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ABSTRACT

For given multivariate functions specified by algebraic, differ-
ential or difference equations, the separability problem is to
decide whether they satisfy linear differential or difference
equations in one variable. In this paper, we will explain how
separability problems arise naturally in creative telescoping
and present some criteria for testing the separability for
several classes of special functions, including rational func-
tions, hyperexponential functions, hypergeometric terms, and
algebraic functions.
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1 INTRODUCTION

The method of separation of variables has been used widely
in solving differential equations [21]. In order to solve the
one-dimensional heat equation

𝜕𝑦

𝜕𝑡
− 𝑐

𝜕2𝑦

𝜕𝑥2
= 0, where 𝑐 ∈ C,
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together with the boundary conditions 𝑦(𝑡, 0) = 𝑦(𝑡, 𝐿) = 0.
One can try to find a nonzero solution of the form

𝑦 = 𝑢(𝑡)𝑣(𝑥),

and then substitute this form into the equation to get

𝜕𝑢(𝑡)
𝜕𝑡

𝑢
= 𝑐

𝜕2𝑣(𝑥)

𝜕𝑥2

𝑣
.

Since both sides only depend on one variable, there exits
some constant 𝜆 ∈ C such that

𝜕𝑢

𝜕𝑡
− 𝜆𝑢 = 0 and 𝑐

𝜕2𝑣

𝜕𝑥2
− 𝜆𝑣 = 0.

Note that the above two equations are also satisfied by
𝑦 = 𝑢(𝑡)𝑣(𝑥), which are linear differential equation in only
one variable. After solving these special equations with the
boundary conditions into account, a special solution of the
heat equation can be given as

𝑦(𝑡, 𝑥) =

∞∑︁
𝑛=1

𝑑𝑛 sin
(︁𝑛𝜋𝑥

𝐿

)︁
exp

(︂
−𝑛2𝜋2𝑐𝑡

𝐿2

)︂
, (1.1)

where 𝑑𝑛 ∈ C are coefficients determined by the initial condi-
tions. Motivated by this example, one would ask the following
natural question.

Problem 1.1 (Separability Problem). Given a multi-
variate function specified by certain equations (e.g. algebraic,
differential or difference equations), decide whether this func-
tion satisfies linear differential or difference equations in one
variable.

To make the problem more tractable, we will consider
some special classes of functions, such as rational functions,
algebraic functions, hyperexponential functions and hyperge-
ometric terms etc.. The main goal of this paper is to show
the close connection between the separability problem and
Zeilberger’s method of creative telescoping [27, 28].

The remainder of this paper is organized as follows. We
specify the separability problem and the existence problem of
telescopers precisely in Section 2 together with the definition
of orders and (local) dispersions of rational functions. After
this, we explain how the separability problems arise naturally
in creative telescoping for rational functions in Section 3,
hyperexponential functions and hypergeometric terms in Sec-
tion 4, and for algebraic functions in Section 5. Separability
criteria will be given for these classes of special functions.
We then conclude our paper with some comments on the
separability problem on D-finite functions and P-recursive
sequences.
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2 PRELIMINARIES

Let F be a field of characteristic zero and let E = F(𝑡,x)
be the field of rational functions in 𝑡 and x = (𝑥1, . . . , 𝑥𝑚)
over F. Let 𝛿𝑡, 𝛿𝑥𝑖 be the usual partial derivations 𝜕/𝜕𝑡, 𝜕/𝜕𝑥𝑖

with 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑚}, respectively. The shift operators 𝜎𝑡

and 𝜎𝑥𝑖 on E are defined as the F-automorphisms such that
for any 𝑓 ∈ E, 𝜎𝑡(𝑓(𝑡,x)) = 𝑓(𝑡+ 1,x) and

𝜎𝑥𝑖(𝑓(𝑡,x)) = 𝑓(𝑡, 𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 + 1, 𝑥𝑖+1, . . . , 𝑥𝑚).

The ring of linear functional operators in 𝑡 and x over E
is denoted by E⟨𝜕𝑡, 𝜕x⟩, where 𝜕x = (𝜕𝑥1 , . . . , 𝜕𝑥𝑚) and 𝜕𝑣

with 𝑣 ∈ {𝑡,x} is either the derivation 𝐷𝑣 such that 𝐷𝑣𝑓 =
𝑓𝐷𝑣+𝛿𝑣(𝑓) or the shift operator 𝑆𝑣 such that 𝑆𝑣𝑓 = 𝜎𝑣(𝑓)𝑆𝑣

for any 𝑓 ∈ E, and 𝜕𝑡 and 𝜕𝑥𝑖 commute. For 𝑣 ∈ {𝑡,x},
we let ∆𝑣 denote the difference operator 𝑆𝑣 − 1, where 1
stands for the identity map on E. Abusing notation, we
let 𝛿𝑣 and 𝜎𝑣 denote arbitrary extensions of 𝛿𝑣 and 𝜎𝑣 to
derivation and F-automorphism of E, the algebraic closure of
E. The functions we consider will be in certain differential or
difference extension of E, which is also an E⟨𝜕𝑡, 𝜕x⟩-module
via the action defined by simply interpreting 𝐷𝑣, 𝑆𝑣 by 𝛿𝑣, 𝜎𝑣,
respectively, for 𝑣 ∈ {𝑡,x}. The ring F(𝑡)⟨𝜕𝑡⟩ is a subring
of E⟨𝜕𝑡, 𝜕x⟩ that is also a left Euclidean domain. Efficient
algorithms for basic operations in F(𝑡)⟨𝜕𝑡⟩, such as computing
the least common left multiple (LCLM) of operators, have
been developed in [6, 10].

Definition 2.1 (Separable functions). Let M be an
E⟨𝜕𝑡, 𝜕x⟩-module and 𝑓 ∈ M. We say that 𝑓(𝑡,x) is 𝜕𝑡-
separable if there exists a nonzero 𝐿 ∈ F(𝑡)⟨𝜕𝑡⟩ such that
𝐿(𝑓) = 0.

As an example, the special solution (1.1) of the one-
dimensional heat equation is both 𝐷𝑡-separable and 𝐷𝑥-
separable. Note that 𝜕𝑡-separable functions are just the D-
finite functions in the differential case and the P-recursive se-
quences in the shift case, which are both introduced in [26]. By
the closure properties of D-finite functions and P-recursive se-
quences, we have the same closure properties for 𝜕𝑡-separable
functions.

Proposition 2.2. Let M be an E⟨𝜕𝑡, 𝜕x⟩-module. If 𝑓, 𝑔 ∈
M are 𝜕𝑡-separable, so are 𝑓+𝑔, 𝑓 ·𝑔, and 𝑎·𝑓 for all 𝑎 ∈ F(𝑡).

We will focus on the separability problem on function in
an E⟨𝜕𝑡, 𝜕x⟩-module.

Definition 2.3 (Creative telescoping). Let M be
an E⟨𝜕𝑡, 𝜕x⟩-module and 𝑓 ∈ M. A nonzero operator 𝐿 ∈
F(𝑡)⟨𝜕𝑡⟩ is called a telescoper of type (𝜕𝑡, 𝜕x) for 𝑓 if there
exist 𝑄1, . . . , 𝑄𝑚 ∈ E⟨𝜕𝑡, 𝜕x⟩ such that

𝐿(𝑡, 𝜕𝑡)(𝑓) = 𝜕𝑥1(𝑄1(𝑓)) + · · ·+ 𝜕𝑥𝑚(𝑄𝑚(𝑓)), (2.1)

where 𝜕𝑡 ∈ {𝐷𝑡, 𝑆𝑡} and 𝜕𝑥𝑖 ∈ {𝐷𝑥𝑖 ,∆𝑥𝑖}.

The central problem in the Wilf-Zeilberger theory of au-
tomatic proving of special-function identities is related to
the existence and the computation of telescopers for special
functions. In the next sections, we will show that this central
problem on creative telescoping is closely connected to the

separability problem on the corresponding class of special
functions.

Let 𝑉 = (𝑉1, . . . , 𝑉𝑠) be any set partition of the variables
v = {𝑡, 𝑥1, . . . , 𝑥𝑚}. A rational function 𝑓 ∈ F(𝑡,x) is said to
be split with respect to the partition 𝑉 if 𝑓 = 𝑓1 · · · 𝑓𝑠 with
𝑓𝑖 ∈ F(𝑉𝑖) and be semi-split with respect to 𝑉 if there are split
functions 𝑔𝑗 ∈ F(𝑡,x) such that 𝑓 = 𝑔1+· · ·+𝑔𝑛. By definition,
we have 𝑓 = 𝑝/𝑞 with 𝑝, 𝑞 ∈ F[𝑡,x] and gcd(𝑝, 𝑞) = 1 is
semi-split with respect to the partition 𝑉 if and only if
the denominator 𝑞 is a split polynomial with respect to the
partition 𝑉 . Split rational functions will be used to describe
the separability of given functions.

