 16c25x3 + 4c25x6 − 6c23x2 + 3c23x4 + 3c23k4

+6c23k3 − 16c25x2 + 3c23k2 − 12c3x4c5 − 16c25x4k + 2c3x4c4 − 12c23x2k − 2c3x3c4 + 4c2x3c5

−8c4x3c5 + 9c23xk2 − 4c3x2c4 − 4c5x4c4 + 4c5x5c4 + 8c3x5c5 + 32c3x2c5 − 8c25x4k2 + 32c25x3k

−16c3x3c5 − 4c3xc5 + 2c3xc4 + 9c23xk − 32c25x2k − 8c2x2c5 − 4c3k2c5 + 2c3k2c4 − 8c25xk2 − 8c3k3c5

+8c4x2c5 − 4c3k4c5 + 2c4k4c3 + 4c4k3c3 − 4k2c25x2 − 16c25xk3 − 8c25xk4 − 6c23x2k2 + 16c25x3k2

+16c25x2k3 + 4c25x2k4 + 56c3x2kc5 − 8c3x2kc4 − 4c3xk2c5 + 20c3xk3c5 − 16c5x3kc4 − 8c4x3k2c5

−28c3x3kc5 − 8c2x2kc5 + 6c4xk2c3 + 4c2xkc5 + 20c5x2kc4 + 4c4xk2c5 − 16c3xkc5 + 6c3xkc4 + 8c3xk4c5

+4c2xk2c5 + 4c4xk4c5 + 8c4xk3c5 − 4c3x2k2c4 + 24c3x2k2c5 − 16c3x3k2c5 + 12k2c5x2c4)/(x(6c23x− 2c3c4

+10c3c5 − 3c23x2 − 16k2c25 − 8c25k − 4c5c2 − 6c23k − 8c25k3 − 3c23k2 − 2c3x2c4 + 10c3x2c5 + 16kc25x

+4c4k3c5 − 4c2k2c5 + 8c2xc5 − 8c2kc5 − 20c3xc5 + 4c3xc4 + 6c23xk − 8c25x2k − 4c2x2c5 + 18c3k2c5

−2c3k2c4 + 16c25xk2 + 4c3k3c5 + 4c5kc4 + 8k2c4c5 + 24c3kc5 − 4c3kc4 + 4c3x2kc5 − 8c3xk2c5

+8c2xkc5 − 8kc4xc5 + 4c5x2kc4 − 8c4xk2c5 − 28c3xkc5 + 4c3xkc4 − 3c23))e1 − (−2c3c4 + 4c3c5

+4c25x4 − 8c25x3 − 8c25x2 − 6c23k − 3c23k2 + 16xc25 + 4c4x3c5 + 4c3x2c5 + 8c3x3c5 + 32kc25x

+4c2xc5 − 20c3xc5 + 3c23xk − 20c25x2k − 4c2x2c5 + 4c3k2c5 − 2c3k2c4 + 16c25xk2 + 8c3kc5 − 4c3kc4

−4k2c25x2 − 8xc4c5 + 4c3x2kc5 − 12c3xk2c5 + 4c2xkc5 − 16kc4xc5 + 4c5x2kc4 − 8c4xk2c5 − 36c3xkc5

+2c3xkc4 − 3c23)(x− k)/(6c23x− 2c3c4 + 10c3c5 − 3c23x2 − 16k2c25 − 8c25k − 4c5c2 − 6c23k − 8c25k3

−3c23k2 − 2c3x2c4 + 10c3x2c5 + 16kc25x + 4c4k3c5 − 4c2k2c5 + 8c2xc5 − 8c2kc5 − 20c3xc5 + 4c3xc4

+6c23xk − 8c25x2k − 4c2x2c5 + 18c3k2c5 − 2c3k2c4 + 16c25xk2 + 4c3k3c5 + 4c5kc4 + 8k2c4c5 + 24c3kc5

−4c3kc4 + 4c3x2kc5 − 8c3xk2c5 + 8c2xkc5 − 8kc4xc5 + 4c5x2kc4 − 8c4xk2c5 − 28c3xkc5 + 4c3xkc4 − 3c23)e2 + e4,

and its L-module structures are given by

∂x

u3,1

u3,2

 =

 0 1

− (x3+x2k−x2−3xk−2x−k2x−4k2−5k−2−k3)
x2(x−k−1)

2(x2−x−k2−2k−1)
(x−k−1)x

u3,1

u3,2

 ,

∂k

 u3,1

u3,2

 =

 d
(3)
11 d

(3)
12

d
(3)
21 d

(3)
22

 u3,1

u3,2

 ,
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in which

d
(3)
11 =

(
4c2xc5 + 32kc25x− 2c3k2c4 + 8c3kc5 − 20c3xc5 + 3c23xk − 4c3kc4 − 4c2x2c5 + 4c3k2c5 + 16c25xk2

−20c25x2k + 16xc25 − 4k2c25x2 − 8xc4c5 + 8c3x3c5 + 4c4x3c5 − 3c23 − 8c25x3 + 4c25x4

−6c23k − 2c3c4 + 4c3c5 − 3c23k2 − 8c25x2 + 4c3x2c5 − 12c3xk2c5 + 4c3x2kc5 + 2c3xkc4

