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For points (a, b) on an algebraic curve over a field K with 
height h, the asymptotic relation between h(a) and h(b) has 
been extensively studied in diophantine geometry. When K =
k(t) is the field of algebraic functions in t over a field k of 
characteristic zero, Eremenko in 1998 proved the following 
quasi-equivalence for an absolute logarithmic height h in K: 
Given P ∈ K[X, Y ] irreducible over K and ε > 0, there is 
a constant C only depending on P and ε such that for each 
(a, b) ∈ K2 with P (a, b) = 0,

(1 − ε) deg(P, Y )h(b) − C ≤ deg(P,X)h(a)

≤ (1 + ε) deg(P, Y )h(b) + C.

In this article, we shall give an explicit bound for the constant 
C in terms of the total degree of P , the height of P and ε. This 
result is expected to have applications in some other areas 
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such as symbolic computation of differential and difference 
equations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In diophantine geometry, heights are often used to express the discreteness of algebraic 
points on an algebraic variety. They play an important role in diophantine geometry as 
well as other areas such as the theory of transcendental numbers. The study of the 
functorial property of heights can be tracked back to the date of Siegel, who gave the 
first asymptotic estimate of h(f(c)) in terms of deg(f) when h(c) is large enough, where 
c is a point on a projective algebraic curve and f is a nonconstant rational function 
on this curve. Later, Siegel’s result was improved by many authors (see for example 
Néron [16], Bombieri [4], Habegger [10], Abouzaid [2] and Bartolome [3]) who gave error 
terms to the asymptotic estimates. For instance, in [16], Néron proved the following 
quasi-equivalence of heights: Let P ∈ Q[X, Y ] be irreducible with m = deg(P, X) ≥ 1
and n = deg(P, Y ) ≥ 1, then there is a constant c(P ) such that if (a, b) ∈ Q

2 with 
P (a, b) = 0, the bound

∣∣∣∣h(a)n
− h(b)

m

∣∣∣∣ ≤ c(P )

√
max

{
h(a)
n

,
h(b)
m

}
.

An explicit estimate of the constant c(P ) is of particular interest in an effective version 
of Runge’s theorem on the integer solutions of certain diophantine equations. In [11], 
Habegger gave an explicit bound for the constant c(P ) and applied this bound to Runge’s 
theorem. Other related height estimates may also be found in [2,3].

The heights appearing in the above results are all defined in algebraic number fields. 
As to an absolute logarithmic height defined in function fields (see Section 3 of Chapter 
3 in [14] for definition), Eremenko in 1998 proved quasi-equivalence of the following type, 
where k is an algebraically closed field of characteristic zero.

Proposition 1.1 (Lemma 2 of [9]). Let P ∈ k(t)[X, Y ] be an irreducible polynomial of 
degree m with respect to X and of degree n with respect to Y . Given ε > 0 there exists a 
constant C depending on P and ε such that for every a, b ∈ k(t) satisfying P (a, b) = 0
we have

(1 − ε)nh(b) − C ≤ mh(a) ≤ (1 + ε)nh(b) + C.

One can see from Remark 2.6 that if a ∈ k(t) then h(a) defined in the above propo-
sition is exactly the degree of a, i.e. the maximum of the degrees of the numerator and 
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denominator of a. Eremenko applied the above result to show that rational solutions of 
a first order algebraic ordinary differential equation (AODE) F = 0 are of degree not 
greater than a constant only depending on F . From the viewpoint of algorithms, an 
explicit estimate of the constant C is usually necessary to guarantee the termination of 
algorithms for computing rational solutions of AODEs. Meanwhile, such explicit estimate 
has potential applications in the algorithmic aspect of computing rational points on an 
algebraic variety over k(t). In this article, we shall give an explicit bound for the con-
stant C in terms of the total degree of P , the height of P and ε. We obtain this explicit 
bound by computing the explicit expressions for constants appearing at each step of the 
proof of the above proposition given by Eremenko. In particular, we give bounds for the 
heights of the coefficients of a certain nonzero element in the Riemann-Roch space of a 
divisor. Precisely, suppose that L = K(x, y) is an algebraic function field of one variable 
over a field K, where x is transcendental over K and y is algebraic over K(x). Then 
each element A ∈ L can be presented as a polynomial in y with coefficients in K(x), 
i.e. A = 1