Let K = F(x) and 𝑝 ∈ K[𝑡] be an irreducible polynomial
in 𝑡. For any 𝑓 ∈ K(𝑡), we can write 𝑓 = 𝑝𝑚𝑎/𝑏, where 𝑚 ∈
Z, 𝑎, 𝑏 ∈ K[𝑡] with gcd(𝑎, 𝑏) = 1 and 𝑝 - 𝑎𝑏. Conventionally,
we set 𝜈𝑝(0) = +∞. The integer 𝑚 is called the order of
𝑓 at 𝑝, denoted by 𝜈𝑝(𝑓). We collect some basic properties
of valuations as follows and refer to [9, Chapter 4] for their
proofs.

Proposition 2.4. Let 𝑓, 𝑔 ∈ K(𝑡) and 𝑝 ∈ K[𝑡] be an
irreducible polynomial. Then,

(𝑖) 𝜈𝑝(𝑓𝑔) = 𝜈𝑝(𝑓) + 𝜈𝑝(𝑔).
(𝑖𝑖) 𝜈𝑝(𝑓 + 𝑔) ≥ min{𝜈𝑝(𝑓), 𝜈𝑝(𝑔)} and equality holds if

𝜈𝑝(𝑓) ̸= 𝜈𝑝(𝑔).
(𝑖𝑖𝑖) If 𝜈𝑝(𝑓) ̸= 0, then 𝜈𝑝(𝐷𝑡(𝑓)) = 𝜈𝑝(𝑓)−1. In particular,

for any 𝑖 ∈ N, 𝜈𝑝(𝐷𝑖
𝑡(𝑓)) = 𝜈𝑝(𝑓)− 𝑖 if 𝜈𝑝(𝑓) < 0.

The dispersion introduced by Abramov in [1] can be viewed
as a shift analogue of the order. For any polynomial 𝑢 ∈ K[𝑡]
with deg𝑡(𝑢) ≥ 1, the dispersion of 𝑢, denoted by dis(𝑢),
is defined as max{𝑘 ∈ N | gcd(𝑢, 𝜎𝑘

𝑡 (𝑢)) ̸= 1}, which is the
maximal integer root-distance |𝛼− 𝛽| with 𝛼, 𝛽 being roots
of 𝑢 in 𝐾̄. Define dis(𝑢) = 0 if 𝑢 ∈ 𝐾 ∖ {0} and dis(0) = +∞.
For a rational function 𝑓 = 𝑎/𝑏 ∈ K(𝑡) with 𝑎, 𝑏 ∈ K[𝑡]
and gcd(𝑎, 𝑏) = 1, define dis(𝑓) = dis(𝑏). For later use, we
introduce a local version of Abramov’s dispersion. Let 𝑝 ∈ K[𝑡]
be an irreducible polynomial. If 𝜎𝑖

𝑡(𝑝) | 𝑢 for some 𝑖 ∈ Z, the
local dispersion of 𝑢 at 𝑝, denoted by dis𝑝(𝑢), is defined as
the maximal integer distance |𝑖− 𝑗| with 𝑖, 𝑗 ∈ Z satisfying

𝜎𝑖
𝑡(𝑝) | 𝑢 and 𝜎𝑗

𝑡 (𝑝) | 𝑢; otherwise we define dis𝑝(𝑢) = 0.
Conventionally, we set dis𝑝(0) = +∞. For a rational function
𝑓 = 𝑎/𝑏 ∈ K(𝑡) with 𝑎, 𝑏 ∈ K[𝑡] and gcd(𝑎, 𝑏) = 1, we also
define dis𝑝(𝑓) = dis𝑝(𝑏). By definition, we have

dis(𝑢) = max{dis𝑝(𝑢) | 𝑝 is an irreducible factor of 𝑢}.

The set {𝜎𝑖
𝑡(𝑝) | 𝑖 ∈ Z} is called the 𝜎𝑡-orbit at 𝑝, denoted

by [𝑝]𝜎𝑡 . Note that dis𝑝(𝑢) = dis𝑞(𝑢) if 𝑞 ∈ [𝑝]𝜎𝑡 . So we
can define the local dispersion of a rational function 𝑓 at a
𝜎𝑡-orbit at 𝑝, denoted by dis[𝑝]𝜎𝑡

(𝑓).

Example 2.5. Let 𝑢 = 𝑥(𝑥+ 1)(𝑥− 5)(𝑥2 + 1)(𝑥2 + 4𝑥+
5) ∈ Q[𝑥]. Then we have dis𝑥(𝑢) = 6 and dis𝑥2+1(𝑢) = 2.
Abramov’s dispersion of 𝑢 is then equal to 6.

We now shows how the local dispersions change under the
action of linear recurrence operators, which was first proved
for Abramov’s dispersions in [1, 2] and [23, Section 3.1].
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Lemma 2.6. Let 𝑓 = 𝑎/𝑏 ∈ K(𝑡) with 𝑎, 𝑏 ∈ K[𝑡] and
gcd(𝑎, 𝑏) = 1 and let 𝑝 ∈ K[𝑡] be an irreducible factor of
𝑏. Let 𝐿 =

∑︀𝜌
𝑖=0 ℓ𝑖𝑆

𝑖
𝑡 ∈ K[𝑡]⟨𝑆𝑡⟩ be such that ℓ𝜌ℓ0 ̸= 0 and

𝜎𝑖
𝑡(𝑝) does not divide ℓ𝜌ℓ0 for any 𝑖 ∈ Z. Then dis𝑝(𝐿(𝑓)) =

dis𝑝(𝑓) + 𝜌. In particular, dis𝑝(∆𝑡(𝑓)) = dis𝑝(𝑓) + 1.

Proof. Let 𝑑 = dis𝑝(𝑏). Without loss of generality, we
may assume that 𝑝 | 𝑏 but 𝜎𝑖

𝑡(𝑝) - 𝑏 for any 𝑖 < 0. Since
gcd(𝑎, 𝑏) = 1 and 𝜎𝑡 is a K-automorphism of K[𝑡], we have
gcd(𝜎𝑖

𝑡(𝑎), 𝜎
𝑖
𝑡(𝑏)) = 1 for any 𝑖 ∈ Z. Applying 𝐿 to 𝑓 yields

𝐿(𝑓) =

𝜌∑︁
𝑖=0

ℓ𝑖𝜎
𝑖
𝑡

(︁𝑎
𝑏

)︁
=

∑︀𝜌
𝑖=0 ℓ𝑖𝜎

𝑖
𝑡(𝑎)𝑢𝑖

𝑢
,

where 𝑢 = 𝑏𝜎𝑡(𝑏) · · ·𝜎𝜌
𝑡 (𝑏) and 𝑢𝑖 = 𝑢/𝜎𝑖

𝑡(𝑏). Write 𝐿(𝑓) =
𝐴/𝐵 with 𝐴,𝐵 ∈ K[𝑡] and gcd(𝐴,𝐵) = 1. Then 𝐵 | 𝑢 and
dis𝑝(𝐿(𝑓)) = dis𝑝(𝐵) by definition. Since 𝜎𝑖

𝑡(𝑝) - ℓ0 and

𝜎𝑖
𝑡(𝑝) - ℓ𝜌 for any 𝑖 ∈ Z, we have both 𝑝 and 𝜎𝑑+𝜌

𝑡 (𝑝) do
not divide the sum

∑︀𝜌
𝑖=0 ℓ𝑖𝜎

𝑖
𝑡(𝑎)𝑢𝑖, but they divide 𝑢. So

𝑝 | 𝐵 and 𝜎𝑑+𝜌
𝑡 (𝑝) | 𝐵, which implies that dis𝑝(𝐵) ≥ 𝑑+ 𝜌.

Since 𝐵 | 𝑢, we have dis𝑝(𝐵) ≤ dis𝑝(𝑢) = 𝑑+ 𝜌. Therefore,
dis𝑝(𝐿(𝑓)) = 𝑑+ 𝜌.