−36c3xkc5 − 8c4xk2c5 + 4c5x2kc4 − 16kc4xc5 + 4c2xkc5

)
/(

(x− k − 2)(−4c5c2 − 3c23 + 4c3kc5 − 8c25k + 4c5kc4 − 2c3c4 + 14c3c5 + 4c4c5 − 8c25)
)

,

d
(3)
12 = −

(
(x− k − 1)(−8xc25 + 4c25x2 + 4xc4c5 + 8c3xc5 − 4c3c5 + 2c3c4 + 3c23)x

)
/ (−4c2xc5

−8c4c5 − 8kc25x + 4c2kc5 − 22c3kc5 − 4k2c4c5 + 14c3xc5 + 2c3kc4 − 4c3k2c5 − 2c3xc4 − 8xc25

+4xc4c5 − 12c5kc4 + 16c25 + 6c23 + 3c23k + 8c5c2 + 4c3c4 − 28c3c5 + 8k2c25 + 24c25k − 3c23x

+4c3xkc5 + 4kc4xc5) ,

d
(3)
21 =

(
−8c2xc5 − 4c2x3c5 + 8c3x5c5 + 2c3x4c4 − 12c23x2k − 8c25x4k2 + 4c5x5c4 − 176kc25x + 26c3k2c4 − 48c3kc5

+60c3xc5 + 9c23xk + 24c3kc4 + 16c2x2c5 − 52c3k2c5 − 168c25xk2 − 24c3k3c5 + 120c25x2k + 6c3xc4 + 8c4x2c5

−4c5x4c4 − 64xc25 + 16c25x3k2 + 100k2c25x2 + 32c25x2k3 + 4c25x2k4 + 2c4k4c3 + 12c4k3c3

−6c23x2k2 − 4c3k4c5 − 64c25xk3 − 8c25xk4 + 32xc4c5 − 4k2c5x2c4 − 16c3x3k2c5 + 32c4xk3c5

+4c4xk4c5 − 4c2xk2c5 + 8c3xk4c5 − 4c3x2k2c4 + 8c3x2k2c5 − 32c25x4k + 48c25x3k − 32c3x3c5

−6c3x3c4 + 3c23xk2 − 24c4x3c5 − 12c3x4c5 + 12c23 + 3c23x4 + 48c25x3 − 9c23x3 − 8c25x5 + 4c25x6

−24c25x4 + 36c23k + 8c3c4 − 16c3c5 + 39c23k2 + 9c23x + 32c25x2 + 3c23k4 + 18c23k3 + 8c2x2kc5

−52c3x3kc5 − 8c4x3k2c5 − 24c5x3kc4 + 60c3xk3c5 + 156c3xk2c5 − 8c3x2kc4 + 16c3x2kc5 + 2c4xk2c3

+6c3xkc4 + 168c3xkc5 + 84c4xk2c5 − 4c5x2kc4 + 88kc4xc5 − 12c2xkc5

)
/

(
(x− k − 2)2(−4c5c2 − 3c23

+4c3kc5 − 8c25k + 4c5kc4 − 2c3c4 + 14c3c5 + 4c4c5 − 8c25)x
)

,

d
(3)
22 = −

(
(−8c2xc5 + 4c3x2c4 + 16kc25x− 2c3k2c4 + 16c3kc5 − 12c3xc5 − 3c23xk − 8c3kc4 + 4c2x2c5 + 4c3k2c5

−12c25x2k − 6c3xc4 − 4c4x2c5 + 32xc25 − 4k2c25x2 − 16xc4c5 + 8c3x3c5 + 4c4x3c5 − 12c23 − 8c25x3

+4c25x4 + 6c23x2 − 12c23k − 8c3c4 + 16c3c5 − 3c23k2 − 9c23x− 16c25x2 − 20c3x2c5 − 4c3xk2c5

−4c3x2kc5 − 2c3xkc4 − 16c3xkc5 − 4c5x2kc4 − 8kc4xc5 − 4c2xkc5)(x− k − 1)
)

/
(
(x− k − 2)(−4c2xc5 − 8c4c5 − 8kc25x

+4c2kc5 − 22c3kc5 − 4k2c4c5 + 14c3xc5 + 2c3kc4 − 4c3k2c5 − 2c3xc4 − 8xc25 + 4xc4c5 − 12c5kc4 + 16c25 + 6c23

+3c23k + 8c5c2 + 4c3c4 − 28c3c5 + 8k2c25 + 24c25k − 3c23x + 4c3xkc5 + 4kc4xc5

)
.