q(x)
∑n−1

i=0
∑m

j=0 ai,jx
jyi with ai,j ∈ K, q ∈ K[X] and n = [L : K(x)]. For a 

certain nonzero element A in the Riemann-Roch space of a divisor, we give a bound for 
the height of the projective point a = (· · · : ai,j : · · · ) (see Proposition 3.11) as well as 
a bound for the height of q(X). Note that Schmidt in [17] presented a bound for m, a 
degree bound for q and a bound for the absolute values of the coefficients of the Puiseux 
series expansion of A when K is the field of algebraic numbers. Although it is possible to 
obtain a bound for the height of a by the results (mainly Theorem C2) presented in [17], 
we do not take this approach because the absolute logarithmic height under considera-
tion in this paper satisfies the triangle inequality, i.e. h(a + b) ≤ h(a) +h(b), which is not 
usually satisfied for absolute logarithmic heights defined in algebraic number fields. The 
triangle inequality enables us to obtain a simpler expression for the constant C. Finally, 
let us remark that the construction of the Riemann-Roch space of a divisor is one of the 
fundamental problems in the theory of algebraic function fields. Many algorithms have 
already been developed for this problem, see for example [1,6,8,12,13,15,19].

The article is organized as follows. In Section 2, we introduce some basic concepts and 
notations about algebraic function fields of one variable and heights used in the later 
sections. In Section 3, we estimate the heights of the coefficients for a certain nonzero 
element in the Riemann-Roch space of a given divisor. Finally, in Section 4, we present 
an explicit bound for the constant C.

As usual, for a polynomial P (X1, . . . , Xm), we use tdeg(P ) and deg(P, Xi) to denote 
the total degree of P and the degree of P with respect to Xi respectively. Pm(·) denotes 
the projective space of dimension m over a field and (a0 : · · · : am) denotes a point in 
Pm(·) with coordinates ai.

2. Algebraic function fields of one variable and heights

In this section, we will introduce some basic concepts and notations of algebraic 
function fields of one variable and heights. Readers are referred to [5,14,18,20] for details.
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2.1. Algebraic function fields of one variable

Throughout this subsection, K always stands for an algebraically closed field of char-
acteristic zero. Let L be an algebraic function field of one variable over K. Assume that 
L = K(x, y) where x is transcendental over K and y satisfies

P (x, y) = A0(x)yn + A1(x)yn−1 + · · · + An(x) = 0, Ai ∈ K[X],

where P ∈ K[X, Y ] is irreducible. Denote by K((z)) the quotient field of the ring of 
formal power series in z. Let x(z) =

∑∞
i=r ciz

i ∈ K((z)) with r ∈ Z, ci ∈ K, cr �= 0, 
then ordz(x(z)) is defined to be r. We call (x(z), y(z)) ∈ K((z))2 a parametrization of 
P (X, Y ) = 0 provided P (x(z), y(z)) = 0 and x(z) or y(z) does not belong to K. If there 
is an integer s ≥ 2 such that x(z), y(z) ∈ K((zs)) then the parametrization (x(z), y(z))
is said to be reducible, otherwise irreducible. Two parametrizations (x(z), y(z)) and 
(x̃(z), ̃y(z)) are said to be equivalent if there is w(z) ∈ K((z)) with ordz(w(z)) = 1 such 
that

x(z) = x̃(w(z)) and y(z) = ỹ(w(z)).

Definition 2.1. An equivalent class of irreducible parametrizations is called a place of 
P (X, Y ) = 0.