3 THE RATIONAL CASE

We first explain how the existence problem of telescopers for
rational functions is naturally connected to the separability
problem on this class of functions. Let 𝑓(𝑡, 𝑥) be a bivariate
rational function in F(𝑡, 𝑥). By the Ostrogradsky-Hermite
reduction [18, 22], we can decompose 𝑓 into the form

𝑓 = 𝐷𝑥(𝑔) +
𝑎

𝑏
,

where 𝑔 ∈ F(𝑡, 𝑥) and 𝑎, 𝑏 ∈ F(𝑡)[𝑥] with gcd(𝑎, 𝑏) = 1,
deg𝑥(𝑎) < deg𝑥(𝑏) and 𝑏 being squarefree in 𝑥 over F(𝑡).
Moreover, 𝑓 = 𝐷𝑥(ℎ) for some ℎ ∈ F(𝑡, 𝑥) if and only if 𝑎 = 0.
Then 𝑓 has a telescoper of type (𝑆𝑡, 𝐷𝑥) if and only if 𝑎/𝑏
does. Applying a nonzero operator 𝐿 =

∑︀𝜌
𝑖=0 ℓ𝑖𝑆

𝑖
𝑡 ∈ F(𝑡)⟨𝑆𝑡⟩

to 𝑎/𝑏 yields

𝐿
(︁𝑎
𝑏

)︁
=

𝜌∑︁
𝑖=0

ℓ𝑖(𝑡)𝜎
𝑖
𝑡

(︁𝑎
𝑏

)︁
=

𝜌∑︁
𝑖=0

ℓ𝑖(𝑡)𝑎(𝑡+ 𝑖, 𝑥)

𝑏(𝑡+ 𝑖, 𝑥)
=

𝑝

𝑞
,

where 𝑝, 𝑞 ∈ F[𝑡, 𝑥] with gcd(𝑝, 𝑞) = 1. Since the shift operator
𝑆𝑡 is an F(𝑥)-automorphism and preserves the degrees in 𝑡
and 𝑥, we have 𝑏(𝑡+ 𝑖, 𝑥) is squarefree in 𝑥 over F(𝑡) for any
𝑖 ∈ N and deg𝑥(𝑎(𝑡+ 𝑖, 𝑥)) < deg𝑥(𝑏(𝑡+ 𝑖, 𝑥)). So deg𝑥(𝑝) <
deg𝑥(𝑞) and 𝑞 is also squarefree in 𝑥 over F(𝑡). This implies
the operator 𝐿 is a telescoper of type (𝑆𝑡, 𝐷𝑥) for 𝑎/𝑏, i.e.,
𝐿(𝑎/𝑏) = 𝐷𝑥(𝑔) for some 𝑔 ∈ F(𝑡, 𝑥) if and only if 𝑝 = 0, i.e.,
𝐿(𝑎/𝑏) = 0. Therefore, we conclude that 𝑓 has a telescoper
of type (𝑆𝑡, 𝐷𝑥) if and only 𝑎/𝑏 is 𝑆𝑡-separable.

We can also consider telescopers of type (𝐷𝑡, 𝑆𝑥). By
Abramov’s reduction [3, 4], we can decompose 𝑓 ∈ F(𝑡, 𝑥)
into the form

𝑓 = ∆𝑥(𝑔) +
𝑎

𝑏
,

where 𝑔 ∈ F(𝑡, 𝑥) and 𝑎, 𝑏 ∈ F(𝑡)[𝑥] with gcd(𝑎, 𝑏) = 1,
deg𝑥(𝑎) < deg𝑥(𝑏) and 𝑏 being shift-free in 𝑥 over F(𝑡), i.e.,

gcd(𝑏, 𝜎𝑖
𝑥(𝑏)) = 1 for all nonzero 𝑖 ∈ Z. Applying a nonzero

operator 𝐿 =
∑︀𝜌

𝑖=0 ℓ𝑖(𝑡)𝐷
𝑖
𝑡 ∈ F(𝑡)⟨𝐷𝑡⟩ to 𝑎/𝑏 yields

𝐿
(︁𝑎
𝑏

)︁
=

𝜌∑︁
𝑖=0

ℓ𝑖𝛿
𝑖
𝑡

(︁𝑎
𝑏

)︁
=

𝜌∑︁
𝑖=0

ℓ𝑖(𝑡)𝑎𝑖

𝑏𝑖+1
=

𝑝

𝑞
,

where 𝑎𝑖, 𝑝, 𝑞 ∈ F[𝑡, 𝑥] with deg𝑥(𝑎𝑖) < (𝑖 + 1) deg𝑥(𝑏) and
gcd(𝑝, 𝑞) = 1. Since 𝑏 is shift-free in 𝑥, so is 𝑏𝑖 for any 𝑖 ∈ N.
Note that any factor of a shift-free polynomial is still shift-
free. So 𝑞 is shift-free and deg𝑥(𝑝) < deg𝑥(𝑞). This implies
the operator 𝐿 is a telescoper of type (𝐷𝑡, 𝑆𝑥) for 𝑎/𝑏, i.e.,
𝐿(𝑎/𝑏) = ∆𝑥(𝑔) for some 𝑔 ∈ F(𝑡, 𝑥) if and only if 𝑝 = 0, i.e.,
𝐿(𝑎/𝑏) = 0. Then we also have that 𝑓 has a telescoper of
type (𝐷𝑡, 𝑆𝑥) if and only 𝑎/𝑏 is 𝐷𝑡-separable.

The next theorem characterizes all possible separable ra-
tional functions in terms of semi-split rational functions.

Theorem 3.1. A rational function 𝑓 ∈ F(𝑡,x) is 𝜕𝑡-
separable if and only if 𝑓 is semi-split in 𝑡 and x.

Proof. Assume that 𝑓 is semi-split in 𝑡 and x. Then
𝑓 = 𝑎1𝑏1 + · · ·+ 𝑎𝑛𝑏𝑛, where 𝑎𝑖 ∈ F(𝑡) and 𝑏𝑖 ∈ F(x) for all 𝑖
with 1 ≤ 𝑖 ≤ 𝑛. Since each 𝑎𝑖𝑏𝑖 is annihilated by the operator
𝐿𝑖 := 𝜕𝑡 − 𝜕𝑡(𝑎𝑖)/𝑎𝑖 ∈ F(𝑡)⟨𝜕𝑡⟩, the rational function 𝑓 is
annihilated by LCLM(𝐿1, . . . , 𝐿𝑛). So 𝑓 is 𝜕𝑡-separable.

For the necessity we assume that 𝑓 = 𝑎/𝑏 with 𝑎, 𝑏 ∈
F[𝑡,x] and gcd(𝑎, 𝑏) = 1 is 𝜕𝑡-separable, i.e., there exists
a nonzero operator 𝐿 =

∑︀𝜌
𝑖=0 ℓ𝑖𝜕

𝑖
𝑡 ∈ F(𝑡)⟨𝜕𝑡⟩ with ℓ𝜌 ̸= 0

such that 𝐿(𝑓) = 0. It suffices to show that the denominator
𝑏 is split with respect to 𝑡 and x. Suppose for the sake of
contradiction that 𝑏 is not split. Then 𝑏 has at least one
irreducible factor 𝑝 such that 𝑝 is not split. Now we proceed
by a case distinction according to the type of 𝜕𝑡. In the case
when 𝜕𝑡 = 𝐷𝑡, we have 𝜈𝑝(ℓ𝑖𝐷

𝑖
𝑡(𝑓)) = 𝜈𝑝(𝑓) − 𝑖 for each 𝑖

with ℓ𝑖 ≠ 0, since 𝜈𝑝(𝑓) < 0 and 𝜈𝑝(ℓ𝑖) = 0, which implies
further that 𝜈𝑝(𝐿(𝑓)) = 𝜈𝑝(𝑓) − 𝜌 by Proposition 2.4. But
𝜈𝑝(𝐿(𝑓)) = 𝜈𝑝(0) = +∞, which leads to an contradiction. In
the case when 𝜕𝑡 = 𝑆𝑡, we may always assume that ℓ𝑖 ∈ F[𝑡]
and ℓ0 ̸= 0 since 𝜎𝑡 is an F(x)-automorphism of F(𝑡,x). Since
ℓ0 and ℓ𝜌 are free of 𝑥, we have 𝜎𝑖

𝑡(𝑝) - ℓ0ℓ𝜌 for any 𝑖 ∈ Z.
By Lemma 2.6, we get dis𝑝(𝐿(𝑓)) = dis𝑝(𝑓) + 𝜌 < ∞, which
contradicts with dis𝑝(𝐿(𝑓)) = dis𝑝(0) = +∞.

Remark 3.2. With the above theorem, we can detect easily
the 𝜕𝑡-separability of rational functions by the computation
of contents and derivatives of multivariate polynomials in 𝑡.

4 THE HYPEREXPONENTIAL AND
HYPERGEOMETRIC CASES

The separability problem on hyperexponential functions and
hypergeometric terms was first studied in [19], which was
later connected to the existence of parallel telescopers for
hyperexponential functions [13]. We motivate this problem by
revisiting Zeilberger’s algorithm which computes telescopers
for hypergeometric terms (see [24, Chapter 6]).