For N4,

u4,1 = (−9c23x3 + 16c25x4 − 12c25x5 − 8c25x3 + 4c25x6 + 3c23x2 + 6c23x4

−28c3x4c5 + 12c25x4k + 4c3x4c4 + 6c23x2k − 6c3x3c4 − 4c2x3c5 + 4c4x3c5 + 3c23xk2 + 2c3x2c4

−8c5x4c4 + 4c5x5c4 + 8c3x5c5 − 4c3x2c5 − 4c25x4k2 − 4c25x5k + 4c25x3k3 + 4c5x4c2 + 3c23xk3

−12c25x3k + 24c3x3c5 − 9c23x3k − 12c3x2kc5 + 4c3x2kc4 − 4c3xk2c5 − 4c3xk3c5 + 4c2x2k2c5

−8c5x4kc4 − 12c5x4c3k + 2c4xk3c3 + 8c5x3kc4 + 4c4x3k2c5 + 32c3x3kc5 + 4c2x2kc5 + 2c4xk2c3

−6c3x3kc4 + 4c3x2k3c5 − 8c2x3kc5)/(x(6c23x− 2c3c4 + 10c3c5 − 3c23x2 − 16k2c25 − 8c25k

−4c5c2 − 6c23k − 8c25k3 − 3c23k2 − 2c3x2c4 + 10c3x2c5 + 16kc25x + 4c4k3c5 − 4c2k2c5 + 8c2xc5

−8c2kc5 − 20c3xc5 + 4c3xc4 + 6c23xk − 8c25x2k − 4c2x2c5 + 18c3k2c5 − 2c3k2c4 + 16c25xk2

+4c3k3c5 + 4c5kc4 + 8k2c4c5 + 24c3kc5 − 4c3kc4 + 4c3x2kc5 − 8c3xk2c5 + 8c2xkc5 − 8kc4xc5

+4c5x2kc4 − 8c4xk2c5 − 28c3xkc5 + 4c3xkc4 − 3c23))e1 − (−12c25x3 + 4c25x4 − 3c23x + 8c25x2

+3c23x2 + 8c25x2k − 4c4x2c5 + 8c3x3c5 − 4c25x3k − 12c3x2c5 − 4c5x2kc4 + 2c3x2c4 + 4c4x3c5

−8c3x2kc5 − 2c3xc4 + 4c3xkc5 + 4c3xc5 − 2c3xkc4 − 3c23xk)(x− k)/(6c23x− 2c3c4 + 10c3c5 − 3c23x2

−16k2c25 − 8c25k − 4c5c2 − 6c23k − 8c25k3 − 3c23k2 − 2c3x2c4 + 10c3x2c5 + 16kc25x + 4c4k3c5

−4c2k2c5 + 8c2xc5 − 8c2kc5 − 20c3xc5 + 4c3xc4 + 6c23xk − 8c25x2k − 4c2x2c5 + 18c3k2c5 − 2c3k2c4

+16c25xk2 + 4c3k3c5 + 4c5kc4 + 8k2c4c5 + 24c3kc5 − 4c3kc4 + 4c3x2kc5 − 8c3xk2c5 + 8c2xkc5

−8kc4xc5 + 4c5x2kc4 − 8c4xk2c5 − 28c3xkc5 + 4c3xkc4 − 3c23)e2 + e3,
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u4,2 = (3c23x− 3c23x3 − 8c25x5 + 16c25x3 + 4c25x6 − 6c23x2 + 3c23x4 + 3c23k4

+6c23k3 − 16c25x2 + 3c23k2 − 12c3x4c5 − 16c25x4k + 2c3x4c4 − 12c23x2k − 2c3x3c4 + 4c2x3c5

−8c4x3c5 + 9c23xk2 − 4c3x2c4 − 4c5x4c4 + 4c5x5c4 + 8c3x5c5 + 32c3x2c5 − 8c25x4k2 + 32c25x3k

−16c3x3c5 − 4c3xc5 + 2c3xc4 + 9c23xk − 32c25x2k − 8c2x2c5 − 4c3k2c5 + 2c3k2c4 − 8c25xk2 − 8c3k3c5

+8c4x2c5 − 4c3k4c5 + 2c4k4c3 + 4c4k3c3 − 4k2c25x2 − 16c25xk3 − 8c25xk4 − 6c23x2k2 + 16c25x3k2

+16c25x2k3 + 4c25x2k4 + 56c3x2kc5 − 8c3x2kc4 − 4c3xk2c5 + 20c3xk3c5 − 16c5x3kc4 − 8c4x3k2c5

−28c3x3kc5 − 8c2x2kc5 + 6c4xk2c3 + 4c2xkc5 + 20c5x2kc4 + 4c4xk2c5 − 16c3xkc5 + 6c3xkc4 + 8c3xk4c5

+4c2xk2c5 + 4c4xk4c5 + 8c4xk3c5 − 4c3x2k2c4 + 24c3x2k2c5 − 16c3x3k2c5 + 12k2c5x2c4)/(x(6c23x

−2c3c4 + 10c3c5 − 3c23x2 − 16k2c25 − 8c25k − 4c5c2 − 6c23k − 8c25k3 − 3c23k2 − 2c3x2c4 + 10c3x2c5

+16kc25x + 4c4k3c5 − 4c2k2c5 + 8c2xc5 − 8c2kc5 − 20c3xc5 + 4c3xc4 + 6c23xk − 8c25x2k − 4c2x2c5

+18c3k2c5 − 2c3k2c4 + 16c25xk2 + 4c3k3c5 + 4c5kc4 + 8k2c4c5 + 24c3kc5 − 4c3kc4 + 4c3x2kc5

−8c3xk2c5 + 8c2xkc5 − 8kc4xc5 + 4c5x2kc4 − 8c4xk2c5 − 28c3xkc5 + 4c3xkc4 − 3c23))e1 − (−2c3c4