It was shown on page 95 of [20] that an irreducible parametrization of P (X, Y ) = 0
is equivalent to the one of the type

(a + zμ, zν(b0 + b1z
�1 + · · · )) (1)

where a ∈ K, bi ∈ K \ {0}, μ ∈ Z \ {0}, ν, �i ∈ Z, 0 < �1 < �2 < · · · and μ, ν, ν + �1, ν +
�2, · · · have no common factor greater than 1, moreover if μ < 0 then a = 0. In the rest 
of this article, all irreducible parametrizations of P (X, Y ) = 0 will be of the type (1). 
Let p be a place of the form (1). We say that p lies above x − a if μ > 0, and lies above 
1/x if μ < 0. The integer |μ| is called the ramification index of p with respect to K(x), 
denoted by ep,K(x). Suppose that f ∈ L \ {0}. The order of f at p, denoted by ordp(f), 
is defined to be ordz(f(zμ + a, zν(b0 + · · · ))). If ordp(f) > 0, p is called a zero of f and 
if ordp(f) < 0, p is called a pole of f . It is well-known that a nonzero f admits only 
finitely many zeros and poles. We set ordp(0) = ∞. For f, g ∈ L, one can verify that

ordp(fg) = ordp(f) + ordp(g), ordp(f + g) ≥ min{ordp(f), ordp(g)}

where the equality in the last formula holds if ordp(f) �= ordp(g).
Denote V (p) = {f ∈ L | ordp(f) ≥ 0}. One can check that V (p) is a discrete valuation 

ring of L. One can also check that for f ∈ V (p) there is a unique cf ∈ K such that 
ordp(f − cf ) > 0. We define a map πp : V (p) → K given by f �→ cf . Then πp is 
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a K-homomorphism. For convenience, we set πp(f) = ∞ if ordp(f) < 0. The point 
(πp(x), πp(y)) is called the center of p.

Remark 2.2. In [5], a place is presented by the unique maximal ideal of a discrete val-
uation ring of L over K. Precisely, let p be a place of P (X, Y ) = 0 and let V (p) be as 
above. Set mp = {f ∈ L | ordp(f) > 0}. One sees that mp is the unique maximal ideal of 
V (p), which is the “place” defined in [5] corresponding to p. Conversely, given a discrete 
valuation ring V of L over K with m as its unique maximal ideal, we can construct a 
unique place of P (X, Y ) = 0 corresponding to V . Let z be a uniformizing variable at 
V . Expanding x, y as Puiseux series in z yields an irreducible parametrization and thus 
a place of P (X, Y ) = 0. Furthermore, different choices of uniformizing variables at V
induce equivalent irreducible parametrizations and so the same place. Additionally, the 
order of f at mp defined in [5] is nothing else but ordp(f).

Definition 2.3. A divisor D of L is a finite formal sum of places of P (X, Y ) = 0 with 
integer coefficients, i.e. D =

∑
p
dpp where dp ∈ Z and dp = 0 for all but finitely many 

places p. If all dp = 0, we call D the divisor zero and write D = 0.

Suppose that D =
∑

p
dpp is a divisor of L. We call 

∑
p
dp, denoted by deg(D), the 

degree of D. The set of places p with dp �= 0 is called the support of D, denoted by 
supp(D). We call D an integral divisor if dp ≥ 0 for all p, denoted by D ≥ 0. For a 
nonzero f ∈ L, denote

div(f) =
∑
p

ordp(f)p,

which is called the divisor of f . Each divisor D can be uniquely written as D+ − D−

where D+, D− are integral divisors and supp(D+) ∩ supp(D−) = ∅. Given a divisor D, 
denote

LK(D) = {f ∈ L | div(f) + D ≥ 0} ∪ {0}.

We call LK(D) the Riemann-Roch space of D which is a K-vector space of finite dimen-
sion, and we denote its dimension by �(D). By the Riemann-Roch theorem, �(D) > 0 if 
deg(D) is not less than the genus of L over K.

2.2. Heights in an algebraic function field of one variable

Throughout this subsection, k(t) stands for the field of rational functions in t with 
coefficients in an algebraically closed field k of characteristic zero, and k(t) for the alge-
braic closure of k(t). Let L ⊂ k(t) be a finite extension of k(t). Then L is an algebraic 
function field of one variable over k. Places in this subsection will be presented by max-
imal ideals of discrete valuation rings of L over k or equivalent classes of irreducible 
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parameterizations of P (X, Y ) = 0, where P (X, Y ) = 0 is an algebraic curve whose func-
tion field coincides with L. Let us first define an absolute logarithmic height of a point 
in Pm(k(t)). Note that ordp(0) = ∞.