Let 𝐻(𝑡, 𝑥) be a nonzero hypergeometric term over F(𝑡, 𝑥),
i.e., both 𝜎𝑡(𝐻)/𝐻 and 𝜎𝑥(𝐻)/𝐻 are in F(𝑡, 𝑥). If telescopers
of type (𝑆𝑡, 𝑆𝑥) exist for 𝐻, Zeilberger’s algorithm starts from
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an ansatz: for fixed 𝜌 ∈ N, set 𝐿 =
∑︀𝜌

𝑖=0 ℓ𝑖𝑆
𝑖
𝑡 ∈ F(𝑡)⟨𝑆𝑡⟩ with

the ℓ𝑖’s being undetermined coefficients. Applying 𝐿 to 𝐻
yields

𝑇 := 𝐿(𝐻) =

𝜌∑︁
𝑖=0

ℓ𝑖𝜎
𝑖
𝑡(𝐻) =

𝜌∑︁
𝑖=0

ℓ𝑖𝑎𝑖𝐻 =

∑︀𝜌
𝑖=0 ℓ𝑖𝑃𝑖

𝑄
𝐻,

where 𝑎𝑖 = 𝜎𝑖
𝑡(𝐻)/𝐻 = 𝑃𝑖/𝑄 ∈ F(𝑡, 𝑥) with 𝑃𝑖, 𝑄 ∈ F[𝑡, 𝑥].

The second step of Zeilberger’s algorithm is computing the
Gosper form of 𝐿(𝐻) that gives

𝜎𝑥(𝐿(𝐻))

𝐿(𝐻)
=

𝜎𝑥

(︀∑︀𝜌
𝑖=0 ℓ𝑖𝑃𝑖

)︀∑︀𝜌
𝑖=0 ℓ𝑖𝑃𝑖

𝜎𝑥(𝑝)

𝑝

𝑞

𝑟
,

where (𝑝, 𝑞, 𝑟) ∈ F(𝑡)[𝑥]3 is a Gosper form of the rational
function 𝑄𝜎𝑥(𝐻)/(𝜎𝑥(𝑄)𝐻) satisfying that gcd(𝑞, 𝜎𝑖

𝑥(𝑟)) = 1
for all 𝑖 ∈ Z. The last step is finding ℓ0, . . . , ℓ𝜌 ∈ F(𝑡), not all
zero, such that the equation(︃

𝜌∑︁
𝑖=0

ℓ𝑖𝑃𝑖

)︃
𝑝 = 𝑞𝜎𝑥(𝑧)− 𝜎−1

𝑥 (𝑟)𝑧.

has a polynomial solution in F(𝑡)[𝑥]. If so, then 𝐿 =
∑︀𝜌

𝑖=0 ℓ𝑖𝑆
𝑖
𝑡

is a telescoper for 𝐻. It may happen that the final choice
of the ℓ𝑖’s satisfies that

∑︀𝜌
𝑖=0 ℓ𝑖𝑃𝑖 = 0. This means division

by zero may happen in the second step. To avoid this, we
should first detect whether 𝐿(𝐻) = 0 for some 𝐿 ∈ F(𝑡)⟨𝑆𝑡⟩,
i.e., the separability problem on hypergeometric terms.

The following theorem characterizes all possible separable
hyperexponential functions and hypergeometric terms, whose
proof was given in [19, Lemma 4] or in [13, Proposition 10].

Theorem 4.1. Let M be an E⟨𝜕𝑡, 𝜕x⟩-module and let 𝐻 ∈
M be such that

𝜕𝑡(𝐻) = 𝑎𝐻 and 𝜕𝑥𝑖(𝐻) = 𝑏𝑖𝐻 with 𝑎, 𝑏𝑖 ∈ F(𝑡,x).

Then we have,

(𝑖) Hyperexponential case: 𝐻 is 𝐷𝑡-separable if and only
if there exist 𝑝 ∈ F(x)[𝑡] and 𝑟 ∈ F(𝑡) such that

𝑎 =
𝛿𝑡(𝑝)

𝑝
+ 𝑟.

(𝑖𝑖) Hypergeometric case: 𝐻 is 𝑆𝑡-separable if and only if
there exist 𝑝 ∈ F(x)[𝑡] and 𝑟 ∈ F(𝑡) such that

𝑎 =
𝜎𝑡(𝑝)

𝑝
· 𝑟.

Remark 4.2. The above form for 𝜕𝑡(𝐻)/𝐻 can be de-
tected by algorithms for computing the Gosper form and its
differential analogue in [7, 17].

5 THE ALGEBRAIC CASE

In this section, we solve the separability problem on algebra-
ic functions. We first explain the connection between this
problem and the following existence problem of telescopers
for rational functions in three variables.

Problem 5.1. Given 𝑓 ∈ F(𝑡, 𝑥, 𝑦), decide whether there
exists a nonzero operator 𝐿 ∈ F(𝑡)⟨𝐷𝑡⟩ such that 𝐿(𝑓) =
∆𝑥(𝑔) +𝐷𝑦(ℎ) for some 𝑔, ℎ ∈ F(𝑡, 𝑥, 𝑦).

By applying the Ostrogradsky-Hermite reduction in 𝑦 and
Abramov’s reduction in 𝑥 to 𝑓 ∈ F(𝑡, 𝑥, 𝑦), we get

𝑓 = ∆𝑥(𝑢) +𝐷𝑦(𝑣) + 𝑟 with 𝑟 =

𝐼∑︁
𝑖=1

𝛼𝑖

𝑦 − 𝛽𝑖

where 𝑢, 𝑣, 𝑟 ∈ F(𝑡, 𝑥, 𝑦), 𝛼𝑖, 𝛽𝑖 ∈ F(𝑡, 𝑥) and 𝛽𝑖’s are in dis-
tinct 𝜎𝑥-orbits. Then 𝑓 has a telescoper of type (𝐷𝑡, 𝑆𝑥, 𝐷𝑦)
if and only if 𝑟 does. By Theorem 4.21 in [12] or Theorem
4.43 in [11], we have 𝑟 has a telescoper of type (𝐷𝑡, 𝑆𝑥, 𝐷𝑦) if
and only if for each 𝑖 with 1 ≤ 𝑖 ≤ 𝐼, either 𝛼𝑖 is 𝐷𝑡-separable

in F(𝑡, 𝑥) or 𝛽𝑖 ∈ F(𝑡) and 𝛼𝑖 ∈ F(𝑡, 𝑥)(𝛽𝑖) has a telescoper of
type (𝐷𝑡, 𝑆𝑥). The existence problem of telescopers of type

(𝐷𝑡, 𝑆𝑥) in F(𝑡, 𝑥)(𝛽) with 𝛽 ∈ F(𝑡) has been solved in [15].
To completely solve Problem 5.1, it remains to solve the
following separability problem.

Problem 5.2. Given an algebraic function 𝑓(𝑡,x) over
F(𝑡,x), decide whether 𝑓(𝑡,x) is 𝐷𝑡-separable.

We assume that F is an algebraically closed and computable
subfield of C in the remaining part of this section.

5.1 A descent theorem

We first recall some basic notions and results from the theory
of algebraic functions of one variable [16]. Let 𝑘 be a field
of characteristic zero and 𝑘(𝑥, 𝑦) be an algebraic function
field of one variable over 𝑘, i.e., the transcendence degree of
𝑘(𝑥, 𝑦) over 𝑘 is one. This means there exists a polynomial
𝑓 ∈ 𝑘[𝑋,𝑌 ] such that 𝑓(𝑥, 𝑦) = 0. The field of constants of
𝑘(𝑥, 𝑦) is defined as the set of elements of 𝑘(𝑥, 𝑦) which are
algebraic over 𝑘. A subring 𝑅 of 𝑘(𝑥, 𝑦) is called a valuation
ring if 𝑘 ⊂ 𝑅 $ 𝑘(𝑥, 𝑦) and for any 𝑥 ∈ 𝑘(𝑥, 𝑦), either 𝑥 ∈ 𝑅

or 𝑥−1 ∈ 𝑅. Any valuation ring 𝑅 of 𝑘(𝑥, 𝑦) is a local ring,
whose unique maximal ideal p is called a place of 𝑘(𝑥, 𝑦) and
the quotient field 𝑅/p is called the residue field of the place
p, denoted by Σp.

Lemma 5.3. Let 𝑘(𝑥, 𝑦) and 𝑓 ∈ 𝑘[𝑋,𝑌 ] be as above. As-

sume that (𝑥̄, 𝑦) ∈ 𝑘2 satisfies that 𝑓(𝑥̄, 𝑦) = 0 and 𝜕𝑓
𝜕𝑌

(𝑥̄, 𝑦) ̸=
0. Then there is a unique place p of 𝑘(𝑥, 𝑦) containing 𝑥− 𝑥̄
and 𝑦−𝑦. Furthermore, the residue field Σp of p is isomorphic
to 𝑘 and 𝑘 is the field of constants of 𝑘(𝑥, 𝑦).