+4c3c5 + 4c25x4 − 8c25x3 − 8c25x2 − 6c23k − 3c23k2 + 16xc25 + 4c4x3c5 + 4c3x2c5 + 8c3x3c5

+32kc25x + 4c2xc5 − 20c3xc5 + 3c23xk − 20c25x2k − 4c2x2c5 + 4c3k2c5 − 2c3k2c4 + 16c25xk2

+8c3kc5 − 4c3kc4 − 4k2c25x2 − 8xc4c5 + 4c3x2kc5 − 12c3xk2c5 + 4c2xkc5 − 16kc4xc5 + 4c5x2kc4

−8c4xk2c5 − 36c3xkc5 + 2c3xkc4 − 3c23)(x− k)/(6c23x− 2c3c4 + 10c3c5 − 3c23x2 − 16k2c25 − 8c25k

−4c5c2 − 6c23k − 8c25k3 − 3c23k2 − 2c3x2c4 + 10c3x2c5 + 16kc25x + 4c4k3c5 − 4c2k2c5 + 8c2xc5

−8c2kc5 − 20c3xc5 + 4c3xc4 + 6c23xk − 8c25x2k − 4c2x2c5 + 18c3k2c5 − 2c3k2c4 + 16c25xk2

+4c3k3c5 + 4c5kc4 + 8k2c4c5 + 24c3kc5 − 4c3kc4 + 4c3x2kc5 − 8c3xk2c5 + 8c2xkc5 − 8kc4xc5

+4c5x2kc4 − 8c4xk2c5 − 28c3xkc5 + 4c3xkc4 − 3c23)e2 + e4,

and its L-module structures are given by

∂x

u4,1

u4,2

 =

 0 1

− (−x3−x2k+x2+3xk+2x+k2x+4k2+5k+2+k3)
x2(−x+k+1)

2(−x2+x+k2+2k+1)
(−x+k+1)x

u4,1

u4,2


and

∂k

 u4,1

u4,2

 =

 d
(4)
11 d

(4)
12

d
(4)
21 d

(4)
22

 u4,1

u4,2

 ,

in which

d
(4)
11 =

(
4c2xc5 + 32kc25x− 2c3k2c4 + 8c3kc5 − 20c3xc5 + 3c23xk − 4c3kc4 − 4c2x2c5 + 4c3k2c5 + 16c25xk2

−20c25x2k + 16xc25 − 4k2c25x2 − 8xc4c5 + 8c3x3c5 + 4c4x3c5 − 3c23 − 8c25x3 + 4c25x4 − 6c23k − 2c3c4

+4c3c5 − 3c23k2 − 8c25x2 + 4c3x2c5 − 12c3xk2c5 + 4c3x2kc5 + 2c3xkc4 − 36c3xkc5 − 8c4xk2c5 + 4c5x2kc4

−16kc4xc5 + 4c2xkc5) /
(
(−x + k + 2)(8c25k − 4c5kc4 − 4c3kc5 + 3c23 + 8c25 + 4c5c2 + 2c3c4 − 14c3c5 − 4c4c5)

)
,

d
(4)
12 =

(
(−x + k + 1)(−8xc25 + 4c25x2 + 4xc4c5 + 8c3xc5 − 4c3c5 + 2c3c4 + 3c23)x

)
/

(
−4c2xc5 − 8c4c5 − 8kc25x + 4c2kc5

−22c3kc5 − 4k2c4c5 + 14c3xc5 + 2c3kc4 − 4c3k2c5 − 2c3xc4 − 8xc25 + 4xc4c5 − 12c5kc4 + 16c25 + 6c23

+3c23k + 8c5c2 + 4c3c4 − 28c3c5 + 8k2c25 + 24c25k − 3c23x + 4c3xkc5 + 4kc4xc5

)
,

d
(4)
21 =

(
8c2xc5 + 4c2x3c5 − 8c3x5c5 − 2c3x4c4 + 12c23x2k + 8c25x4k2 − 4c5x5c4 + 176kc25x− 26c3k2c4 + 48c3kc5

−60c3xc5 − 9c23xk − 24c3kc4 − 16c2x2c5 + 52c3k2c5 + 168c25xk2 + 24c3k3c5 − 120c25x2k − 6c3xc4

−8c4x2c5 + 4c5x4c4 + 64xc25 − 16c25x3k2 − 100k2c25x2 − 32c25x2k3 − 4c25x2k4 − 2c4k4c3

−12c4k3c3 + 6c23x2k2 + 4c3k4c5 + 64c25xk3 + 8c25xk4 − 32xc4c5 + 4k2c5x2c4 + 16c3x3k2c5

−32c4xk3c5 − 4c4xk4c5 + 4c2xk2c5 − 8c3xk4c5 + 4c3x2k2c4 − 8c3x2k2c5 + 32c25x4k − 48c25x3k

+32c3x3c5 + 6c3x3c4 − 3c23xk2 + 24c4x3c5 + 12c3x4c5 − 12c23 − 3c23x4 − 48c25x3 + 9c23x3

+8c25x5 − 4c25x6 + 24c25x4 − 36c23k − 8c3c4 + 16c3c5 − 39c23k2 − 9c23x− 32c25x2 − 3c23k4