Definition 2.4. Given a = (a0 : · · · : am) ∈ Pm(k(t)), let L be a finite extension of k(t)
containing all ai. The absolute logarithmic height (or simply height) of a, denoted by 
h(a), is defined to be

∑
p
maxm

i=0{−ordp(ai)}
[L : k(t)]

where p ranges over all places of L over k.

From Section 3 of Chapter 3 in [14], h(·) is a logarithmic height function. Actually it 
is an absolute logarithmic height function i.e. a logarithmic height function independent 
of the choices of the field L. To see this, let L̃ be a finite extension of L and suppose 
that p is a place of L over k. Then there are finitely many places P of L̃ over k lying 
above p, i.e. P ∩ L = p. For brevity, denote by P|p a place P lying above p. Note that 
the relative degree of P is 1 because k is algebraically closed, and due to Theorem 1 on 
page 52 of [5], for a fixed p, 

∑
P|p eP,L = [L̃ : L]. Moreover ordP(a) = eP,Lordp(a) for 

any a ∈ L and any P lying above p. These imply that for a fixed p,
∑
P|p

max
i

{−ordP(ai)} =
∑
P|p

max
i

{−eP,Lordp(ai)} =
∑
P|p

eP,L max
i

{−ordp(ai)}

= [L̃ : L] max
i

{−ordp(ai)}.

From this, one easily sees that h(·) is independent of the choices of L. Using Defini-
tion 2.4, it is natural to define the height of an element in k(t) and a polynomial in 
k(t)[X1, . . . , Xm] as follows.

Definition 2.5.

1. For a ∈ k(t), we define the height of a to be h((1 : a)), denoted by h(a).
2. Let Q be a nonzero polynomial in k(t)[X1, . . . , Xm]. We define the height of Q to be

h(Q) =
{

0 Q contains exactly one term
h(a) otherwise

,

where a is a point in some projective space whose coordinates are the coefficients 
of Q.

In the following, we set a/0 = ∞ for any a ∈ k(t) \ {0} and h(∞) = 0.
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Remark 2.6. Assume that a = (a0 : · · · : am) ∈ Pm(k(t)).

1. Suppose that a0 = 1, then

h(a) =
∑

p
max{0,−ordp(a1), . . . ,−ordp(am)}

[L : k(t)] ≥ 0.

2. Let a ∈ k(t) and L = k(t, a). Let Q(X, Y ) be a nonzero irreducible polynomial over 
k such that Q(t, a) = 0. It is clear that h(a) = 0 if a ∈ k. Now assume that a /∈ k

and p1, . . . , ps are all distinct poles of a in L, then

h(a) =
−
∑s

i=1 ordpi
(a)

[L : k(t)] = [L : k(a)]
[L : k(t)] = deg(Q,X)

deg(Q,Y ) .

In particular, if a ∈ k(t) then h(a) = deg(a) which is defined to be the maximum of 
the degrees of the denominator and numerator of a.

The height given in Definition 2.4 has the following properties.

Proposition 2.7. h(an) = h(a−n) = nh(a), a ∈ k(t) \ {0}, n ≥ 0.

Proof. Let L = k(t, a). For each place p of L over k,

max{0,−ordp(an)} = max{0,−nordp(a)} = nmax{0,−ordp(a)}.

By definition, h(an) = nh(a). For the first equality, it suffices to show that h(a) = h(1/a). 
As (1 : a) = (1/a : 1), one sees that

h(a) = h((1 : a)) = h((1/a : 1)) = h(1/a). �
Suppose that Φ = (φ0 : · · · : φm) is a morphism, namely

Φ : P s1(k(t)) × · · · × P sr(k(t)) −→ Pm(k(t))

b �−→ (φ0(b) : · · · : φm(b)),

where φi ∈ k(t)[X1,0, . . . , X1,s1 , . . . , Xr,0, . . . , Xr,sr ] is a nonzero polynomial homoge-
neous in Xj,0, . . . , Xj,sj of degree dj for all j = 1, . . . , r. Write φi =

∑s
j=1 ci,jmj , where 

ci,j ∈ k(t) and m1, . . . , ms are all monomials in X1,0, . . . , X1,s1 , . . . , Xr,0, . . . , Xr,sr of 
total degree 

∑r
j=1 dj .