Proof. By Corollary 2 of [16, page 8], there is a place
of 𝑘(𝑥, 𝑦) containing 𝑥 − 𝑥̄ and 𝑦 − 𝑦, say p. Let a be the
discrete valuation ring (DVR) with respect to p. It is easy
to see that the ring 𝑘[𝑥, 𝑦] is contained in a. Let m be the
ideal in 𝑘[𝑥, 𝑦] generated by 𝑥 − 𝑥̄ and 𝑦 − 𝑦. Then m is a
maximal ideal. Denote by 𝑅 the localization of 𝑘[𝑥, 𝑦] at m
and we still use m to denote the unique maximal ideal of 𝑅.
Rewriting 𝑓(𝑋,𝑌 ) as a polynomial in 𝑋 − 𝑥̄, 𝑌 − 𝑦 yields
that (︂

𝜕𝑓

𝜕𝑌
(𝑥̄, 𝑦) + (𝑌 − 𝑦)𝐴

)︂
(𝑌 − 𝑦) + (𝑋 − 𝑥̄)𝐵

for some 𝐴,𝐵 ∈ 𝑘[𝑋 − 𝑥̄, 𝑌 − 𝑦]. Since 𝜕𝑓
𝜕𝑌

(𝑥̄, 𝑦) ̸= 0, one has

that 𝜕𝑓
𝜕𝑌

(𝑥̄, 𝑦) + (𝑦 − 𝑦)𝐴(𝑥− 𝑥̄, 𝑦 − 𝑦) is invertible in 𝑅 and
so 𝑦 − 𝑦 ∈ (𝑥− 𝑥̄)𝑅. It implies that 𝑅 is a regular local ring,
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i.e., a DVR. Therefore 𝑅 = a, since 𝑅 ⊂ a. This concludes
that p is unique.

We have that Σp = 𝑅/m = 𝑘[𝑥, 𝑦]/m ∼= 𝑘. Since the field
of constants of 𝑘(𝑥, 𝑦) is a subfield of Σp under the natural
homomorphism, it coincides with 𝑘.

Remark 5.4. Let 𝑘(𝑥, 𝑦) and (𝑥̄, 𝑦) be as in Lemma 5.3.
The above proof implies that 𝑘(𝑥, 𝑦) can be embedded into the
field of formal Laurent series 𝑘((𝑥− 𝑥̄)).

Theorem 5.5. Let F ⊆ 𝑘 ⊆ C be fields with F being
algebraically closed. Let 𝑓(𝑡, 𝑌 ) be an irreducible polynomial in
𝑘[𝑡, 𝑌 ]. Let 𝑘(𝑡, 𝑦) be the quotient field of 𝑘[𝑡, 𝑌 ]/⟨𝑓⟩. Assume
that

(1) the places of 𝑘(𝑡) that ramify in 𝑘(𝑡, 𝑦) are defined over
F, i.e., their uniformizing parameters can be chosen to
be 1/𝑡 or 𝑡− 𝑐 with 𝑐 ∈ F.

(2) there exists a solution (𝑎, 𝛼) of the system

𝑓(𝑎, 𝛼) = 0,

𝜕𝑓

𝜕𝑌
(𝑎, 𝛼) ̸= 0,

where 𝑎 ∈ F and 𝛼 ∈ 𝑘.

Then there exists 𝛽 ∈ F(𝑡) such that 𝑘(𝑡, 𝑦) = 𝑘(𝑡, 𝛽).

Proof. Since (𝑎, 𝛼) is a simple point of 𝑓(𝑡, 𝑌 ) = 0 in 𝑘2,
by [25], 𝑓(𝑡, 𝑌 ) is absolutely irreducible over 𝑘. This implies
that 𝑓 is irreducible over C, i.e., C[𝑡, 𝑌 ]/⟨𝑓⟩ is an integral
domain. Let C(𝑡, 𝑦) be the quotient field of C[𝑡, 𝑌 ]/⟨𝑓⟩. Then
𝑘(𝑡, 𝑦) can be considered as a subfield of C(𝑡, 𝑦) under the
natural homomorphism. From Theorem 3 in [16, page 92],
none of places of C(𝑡, 𝑦) is ramified with respect to 𝑘(𝑡, 𝑦).
Therefore the condition 1 holds for C(𝑡, 𝑦). Proposition 2.1

in [20, page 10] states that there is 𝛽 ∈ F(𝑡) such that
C(𝑡, 𝑦) = C(𝑡, 𝛽). Now there are 𝑔0(𝑡), · · · , 𝑔𝑛−1(𝑡) ∈ C(𝑡)
such that

𝛽 =

𝑛−1∑︁
𝑖=0

𝑔𝑖(𝑡)𝑦
𝑖, (5.1)

where 𝑛 = [C(𝑡, 𝑦) : C(𝑡)]. For each 𝑖, let 𝑔𝑖 = 𝑞𝑖/𝑞 with
𝑞𝑖, 𝑞 ∈ C[𝑡] and let 𝑠 = max𝑖{deg𝑡 𝑞𝑖,deg𝑡 𝑞}. Equation (5.1)

implies that 𝑞𝛽 =
∑︀𝑛−1

𝑖=0 𝑞𝑖𝑦
𝑖 and therefore the set{︁

𝑡𝑗𝛽, 𝑡𝑗𝑦𝑖
}︁

𝑗=0,...𝑠,𝑖=0,...𝑛−1

is linearly dependent over C. This set lies in 𝑘(𝑡, 𝑦, 𝛽) and,
since it is linearly dependent over 𝐷𝑡-constants in a larger
differential field, it is linearly dependent over 𝐷𝑡-constants in
𝑘(𝑡, 𝑦, 𝛽). Denote by 𝑘 the set of 𝐷𝑡-constants of 𝑘(𝑡, 𝑦, 𝛽). If

𝑘 = 𝑘, then 𝛽 ∈ 𝑘(𝑡, 𝑦), which will conclude the proposition.

Therefore it suffices to prove that 𝑘 = 𝑘. It is easy to verify
that 𝑘 coincides with the field of constants of 𝑘(𝑡, 𝑦, 𝛽). In the
following, we will show that the field of constants of 𝑘(𝑡, 𝑦, 𝛽)
is equal to 𝑘.

From Remark 5.4, 𝑘(𝑡, 𝑦) and C(𝑡, 𝑦) can be embedded
into 𝑘((𝑡− 𝑎)) and C((𝑡− 𝑎)) respectively. We will consider
them as the subfields of 𝑘((𝑡−𝑎)) and C((𝑡−𝑎)) respectively.

Since 𝛽 ∈ C(𝑡, 𝑦) ∩ F(𝑡), F is algebraically closed and 𝑎 ∈ F,
𝛽 ∈ F((𝑡 − 𝑎)). Therefore, 𝑘(𝑡, 𝑦, 𝛽) ⊆ 𝑘((𝑡 − 𝑎)). Since 𝑘 is

algebraically closed in 𝑘((𝑡 − 𝑎)), the field of constants of
𝑘(𝑡, 𝑦, 𝛽) is equal to 𝑘. This completes the proof.

5.2 Separability criteria

Let 𝑃 =
∑︀𝑛

𝑖=0 𝐴𝑖𝑌
𝑖 ∈ F(𝑡,x)[𝑌 ] be the minimal polynomial

of 𝑦 ∈ F(𝑡,x). We can always pick (𝑎, 𝛼) ∈ F × F(x) such
that

𝐴𝑛(x, 𝑎) ̸= 0, 𝑃 (x, 𝑎, 𝛼) = 0 and
𝜕𝑃

𝜕𝑌
(x, 𝑎, 𝛼) ̸= 0. (5.2)

Let 𝐾 = F(x, 𝛼) and ℓ = [𝐾(𝑡, 𝑦) : 𝐾(𝑡)]. Asume that

𝑧 ∈ F(𝑡,x) also satisfies the equation 𝑃 (𝑧) = 0. Then 𝑧 and
𝑦 are conjugated over F(𝑡,x). By Theorem 3.2.4 in [9], any
field automorphism of the splitting field of 𝑃 commutes with
the derivation 𝐷𝑡. So for any 𝐿 ∈ F(𝑡)⟨𝐷𝑡⟩, 𝐿(𝑧) = 0 if
and only if 𝐿(𝑦) = 0. Thus to detect if there is a nonzero
𝐿 ∈ F(𝑡)⟨𝐷𝑡⟩ such that 𝐿(𝑦) = 0, it suffices to detect if
there exists such operator for 𝑧. In the following, we will
characterize all possible 𝐷𝑡-separable algebraic functions.