−18c23k3 − 8c2x2kc5 + 52c3x3kc5 + 8c4x3k2c5 + 24c5x3kc4 − 60c3xk3c5 − 156c3xk2c5 + 8c3x2kc4

−16c3x2kc5 − 2c4xk2c3 − 6c3xkc4 − 168c3xkc5 − 84c4xk2c5 + 4c5x2kc4 − 88kc4xc5 + 12c2xkc5

)
/(

(−x + k + 2)2(8c25k − 4c5kc4 − 4c3kc5 + 3c23 + 8c25 + 4c5c2 + 2c3c4 − 14c3c5 − 4c4c5)x
)

,
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d
(4)
22 =

(
(8c2xc5 − 4c3x2c4 − 16kc25x + 2c3k2c4 − 16c3kc5 + 12c3xc5 + 3c23xk + 8c3kc4 − 4c2x2c5 − 4c3k2c5

+12c25x2k + 6c3xc4 + 4c4x2c5 − 32xc25 + 4k2c25x2 + 16xc4c5 − 8c3x3c5 − 4c4x3c5 + 12c23

+8c25x3 − 4c25x4 − 6c23x2 + 12c23k + 8c3c4 − 16c3c5 + 3c23k2 + 9c23x + 16c25x2 + 20c3x2c5

+4c3xk2c5 + 4c3x2kc5 + 2c3xkc4 + 16c3xkc5 + 4c5x2kc4 + 8kc4xc5 + 4c2xkc5)(−x + k + 1)
)

/(
(−x + k + 2)(−4c2xc5 − 8c4c5 − 8kc25x + 4c2kc5 − 22c3kc5 − 4k2c4c5 + 14c3xc5 + 2c3kc4 − 4c3k2c5

−2c3xc4 − 8xc25 + 4xc4c5 − 12c5kc4 + 16c25 + 6c23 + 3c23k + 8c5c2 + 4c3c4 − 28c3c5 + 8k2c25

+24c25k − 3c23x + 4c3xkc5 + 4kc4xc5)
)

.

�

4.5 Eigenrings and Factorization

We discuss another approach to factoring L-modules, which is not based on the associated

equations method. This method is first introduced in [59] to factor linear ordinary differ-

ential operators using eigenrings of the operators. Three algorithms are presented there for

computing eigenrings. Significant improvements on these algorithms are described in [8, 33].

Although the eigenring method does not always factor reducible operators, it often yields

factors quickly. This method has been generalized in [4, 11] for systems of linear difference

equations, and in [6] recently for systems of linear PDEs in positive characteristic. We will

generalize in this section this method for the factorization of L-modules of finite dimension.

Let R be an arbitrary ring and let M be an R-module. Recall that EndR(M) is the set

of all R-linear maps on M . Clearly, EndR(M) becomes a ring with the usual addition and

the composition of maps adopted as the multiplication.

Definition 4.5.1 Let M be an R-module. A set of elements {π1, . . . , πs} of the ring EndR(M)

is called a set of orthogonal idempotents if they satisfy

s∑
i=1

πi = 1 and πiπj = 0 whenever i 6= j, (4.7)

where 1 and 0 are the identity map and the zero map on M , respectively.

Remark 4.5.2 Although it is not stated in Definition 4.5.1, the πi are all idempotent.

Indeed, the condition (4.7) implies that π2
i =

∑s
j=1 πiπj = πi

(∑s
j=1 πj

)
= πi for each i.

It is stated in Exercise 7 in §1 of [41, Ch.1] that
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Proposition 4.5.1 Let M be an R-module. If EndR(M) has a set of orthogonal idempo-

tents π1, . . . , πs then M = ⊕s
i=1πi(M). Conversely, if M can be written as a direct sum

of submodules M = N1 ⊕ · · · ⊕ Ns then {π1, . . . , πs} is a set of orthogonal idempotents

of EndR(M) where πi is the projection from M to Ni.

For any R-module M , EndR(M) always has a set of orthogonal idempotents {0,1},

which is called the trivial orthogonal idempotents of EndR(M). From Proposition 4.5.1, one

sees that if 1 is contained in a set π of orthogonal idempotents, then π = {0,1} and π is

trivial.

As a direct consequence of Proposition 4.5.1, an R-module M is decomposable if and

only if EndR(M) has a nontrivial set of orthogonal idempotents.

Let F be an orthogonal ∆-field, C its field of constants and L=F [∂1, . . . , ∂m, ∂
−1
`+1, . . . , ∂

−1
m ]

the Laurent-Ore algebra over F .

Definition 4.5.3 For an L-module M , the endomorphism ring EndL(M) is called the

eigenring of M , denoted by E(M).

By Definition 4.5.3, a map φ ∈ EndF (M) belongs to E(M) if and only if φ commutes

with the ∂i and ∂−1
j for all i, j with 1 ≤ i ≤ m and ` + 1 ≤ j ≤ m. However, since M is

an L-module on which the ∂−1
j act, the commutativity of φ with the ∂j for `+ 1 ≤ j ≤ m

implies that ∂j ◦ φ ◦ ∂−1
j (w) = φ(w) and further φ ◦ ∂−1

j (w) = ∂−1
j ◦ φ(w) for w ∈ M .