Definition 2.8. We define the height of Φ, denoted by h(Φ), to be

h((c0,1 : · · · : ci,j : · · · : cm,s)).
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The following proposition will play a key role in the rest of this paper. Although it is 
a trivial generalization of an existing result (see Proposition on page 15 of [18] or Lemma 
1.6 on page 80 of [14] for the case with r = 1), we reprove this result for completeness and 
give an explicit estimate of the error term c in the case of heights in algebraic function 
fields of one variable.

Proposition 2.9. Let Φ = (φ0 : · · · : φm) be as above. Suppose (a1, . . . , ar) ∈ P s1(k(t)) ×
· · · × P sr(k(t)) is a point on which Φ is defined. Then

h(Φ(a1, . . . ,ar)) ≤
r∑

i=1
dih(ai) + h(Φ).

Proof. Write ai = (ai,0 : · · · : ai,si), j = (j1,0, . . . , j1,s1 , . . . , jr,0, . . . , jr,sr) and

φi =
∑
j

ci,jX
j1,0
1,0 · · ·Xjl,l′

l,l′ · · ·Xjr,sr
r,sr

with ci,j ∈ k(t) and 
∑sl

l′=0 jl,l′ = dl. Let L be a finite extension of k(t) containing all ai,j
and all ci,j. For each place p of L over k, one has that

−ordp(ci,ja
j1,0
1,0 · · · ajl,l′l,l′ · · · ajr,srr,sr ) = −ordp(ci,j) −

r∑
l=1

sl∑
l′=0

jl,l′ordp(al,l′)

≤ −ordp(ci,j) +
r∑

l=1

sl∑
l′=0

jl,l′ max{−ordp(al,0), . . . ,−ordp(al,sl)}

≤ max
i,j

{−ordp(ci,j)} +
r∑

l=1

dl max{−ordp(al,0), . . . ,−ordp(al,sl)}.

This implies that for each i,

−ordp(φi(a1, . . . ,ar)) ≤ max
j

{−ordp(ci,ja
j1,0
1,0 . . . a

jl,l′
l,l′ . . . a

jr,sr
r,sr )}

≤ max
i,j

{−ordp(ci,j)} +
r∑

l=1

dl max{−ordp(al,0), . . . ,−ordp(al,sl)}.

By definition, one sees that h(Φ(a1, . . . , ar)) ≤
∑r

l=1 dlh(al) + h(Φ). �
The above proposition has the following corollaries.

Corollary 2.10.

1. Suppose that Q is a polynomial in Q[X1, . . . , Xm] with degree di in Xi for all i. Let 
b1, . . . , bm ∈ k(t). Then
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h(Q(b1, . . . , bm)) ≤
m∑
i=1

dih(bi).

In particular, h(a + b), h(ab) ≤ h(a) + h(b) for any a, b ∈ k(t).
2. Suppose that c1, c2, c3, c4 ∈ Q satisfy that c1c4 − c2c3 �= 0. Then

h

(
c1a + c2
c3a + c4

)
= h(a)

for any a ∈ k(t).

Proof. 1. Homogenizing Q, we obtain Q̄ ∈ Q[X1,0, X1,1, . . . , Xm,0, Xm,1] \ {0} homoge-
nous in Xi,0, Xi,1 of degree di for all i such that

Q̄(b1, . . . ,bm) = Q(b1, . . . , bm)

where bi = (1 : bi). In Proposition 2.9, if we take φ0 =
∏m

i=1 X
di
i,0, φ1 = Q̄, ai = bi then 

we have that

h(Q(b1, . . . , bm)) = h(Q̄(b1, . . . ,bm)) ≤
m∑
i=1

dih(bi) =
m∑
i=1

dih(bi).