Assume that 𝑦 is 𝐷𝑡-separable, i.e., there exists a nonzero
𝐿 ∈ F(𝑡)⟨𝐷𝑡⟩ such that 𝐿(𝑦) = 0. Let p be a place of 𝐾(𝑡)
and q a place of 𝐾(𝑡, 𝑦) that is ramified with respect to p.
Suppose that 𝑝 and 𝑞 are uniformizing parameters of p and
q respectively, and 𝑒 is the corresponding ramification index.
Then 𝑝 = 𝑎𝑞𝑒 for some invertible 𝑎 in the DVR with respect
to q. Furthermore assume that 𝑝 is an irreducible polynomial
in 𝐾[𝑡]. Let ℘ be a place of C(𝑡, 𝑦) lying above q. Then by
Theorem 3 in [16, page 92]), ℘ is not ramified with respect to
q and so 𝑞 is a uniformizing parameter of ℘. Since 𝑝 ∈ ℘, the
uniformizing parameter of ℘∩C(𝑡) can be selected as a factor
of 𝑝, say 𝑡− 𝑐 for some 𝑐 ∈ C. It is easy to see that 𝑝/(𝑡− 𝑐)
is an invertible element in the DVR with respect to ℘. It
implies that 𝑡 − 𝑐 = 𝑎̄𝑞𝑒 for some invertible element 𝑎̄ and
thus 𝐾(𝑡, 𝑦) can be embedded into C((𝑡− 𝑐)1/𝑒). Therefore

𝑦 ∈ C((𝑡−𝑐)1/𝑒)) and 𝑐 is a singular point of 𝐿. Note that the
singular points of 𝐿 lie in the algebraically closed field F. So
𝑐 ∈ F and then 𝑝 = 𝑏(𝑡− 𝑐) for some 𝑏 ∈ 𝐾. In other words,
𝑡− 𝑐 is a uniformizing parameter of p. Hence 𝐾(𝑡, 𝑦) satisfies
the condition 1 of Theorem 5.5. By Theorem 5.5, there is

𝛽 ∈ F(𝑡) such that 𝐾(𝑡, 𝑦) = 𝐾(𝑡, 𝛽). We now characterize
separable algebraic functions as follows.

Proposition 5.6. Let 𝑃 =
∑︀𝑛

𝑖=0 𝐴𝑖𝑌
𝑖 ∈ F[𝑡,x][𝑌 ] with

𝐴𝑛 ̸= 0 be the minimal polynomial of 𝑦 ∈ F(𝑡,x). Let 𝐾 =

F(x)(𝛼) with 𝛼 ∈ F(x) be as in (5.2) and 𝛽 ∈ 𝑘(𝑡) be such
that 𝐾(𝑡, 𝑦) = 𝐾(𝑡, 𝛽). If 𝑦 is 𝐷𝑡-separable, then

(1) 𝐴𝑛(x, 𝑡) is split, i.e., 𝐴𝑛(x, 𝑡) = 𝑎(x)𝑏(𝑡), where 𝑎(x) ∈
F[x], 𝑏(𝑡) ∈ F[𝑡], and

(2)

𝑦 =
1

𝑏(𝑡)𝑞(𝑡)

ℓ−1∑︁
𝑖=0

𝑎𝑖(𝑡)𝛽
𝑖, (5.3)

where ℓ = [𝐾(𝑡, 𝑦) : 𝐾(𝑡)], 𝑎𝑖(𝑡) ∈ 𝐾[𝑡] and 𝑞(𝑡) is the
discriminant of the base {1, 𝛽, · · · , 𝛽ℓ−1}.

Proof. Let 𝑟𝑖 = 𝐴𝑖/𝐴𝑛 = 𝑝𝑖/𝑞𝑖 ∈ F(𝑡,x) with 0 ≤ 𝑖 ≤ 𝑛,
𝑝𝑖, 𝑞𝑖 ∈ F[𝑡,x] and gcd(𝑝𝑖, 𝑞𝑖) = 1. Since 𝑦 is 𝐷𝑡-separable, so
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are all of the conjugate roots of 𝑃 (𝑌 ) = 0. By Vieta’s formu-
las, the 𝑟𝑖’s are polynomials of these roots, which therefore
are also 𝐷𝑡-separable by Proposition 2.2. By Theorem 3.1,
𝑞𝑖 is split for all 𝑖 with 0 ≤ 𝑖 ≤ 𝑛. Since 𝐴𝑛 is the LCM of
the 𝑞𝑖’s, we have 𝐴𝑛(x, 𝑡) is also split.

Let 𝑆 be the integral closure of 𝐾[𝑡] in 𝐾(𝑡, 𝑦). Then
𝛽,𝐴𝑛(x, 𝑡)𝑦 ∈ 𝑆. Since {1, 𝛽, · · · , 𝛽ℓ−1} is a base of 𝐾(𝑡, 𝑦)
over 𝐾(𝑡), one has that

𝐴𝑛(x, 𝑡)𝑦 =
1

𝑞(𝑡)

ℓ−1∑︁
𝑖=0

𝑔𝑖(𝑡)𝛽
𝑖,

where 𝑔𝑖(𝑡) ∈ 𝐾[𝑡]. Setting 𝑎𝑖(𝑡) = 𝑔𝑖(𝑡)/𝑎(x), we obtain the
required expression for 𝑦.

Recall that 𝐾 = F(x, 𝛼) and ℓ = [𝐾(𝑡, 𝑦) : 𝐾(𝑡)]. Since the
𝑖-th derivative of 𝑦 is also in 𝐾(𝑡, 𝑦) for any 𝑖 ∈ N, we have
that 𝑌 = (1, 𝑦, 𝑦2, · · · , 𝑦ℓ−1)𝑡 satisfies a linear differential
system of the form

𝑌 ′ = 𝐴𝑌, where 𝐴 ∈ Matℓ(𝐾(𝑡)). (5.4)

We will call (5.4) the associated differential equation of 𝑦 over
𝐾(𝑡). The following proposition will allow us to design an
algorithm for testing the separability of algebraic functions.

Proposition 5.7. Let 𝑦 and 𝐾 be as above. Assume that
(5.4) is the associated differential equation of 𝑦 over 𝐾(𝑡).
Then 𝑦 is 𝐷𝑡-separable if and only if there is an invertible
matrix 𝐺 with entries in 𝐾[𝑡] such that

𝐺−1𝐺′ −𝐺−1𝐴𝐺 ∈ Matℓ(F(𝑡)).

Proof. Assume that there exists a nonzero 𝐿 ∈ F(𝑡)⟨𝐷𝑡⟩
such that 𝐿(𝑦) = 0. Then by Proposition 5.6, 𝑦 has the
form (5.3). Let 𝐸 be the Galois closure of 𝐾(𝑡, 𝛽) over 𝐾(𝑡).
Let 𝛽1 = 𝛽, 𝛽2, · · · , 𝛽ℓ be the conjugates of 𝛽 and 𝜎𝑖 ∈
Gal(𝐸/𝐾(𝑡)) such that 𝜎𝑖(𝛽) = 𝛽𝑖. Then 𝜎1(𝑦), · · · , 𝜎ℓ(𝑦)
are all zeroes of 𝑃 (x, 𝑡, 𝑦). We will denote the Vandermonde
matrix generated by 𝜎1(𝑦), · · · , 𝜎ℓ(𝑦) by 𝑈(𝑦) and the one
generated by 𝛽1, · · · , 𝛽ℓ by 𝑈(𝛽). Then 𝑈(𝑦) is a fundamen-
tal matrix of the system (5.4) and 𝑈(𝛽) is a fundamental
matrix of a system 𝑌 ′ = 𝐵𝑌 with 𝐵 ∈ Matℓ(F(𝑡)). Using
the argument similar to that in the proof of Proposition 5.7,
we have that for all 𝑗 with 1 ≤ 𝑗 ≤ ℓ− 1,

𝑦𝑗 =
1

𝑏(𝑡)𝑗𝑞(𝑡)

ℓ−1∑︁
𝑖=0

𝑎𝑖,𝑗(𝑡)𝛽
𝑖, (5.5)

where 𝑎𝑖,𝑗(𝑡) ∈ 𝐾[𝑡] and 𝑏(𝑡), 𝑞(𝑡) are as in Proposition 5.6.
Applying 𝜎𝑙 to both sides of the equalities (5.5) implies that

𝜎𝑙(𝑦)
𝑗 =

1

𝑏(𝑡)𝑗𝑞(𝑡)

ℓ−1∑︁
𝑖=0

𝑎𝑖,𝑗(𝑡)𝛽
𝑖
𝑙 , (5.6)

where 𝑗 = 1, · · · , ℓ− 1, 𝑙 = 1, · · · , ℓ. Let 𝑎̃𝑖,𝑗 = 𝑎𝑖,𝑗𝑏
ℓ−1−𝑗 and

𝐺 =

⎛⎜⎜⎜⎝
𝑏(𝑡)ℓ−1𝑞(𝑡) 0 · · · 0
𝑎̃0,1(𝑡) 𝑎̃1,1(𝑡) · · · 𝑎̃ℓ−1,1(𝑡)

...
...

...
...

𝑎̃0,ℓ−1(𝑡) 𝑎̃1,ℓ−1(𝑡) · · · 𝑎̃ℓ−1,ℓ−1(𝑡)

⎞⎟⎟⎟⎠

that is an element in Matℓ(𝐾[𝑡]). Then the equations (5.6)
can be rewritten as 𝑈(𝑦) = (𝐺𝑈(𝛽))/(𝑏(𝑡)ℓ−1𝑞(𝑡)). Hence 𝐺
is invertible and an easy calculation yields that

𝑈(𝛽)′ = (𝑏ℓ−1𝑞𝐺−1𝑈(𝑦))′

=
(︁
(𝑏ℓ−1𝑞)′ − 𝑏ℓ−1𝑞𝐺−1𝐺′ + 𝑏ℓ−1𝑞𝐺−1𝐴𝐺

)︁
𝐺−1𝑈(𝑦)

= 𝐵𝑈(𝛽) = 𝑏ℓ−1𝑞𝐵𝐺−1𝑈(𝑦).