Hence, φ ∈ E(M) if and only if φ commutes with all the ∂i for 1 ≤ i ≤ m.

Let M be an L-module with an F -basis e1, . . . , en. Suppose that

∂i(e1, . . . , en)τ = Bi(e1, . . . , en)τ , i = 1, . . . ,m,

where Bi ∈ Fn×n for 1 ≤ i ≤ m and the Bj are invertible for j > `. For the actual

calculation of E(M) we now interpret elements of E(M) in terms of the Bi. Let φ be

in EndF (M) and P ∈ Fn×n be its transformation matrix given by

(φ(e1), . . . , φ(en))τ = P (e1, . . . , en)τ .
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For any w =
∑n

i=1 aiei ∈M where ai ∈ F , we write

φ(w) =
n∑

i=1

aiφ(ei) = (a1, . . . , an)(φ(e1), . . . , φ(en))τ = (a1, . . . , an)P (e1, . . . , en)τ .

One can verify that the conditions ∂i(φ(w)) = φ(∂i(w)), for all w ∈M and 1 ≤ i ≤ m, hold

if and only if P satisfies that δi(P ) = BiP − PBi for i ≤ ` and σj(P ) = BjPB
−1
j for j > `.

Hence the eigenring E(M) can be defined equivalently to be

E(M) ={P ∈ Fn×n | δi(P ) = BiP −PBi for i ≤ ` and σj(P ) = BjPB
−1
j for j > `}. (4.8)

Clearly, 1n ∈ E(M) and E(M) is a C-subalgebra of Fn×n of dimension ≤ n2. Denote

by C · 1n the set of all matrices of the form c · 1n where c ∈ C. Then C · 1n ⊆ E(M).

As a natural generalization of the results in [5], [53, Ch.2,4] or [59] for the case of linear

ODEs, we have

Theorem 4.5.2 Let M be an L-module of dimension n. Then

(i) If E(M) 6= C · 1n then M is reducible.

(ii) If M is decomposable then E(M) 6= C · 1n.

(iii) If M is completely reducible, then M is irreducible if and only if E(M) = C · 1n.

Proof. (i) Let e1, . . . , en form an F -basis of M . Suppose that P is a nonzero matrix

in E(M) such that P 6∈ C · 1n. Since E(M) is of dimension ≤ n2 over C, 1n, P, . . . , P
n2

are

linearly dependent over C. Then there exists a monic polynomial f(t) ∈ C[t] of minimal

degree such that f(P ) = 0. It follows that the characteristic polynomial det(P − t1n) of P

belongs to C[t] and the roots of det(P −t1n) are roots of f(t), which all belong to C since C

is algebraically closed. Let λ be a root of det(P − t1n) and N = {w ∈ M | Pw = λw}.

Obviously, N is closed under addition. Since λ ∈ C,

P (∂i(w)) = (φ ◦ ∂i)(w) = (∂i ◦ φ)(w) = ∂i(Pw) = ∂i(λw) = λ∂i(w),

for i = 1, . . . ,m, where φ is the transformation on M induced by the matrix P . Thus N is

an L-submodule of M . Suppose that N = M . Then e1, . . . , en belong to N and therefore

P − λ1n = (P − λ1n)(e1, . . . , en) = ( (P − λ1n) e1, . . . , (P − λ1n) en ) = 0,
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hence P = λ1n ∈ C ·1n, a contradiction to our assumption. Suppose that N = 0. It follows

that (a1, . . . , an)(P − λ1n) = 0 with ai ∈ F implies that (a1, . . . , an) = 0, i.e., the linear

system (P τ −λ1n)x = 0 has only trivial solution. Hence det(P τ −λ1n) 6= 0, a contradiction

to the assumption. So N is a nontrivial submodule of M and M is reducible.

(ii) Now suppose that M is decomposable. Then M = N1 ⊕N2 where N1 and N2 are

nontrivial submodules of M . Let d = dimF N1. Then 0 < d < n. One can verify easily

that P =
(

1d 0

0 0

)
satisfies the conditions (4.8). So P ∈ E(M) but P 6∈ C · 1n.

(iii) It is immediately from (i) and (ii). �

Remark 4.5.4 Observe that the condition that “E(M) is not a division ring”, is used

in [5, 6] instead of the condition “E(M) 6= C · 1n”. This is because the field C of constants

is not assumed to be algebraically closed there. To check if “E(M) is not a division ring”, one

needs to find a C-basis {P1, . . . , Ps} of E(M) and then decide if there exist c1, . . . , cs ∈ C,

not all zero, such that the determinant of
∑s

i=1 ciPi is zero.

However, if C is algebraically closed, the above two conditions are equivalent. Indeed,

if E(M) 6= C · 1n then there is P ∈ E(M) but P 6∈ C · 1n. By previous discussion, the

characteristic polynomial det(P − t1n) of P belongs to C[t] where t is an indeterminate

over C. Let λ be a root of det(P − t1n) = 0. Clearly, P − λ1n is not invertible. Since C is

algebraically closed, λ ∈ C. Moreover P − λ1n is nonzero, for otherwise, P and 1n would

be linearly dependent over C. Therefore E(M) is not a division ring.

Given an L-module M of finite dimension over F , the representation (4.8) of eigenrings

allows us to compute E(M). Let P ∈ E(M) be a matrix of n2 indeterminates zij . From (4.8),

construct the system

∂i(z11, . . . , z1n, . . . , zn1, . . . , znn)τ = Ai(z11, . . . , z1n, . . . , zn1, . . . , znn)τ , i = 1, . . . ,m,

where Ai ∈ Fn2×n2
. A C-basis of all rational solutions of the above system yields a C-

basis {P1, . . . , Pr} of all rational solutions of (4.8). Without loss of generality, we assume

that P1 = 1n. Therefore E(M) = ⊕r
i=1C · Pi. If r=1, then E(M) is trivial and M is

indecomposable by Theorem 4.5.2 (ii). Otherwise, each eigenvalue λ of a nontrivial P∈E(M)
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will produce a submodule {w ∈ M | Pw = λw} of M . If E(M) has a set of nontrivial

idempotents π1, . . . , πs, then a decomposition of M is derived:

M = π1(M)⊕ · · · ⊕ πs(M). (4.9)

If M is furthermore completely reducible, a maximal decomposition of M can be obtained

by applying the eigenring method recursively on the submodules in the decomposition (4.9).

Example 4.5.5 Let F = C(x, k), M be an L-module of dimension two and e1, e2 be a basis

of M given by ∂x(e1, e2)τ = Bx(e1, e2)τ and ∂k(e1, e2)τ = Bk(e1, e2)τ where Bx =
(

1 0

0 0

)
and Bk =

(
1 0

0 k

)
.

We now compute the eigenring of M . Let P ∈ E(M) be a 2×2 matrix with indeterminate

entries z11, z12, z21 and z22. The conditions δx(P ) = BxP − PBx and σk(P )=BkPB
−1
k

induce the system A : {δx(z) = Axz, σk(z) = Akz} where z = (z11, z12, z21, z22)τ ,

Ax =



0 k(−x+x2−kx+2k)
(x−k)(x−1)

x2−kx+3k−2x
x(x−k)k(x−1) 0

−x2−kx+3k−2x
x(x−k)k(x−1) −x3−kx2−2x+3k+kx

x(x−k)(x−1) 0 x2−kx+3k−2x
x(x−k)k(x−1)

−k(−x+x2−kx+2k)
(x−k)(x−1) 0 x3−kx2−2x+3k+kx

x(x−k)(x−1)
k(−x+x2−kx+2k)

(x−k)(x−1)

0 −k(−x+x2−kx+2k)
(x−k)(x−1) −x2−kx+3k−2x

x(x−k)k(x−1) 0


and

Ak =
1
γ



x2−2kx−x+k2

k α −xαβ −x2−2kx−x+k2

k2 β x
kβ

2

1
k(k+1)αβ

1
k+1α

2 − 1
k2(k+1)β

2 − 1
k(k+1)αβ

x(k+1)(x2−2kx−x+k2)
k β −(k + 1)x2β2 (k+1)(x2−2kx−x+k2)2

k2
x(k+1)(2kx+x−x2−k2)

k β

x
kβ

2 xαβ x2−2kx−x+k2

k2 β x2−2kx−x+k2

k α,


,

with α = k+ 1 + kx2− k2x−x, β = k+ 1 + kx− k2−x and γ = (x− k)(x− k− 1)(x− 1)2.

All rational solutions of A are of the form

c1

(
1

x− 1
, − 1

k(x− 1)
,

xk

x− 1
, − x

x− 1

)
+ c2

(
− x

x− 1
,

1
k(x− 1)

, − xk

x− 1
,

1
x− 1

)
,
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for c1, c2 ∈ C. So

E(M) =


 c1−c2x

x−1
c2−c1
k(x−1)

(c1−c2)xk
x−1

c2−c1x
x−1

 , for any c1, c2 ∈ C


= C

 1
x−1 − 1

k(x−1)

kx
x−1 − x

x−1

⊕ C

 − x
x−1

1
k(x−1)

− kx
x−1

1
x−1

 .

Recall that the necessary condition for {P1, . . . , Ps} ⊂ E(M) being a set of orthogonal idem-

potents is that P 2
i = Pi for each i. Substitute

P =

 c1−c2x
x−1

c2−c1
k(x−1)

(c1−c2)xk
x−1

c2−c1x
x−1


into the relation P 2 = P , we obtain three solutions:

P0 = 12, P1 =

 − 1
x−1

1
k(x−1)

− kx
x−1

x
x−1

 , P2 =

 x
x−1 − 1

k(x−1)

kx
x−1 − 1

x−1

 .

Among which, we find P1P2 = 0 and P1 + P2 = 12. So {P1, P2} is a set of nontrivial

orthogonal idempotents of E(M). We have

P1(M) = {P1(w) | w ∈M} = {(a1, a2)P1(e1, e2)τ | a1, a2 ∈ F} = F ·
(
e1 −

1
k
e2

)
and

P2(M) = {P2(w) | w ∈M} = {(a1, a2)P2(e1, e2)τ | a1, a2 ∈ F} = F ·
(
e1 −

1
kx

e2

)
.