This implies that

𝐺−1𝐴𝐺−𝐺−1𝐺′ = 𝐵 − (𝑏ℓ−1𝑞)′

𝑏ℓ−1𝑞
∈ Matℓ(F(𝑡)).

Now we prove the converse. Assume that there is an in-
vertible matrix 𝐺 ∈ Matℓ(𝐾[𝑡]) such that

𝐵̃ = 𝐺−1𝐴𝐺−𝐺−1𝐺′ ∈ Matℓ(F(𝑡)).

Then 𝑈(𝑦) = 𝐺𝐹 , where 𝐹 is a fundamental matrix of

𝑌 ′ = 𝐵̃𝑌 with entries in some differential extension field of
𝐾(𝑡). Obviously, the entries of both 𝐺 and 𝐹 are annihilated
by nonzero operators in F(𝑡)⟨𝐷𝑡⟩ and thus so are the sum of
products of entries of 𝐺 and 𝐹 , in particular, so is 𝑦.

Remark 5.8. Once 𝛽 is computed, one can obtain the
linear differential equations 𝑌 ′ = 𝐵𝑌 satisfied by 𝑈(𝛽).

5.3 An algorithm for testing separability

We now present an algorithm to decide whether a given

algebraic function 𝑦 ∈ F(𝑡,x) is 𝐷𝑡-separable or not. For
the sake of simplicity, we may take F = Q̄, the field of all
algebraic numbers over Q. Let 𝑃 =

∑︀𝑛
𝑖=0 𝐴𝑖𝑌

𝑖 ∈ F[𝑡,x][𝑌 ]
be the minimal polynomial of 𝑦. Furthermore, assume that 𝐴𝑛

is split. Under this assumption, 𝑦 is 𝐷𝑡-separable if and only
if 𝐴𝑛𝑦 is 𝐷𝑡-separable. Therefore without loss of generality,
we may assume that

𝑃 (x, 𝑡, 𝑌 ) = 𝑌 𝑛 +𝐴𝑛−1(x, 𝑡)𝑌
𝑛−1 + · · ·+𝐴0(x, 𝑡), (5.7)

where 𝐴𝑖 ∈ F[x, 𝑡]. Let (𝑎, 𝛼) ∈ F× F(x) satisfy

𝑃 (x, 𝑎, 𝛼) = 0,
𝜕𝑃

𝜕𝑌
(x, 𝑎, 𝛼) ̸= 0, (5.8)

and let 𝐾 = F(x, 𝛼). Then 𝑃 (x, 𝑡, 𝑌 ) may be factorized into
a product of irreducible polynomials in 𝐾[𝑡, 𝑌 ]. There is
a unique factor of 𝑃 (x, 𝑡, 𝑌 ) in 𝐾[𝑡, 𝑌 ] vanishing at (𝑎, 𝛼),
denoted by 𝑃 (x, 𝛼, 𝑡, 𝑌 ). Let 𝐾(𝑡, 𝑦) be the quotient field
of 𝐾[𝑡, 𝑌 ]/⟨𝑃 (x, 𝛼, 𝑡, 𝑌 )⟩. Furthermore suppose that 𝐾(𝑡, 𝑦)
satisfies the condition 1 of Theorem 5.5. Then Theorem 5.5
implies that there is 𝛽 ∈ F(𝑡) such that 𝐾(𝑡, 𝑦) = 𝐾(𝑡, 𝛽).
We shall show how to find such 𝛽.

Let 𝑅 = F(𝑡)[x] and 𝑆 the integral closure of 𝑅 in 𝐾(𝑡, 𝑦).
Then 𝛼, 𝑦 ∈ 𝑆. Suppose that

𝑃 (x, 𝛼, 𝑡, 𝑌 ) = 𝐵ℓ𝑌
ℓ +𝐵ℓ−1𝑌

ℓ−1 + · · ·+𝐵0, (5.9)

where 𝐵ℓ ∈ F[x], 𝐵𝑖 ∈ 𝑘[x, 𝛼, 𝑡] with 𝑖 = 0, · · · , ℓ − 1. Note
that

[𝐾(𝑡, 𝑦) : F(x, 𝑡)] = [𝐾(𝑡, 𝑦) : 𝐾(𝑡)][𝐾(𝑡) : F(x, 𝑡)]
= [𝐾(𝑡, 𝑦) : 𝐾(𝑡)][𝐾 : F(x)] = ℓ[𝐾 : F(x)].
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The set{︁
𝛼𝑖𝑦𝑗 |𝑖 = 0, · · · , [𝐾 : F(x)]− 1, 𝑗 = 0, · · · , ℓ− 1

}︁
is a base of 𝐾(𝑡, 𝑦) over F(x, 𝑡). Let 𝐷(x, 𝑡) be the discrim-
inant of the above base and let 𝐹 (x, 𝑌 ) be an irreducible
polynomial in F[x, 𝑌 ] such that 𝐹 (x, 𝛼) = 0. Then we have

Lemma 5.9. Let (c, 𝑏) ∈ F𝑚+1 satisfy 𝐹 (c, 𝑏) = 0 and
𝐷(c, 𝑡)𝐵ℓ(c) ̸= 0. Then 𝑃 (c, 𝑏, 𝑡, 𝑌 ) is irreducible in F[𝑡, 𝑌 ]
and for any root 𝑌 = 𝛾 of 𝑃 (c, 𝑏, 𝑡, 𝑌 ) = 0, we have that
𝐾(𝑡, 𝑦) is isomorphic to 𝐾(𝑡, 𝛾).

Proof. Let 𝛽 ∈ 𝐾(𝑡, 𝑦) be as above. Since 𝛽 is algebra-
ic over F(𝑡) we have that 𝛽 is integral over 𝑅 = F(𝑡)[x].
Therefore we may write

𝛽 =
1

𝐷(x, 𝑡)

∑︁
𝑏𝑖,𝑗𝛼

𝑖𝑦𝑗 ,

where the 𝑏𝑖,𝑗 ∈ 𝑅. Let (c, 𝑏) satisfy the hypothesis of the
lemma and consider the ideal

p = ⟨𝑥1 − 𝑐1, . . . , 𝑥𝑚 − 𝑐𝑚, 𝛼− 𝑏⟩▹𝑅[𝛼].

Note that p is a maximal ideal. The Going Up Theorem
implies that there is a maximal ideal q ▹ 𝑆 such that q ∩
𝑅[𝛼] = p. In particular, 𝐷(x, 𝑡) /∈ q. There is a natural
map 𝜑 : 𝑆 → 𝑆/q. We will let 𝑀 denote the field 𝑆/q. The
element 𝛾 = 𝜑(𝑦) is a root of 𝑃 (c, 𝑏, 𝑡, 𝛾) = 0. Since the
minimal polynomial 𝑄(𝑡, 𝑌 ) of 𝛽 lies in F[𝑡, 𝑌 ], it remains
unchanged when we apply 𝜑 to its coefficients. Therefore 𝜑(𝛽)
satisfies 𝑄(𝑡, 𝜑(𝛽)) = 0. In particular, the degree of 𝜑(𝛽) over
F(𝑡) is equal to ℓ, the degree of 𝐾(𝑡, 𝛽) over 𝐾(𝑡). Since

𝜑(𝛽) =
1

𝐷(c, 𝑡)

∑︁
𝜑(𝑏𝑖,𝑗)𝜑(𝛼)

𝑖𝛾𝑗

we have that 𝜑(𝛽) ∈ F(𝑡)(𝛾). Note that 𝑃 (c, 𝑏, 𝑡, 𝑌 ) ̸= 0. The
element 𝛾 satisfies 𝑃 (c, 𝑏, 𝑡, 𝛾) = 0 and so it has degree at
most ℓ over F(𝑡). Since 𝜑(𝛽) ∈ F(𝑡, 𝛾), we have that

ℓ ≥ [F(𝑡, 𝛾) : F(𝑡)] ≥ [F(𝑡, 𝜑(𝛽)) : F(𝑡)] = [𝐾(𝑡, 𝛽) : 𝐾(𝑡)]

= [𝐾(𝑡, 𝑦) : 𝐾(𝑡)] = ℓ

and so [F(𝑡, 𝛾) : F(𝑡)] = ℓ . Therefore 𝑃 (c, 𝑏, 𝑡, 𝑌 ) is irre-
ducible. Furthermore F(𝑡, 𝛽) is isomorphic to F(𝑡, 𝜑(𝛽)) =
F(𝑡, 𝛾). This implies that 𝐾(𝑡, 𝑦) is isomorphic to 𝐾(𝑡, 𝛾).