Therefore, P1(M)⊕ P2(M) is a decomposition of M into two nontrivial submodules. �

The eigenring method, however, may fail to find any factor of an L-module of finite

dimension even if this module is reducible. This happens when the eigenring of that module

is trivial. The four-dimensional L-module M in Example 4.3.3 is such an example. This M

has a two-dimensional submodule, so is reducible. But M can not be completely reducible,

as it has dimension four but has only one two-dimensional submodule.

More work needs to be done on the eigenring method. For example, how does one find

a set of orthogonal idempotents efficiently and how does one compute the complement of a

known submodule?



Chapter 5

Concluding Remarks

In the thesis we define the modules of formal solutions and Picard-Vessiot extensions for ∂-

finite linear functional systems. These two notions enable us to describe solutions of ∂-finite

systems in an algebraic setting. We anticipate that these two notions can be generalized

to linear functional systems where difference operators are not necessarily automorphisms.

Such a generalization would rely on the notion of reflexive closure of submodules of S1×n,

the N in the proof of Proposition 2.4.6 and Remark 2.4.8.

There is however a challenging problem. Our methods for computing linear dimensions

make essential use of the assumption that the maps σ`+1, . . . , σm are automorphisms. Can

we still compute linear dimensions of systems without this assumption?

Another direction is to investigate the possibility to extend the Galois theory of linear

ordinary differential and difference equations to ∂-finite linear functional systems.

Although the thesis contains a complete algorithm for factoring L-modules with finite

dimension, the algorithm has not yet been fully implemented. We plan to complete a

prototype for the algorithm in Maple soon, and try to improve the practical efficiency. In

particular, we would like to improve the algorithm for computing one-dimensional modules,

and to find a more efficient way to decide the decomposability of an element in an exterior

power of a finite-dimensional L-module. We will also consider how to factor ∂-finite linear

functional systems with more general coefficients.
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Complexity analysis is an important issue in computer algebra. We will try to analyze

the algorithms presented in this thesis. In this direction, the monograph [25] would be a

valuable reference.

All the examples in the thesis contain two operators, each of which acts on only one

variable nontrivially. It would be interesting to see whether we are able to factor a module

for modelling differential-delay equations. In this case, both differential and shift operators

act on one variable. Along this direction, we need to consider how to compute rational and

hyperexponential solutions of a linear differential-delay equation.

It would be interesting to see applications of the factorization algorithm in the handling

of holonomic objects [19, 50], which are usually represented by ∂-finite systems with finitely

many initial values. Holonomic ideals ([56]) are left ideals in Weyl Algebras, in which linear

functional operators have polynomial coefficients. A factorization algorithm for holonomic

ideals is not known and is thus worth investigating.
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solvable type. Journal of Symbolic Computation, 9:1–26, 1990.

[36] I. Kaplansky. An Introduction to Differential Algebra. Hermann, Paris, 1957.

[37] E. R. Kolchin. Algebraic matric groups and the Picard-Vessiot theory of homogeneous

linear ordinary differential equations. Annal. Math., 49:1–42, 1948.

[38] E. R. Kolchin. Differential algebra and algebraic groups. Pure and Applied Math 54,

1973.

[39] G. Labahn and Z. Li. Hyperexponential solutions of finite-rank ideals in orthogonal

Ore algebras. In J. Gutierrz, editor, Proceedings of the 2004 International Symposium

on Symbolic and Algebraic Computation, pages 213–220. ACM Press, 2004.



BIBLIOGRAPHY 99

[40] G. Labahn and Z. Li. Hyperexponential solutions for finite-rank ideals in orthogo-

nal Ore algebras (the general case). Technical report, Mathematics Mechanization

Research Preprints, http://www.mmrc.iss.ac.cn/pub/mm23.pdf/LabahaLi.pdf, De-

cember, 2004.

[41] T. Y. Lam. A First Course in Non-Commutative Rings, Graduate Texts in Mathemat-

ics 131. Springer-Verlag, 1991.

[42] V. Levandovskyy and H. Schönemann. Plural — a computer algebra system for non-

commutative polynomial algebras. In J. R. Sendra, editor, Proceedings of the 2003 In-

ternational Symposium on Symbolic and Algebraic Computation, pages 176–183. ACM

Press, 2003.

[43] Z. Li and F. Schwarz. Rational solutions of Riccati-like partial differential equations.

Journal of Symbolic Computation, 31:691–716, 2001.

[44] Z. Li, F. Schwarz, and S. Tsarev. Factoring zero-dimensional ideals of linear partial

differential operators. In T. Mora, editor, Proceedings of the 2002 International Sym-

posium on Symbolic and Algebraic Computation, pages 168–175. ACM Press, 2002.

[45] Z. Li, F. Schwarz, and S. Tsarev. Factoring systems of linear PDE’s with finite-

dimensional solution spaces. Journal of Symbolic Computation, 36:443–471, 2003.

[46] Z. Li and D. Zheng. Wronskian determinants for hyperexponential elements.

Manuscript, 2005.

[47] B. Malgrange. Motivations and introduction to the theory of D-modules. In

E. Tournier, editor, Computer Algebra and Differential Equations, volume 193 of LMS

Lecture Note Series, pages 3–20. Cambridge University Press, 1994.

[48] M. Marcus. Finite Dimensional Multilinear Algebra, Part II. Marcel Dekker, New

York, 1975.



100 BIBLIOGRAPHY
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