Let 𝑃 (x, 𝛼, 𝑡, 𝑌 ) be as above. Lemma 5.9 implies that
if 𝑦 is 𝐷𝑡-separable then one can compute (c, 𝑏) ∈ F𝑚+1

such that 𝑃 (c, 𝑏, 𝑡, 𝑌 ) is irreducible over F(𝑡) and 𝛽 can be
taken to be a zero of 𝑃 (c, 𝑏, 𝑡, 𝑌 ). From 𝑃 (c, 𝑏, 𝑡, 𝑌 ), we can
construct the associated differential equation of 𝛽 over F(𝑡).
Denote this associated differential equation by 𝑌 ′ = 𝐵𝑌 with
𝐵 ∈ Matℓ(F(𝑡)). The proof of Proposition 5.7 implies that if
𝑦 is 𝐷𝑡-separable then there is an invertible matrix 𝐺 with
entries in 𝐾[𝑡] such that

𝐺′ = 𝐴𝐺−𝐺

(︂
𝐵 − 𝑞′(𝑡)

𝑞(𝑡)

)︂
,

where 𝑞(𝑡) is the discriminant of {1, 𝛽, · · · , 𝛽ℓ−1} and 𝑌 ′ =
𝐴𝑌 is the associated differential equation of 𝑦 over𝐾(𝑡). Here
the polynomial 𝑏(𝑡) in (5.5) disappears because we assume

that 𝑃 is monic in 𝑌 . Note that 𝐺 is a polynomial solution of
the linear differential equation 𝑌 ′ = 𝐴𝑌 − 𝑌 (𝐵 − 𝑞(𝑡)′/𝑞(𝑡)),
which can be computed by algorithms developed in [5, 8].

We summarize the above results as the following algorithm.

Algorithm 5.10. Input: An irreducible polynomial

𝑃 (𝑡,x, 𝑌 ) = 𝐴𝑛𝑌
𝑛 +𝐴𝑛−1𝑌

𝑛−1 + · · ·+𝐴0 ∈ F[𝑡,x, 𝑌 ].

Output: “Yes” if 𝑦 is 𝐷𝑡-separable, otherwise “No”, where

𝑦 ∈ 𝑘(x, 𝑡) is a root of 𝑃 (𝑌 ) = 0.

(1) If 𝐴𝑛 is not split, then 𝑦 is not 𝐷𝑡-separable and return
“No”.

(2) Transform 𝑃 (x, 𝑡, 𝑌 ) into a monic polynomial by re-
placing 𝑌 by 𝑌/𝐴𝑛 and clear the denominators.

(3) Compute 𝛽:

(3.𝑎) Find (𝑎, 𝛼) ∈ F×F(x) satisfying the conditions (5.8).
(3.𝑏) Decompose 𝑃 into a product of irreducible polynomi-

als over F(x, 𝛼). Let 𝑃 (x, 𝛼, 𝑡, 𝑌 ) be the irreducible
factor satisfying that 𝑃 (x, 𝛼, 𝑎, 𝛼) = 0.

(3.𝑐) Compute 𝐷(x, 𝑡), the discriminant of the base {𝛼𝑖𝑦𝑗},
where 𝑦 is a zero of 𝑃 (x, 𝛼, 𝑡, 𝑌 ) in F(𝑡,x).

(3.𝑑) Compute a point (c, 𝑏) ∈ F𝑚+1 such that

𝐷(c, 𝑡)𝐵ℓ(c) ̸= 0 and 𝐹 (c, 𝑏) = 0,

where 𝐹 is the minimal polynomial of 𝛼 over F(x)
and 𝐵ℓ(x) is the leading coefficient of 𝑃 (x, 𝛼, 𝑡, 𝑌 ).

(3.𝑒) Let 𝛽 be a zero of 𝑃 (c, 𝑏, 𝑡, 𝑌 ) = 0 in F(𝑡).
(4) Compute 𝐺:
(4.𝑎) Compute 𝑞(𝑡), the discriminant of the base {𝛽𝑗 |𝑗 =

0, · · · , ℓ− 1} and compute the associated differential
equations of 𝑦 and 𝛽, which are denoted by 𝑌 ′ = 𝐴𝑌
and 𝑌 ′ = 𝐵𝑌 respectively.

(4.𝑏) By algorithms developed in [5, 8], compute a base of
polynomial solutions of 𝑍′ = 𝐴𝑍−𝑍(𝐵−𝑞(𝑡)′/𝑞(𝑡)),
where 𝑍 = (𝑧𝑖𝑗) with indeterminate entries, say
{𝑄1, · · · , 𝑄𝑠}.

(4.𝑐) Compute 𝐶 = det(𝑧1𝑄1+ · · ·+𝑧𝑠𝑄𝑠) with 𝑧1, · · · , 𝑧𝑠
being indeterminates. If 𝐶 = 0 then return “No”,
otherwise return “Yes”.

We now show an example to illustrate the main steps of
the above algorithm.

Example 5.11. Let E = Q̄(𝑡, 𝑥) and 𝑦 be the algebraic
function over E defined by

𝑃 (𝑥, 𝑡, 𝑌 ) := 𝑌 2 − 2(𝑥𝑡+ 1)𝑌 + (𝑥𝑡+ 1)2 − 𝑡.

We are going to decide whether 𝑦 is 𝐷𝑡-separable or not. We
will follow the above algorithm step by step. Since 𝑃 (𝑥, 𝑡, 𝑌 )
is monic in 𝑌 . We begin with the third step, i.e., computing
𝛽.

(3) Compute 𝛽 =
√
𝑡+ 1:

(3.a) Set (𝑎, 𝛼) = (1, 𝑥). One sees that 𝑃 (𝑥, 1, 𝑥) = 0 and

𝜕𝑃

𝜕𝑌
(𝑥, 1, 𝑥) = −2 ̸= 0.

So Q̄(𝑥, 𝛼) = Q̄(𝑥).
(3.b) Since 𝑃 (𝑥, 𝑡, 𝑌 ) is irreducible over Q̄(𝑥), we take

𝑃 (𝑥, 𝛼, 𝑡, 𝑌 ) to be 𝑃 (𝑥, 𝑡, 𝑌 ).
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(3.c) Set 𝐷(𝑥, 𝑡) = 4𝑡, which is the discriminant of the
base {1, 𝑦} with 𝑃 (𝑥, 𝑡, 𝑦) = 0.

(3.d) One sees that 𝐵2(𝑥) = 1 and 𝐹 = 𝑧−𝑥. So the point
(0, 0) satisfies 𝐷(0, 𝑡)𝐵2(0) ̸= 0 and 𝐹 (0, 0) = 0.

(3.e) Set 𝛽 =
√
𝑡+ 1 which is a zero of 𝑃 (0, 𝑡, 𝑌 ) = 𝑌 2 −

2𝑌 + 1− 𝑡.
(4) Compute 𝐺:
(4.a) Set 𝑞(𝑡) = 4𝑡, which is the discriminant of the base

{1, 𝛽}, and set

𝐴 =

(︂
0 0

𝑥
2
− 1

2𝑡
1
2𝑡

)︂
, 𝐵 =

(︂
0 0

− 1
2𝑡

1
2𝑡

)︂
.

Then 𝑌 ′ = 𝐴𝑌 and 𝑌 ′ = 𝐵𝑌 are the associated
differential equations of 𝑦 and 𝛽 respectively.

(4.b) Set 𝑍 = (𝑧𝑖𝑗)1≤𝑖,𝑗≤2, and compute a base of the
polynomial solutions of the system 𝑍′ = 𝐴𝑍−𝑍(𝐵−
1/𝑡). One has that{︂

𝑄1 :=

(︂
𝑡 0

𝑥𝑡2 + 𝑡 0

)︂
, 𝑄2 :=

(︂
0 0
−𝑡 𝑡

)︂}︂
is a required base.

(4.c) One has that det(𝑧1𝑄1 + 𝑧2𝑄2) = 𝑧1𝑧2𝑡
2 ≠ 0. So 𝑦

is 𝐷𝑡-separable.

6 CONCLUSION AND FUTURE WORK

We present a connection between the separability problems
and the existence problems in creative telescoping. Separa-
bility criteria are given for rational functions, hyperexponen-
tial functions, hypergeometric terms and algebraic functions.
Some results in the algebraic case have been generalized to
the case of 𝐷-finite functions whose annihilating operators
of minimal order are completely reducible in [14]. The exis-
tence problems of telescopers for rational functions in three
variables are now completely settled by combining the results
in [11] with the separability criteria in this paper.

In terms of future research, the first natural direction is
to solve the separability problem for P-recursive sequences,
which may have applications in solving the general termina-
tion problem of Zeilberger’s algorithms beyond the hypergeo-
metric case. Another direction is to develop more symbolic
computational tools for the method of separation of variables
for partial differential equations as in [21].
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