2. If c3a + c4 = 0, then c1a + c2 �= 0 since c1c4 − c2c3 �= 0. One sees that h((c1a +
c2)/(c3a + c4)) = h(∞) = 0 and h(a) = h(−c4/c3) = 0, then the desired equality holds. 
Now assume c3a + c4 �= 0, we take r = 1, s1 = 1 and

Φ = (c3X1,1 + c4X1,0, c1X1,1 + c2X1,0), a1 = (1 : a)

in Proposition 2.9. Then one has that

h

(
c1a + c2
c3a + c4

)
= h

((
1 : c1a + c2

c3a + c4

))
= h(Φ(a1)) ≤ h(a).

Conversely, let b = (c1a + c2)/(c3a + c4). Then a = (c4b − c2)/(c1 − c3b). A similar 
argument implies that h(a) ≤ h(b). Thus h(a) = h(b). �
Corollary 2.11.

1. Let bi = (bi,0 : · · · : bi,ni
) ∈ Pni(k(t)) for i = 1, 2. Suppose that b1,0 = b2,0 = 1 and 

set

c = (b1,0 : · · · : b1,n1 : b2,0 : · · · : b2,n2) ∈ Pn1+n2+1(k(t)).

Then h(c) ≤ h(b1) + h(b2).
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2. Suppose that b = (b0 : · · · : bn) ∈ Pn(k(t)). Then h(b) ≤
∑n

i=0 h(bi).

Proof. 1. We take r = 2, s1 = n1, s2 = n2, Φ = (φ0 : · · · : φn1+n2+1) with

φi =
{
X1,iX2,0 i = 0, . . . , n1

X1,0X2,i−n1−1 i = n1 + 1, . . . , n1 + n2 + 1

and a1 = b1, a2 = b2. Then Φ(a1, a2) = c and h(c) ≤ h(b1) + h(b2) because of Propo-
sition 2.9.

2. In Proposition 2.9, take r = n + 1, s1 = · · · = sn+1 = 1, Φ = (φ0, . . . , φn) with 
φi = Xi+1,1

∏n+1
j=1,j �=i+1 Xj,0, ai = (1 : bi−1) for all i = 1, . . . , n + 1. �

Next, we estimate the height of the resultant of two polynomials. One can refer to 
Section 6 of Chapter 3 in [7] for the definition and properties of resultant.

Corollary 2.12. Assume that P1, P2 ∈ k(t)[X1, . . . , Xm, Y ] \ {0}. Then

h(resY (P1, P2)) ≤ deg(P2, Y )h(P1) + deg(P1, Y )h(P2)

where resY (P1, P2) is the resultant of P1 and P2 with respect to Y .

Proof. The assertion is clear if resY (P1, P2) = 0. In the following, suppose that 
resY (P1, P2) �= 0. Assume deg(Pi, Y ) = ni, i = 1, 2. Denote �X = (X1, . . . , Xm) and 
�Xd =

∏m
i=1 X

di
i for d = (d1, . . . , dm) ∈ Zm. Write

P1 =
n1∑
i=0

ai( �X)Y i, P2 =
n2∑
i=0

bi( �X)Y i

where ai( �X), bj( �X) ∈ k(t)[ �X]. Then

resY (P1, P2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

an1 an1−1 · · · a0
. . . . . . . . .

an1 an1−1 · · · a0
bn2 bn2−1 · · · b0

. . . . . . . . .
bn2 bn2−1 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Denote by C1, C2 the points in P s(k(t)) whose coordinates are the coefficients in �X, Y
of P1 and P2 respectively, where s is the maximum of the numbers of terms of P1 and 
P2. By the definition of determinant, we can write

resY (P1, P2) =
∑⎛

⎝ �d∑
j=1

βd,jmd,jnd,j

⎞
⎠ �Xd
d
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where βd,j , �d ∈ Z, �d ≥ 0, md,j is a monomial in the coordinates of C1 of total de-
gree n2 and nd,j is a monomial in the coordinates of C2 of total degree n1. Viewing ∑�d

j=1 βd,jmd,jnd,j as a polynomial homogeneous in the coordinates of C1 of degree 
n2 and homogeneous in the coordinates of C2 of degree n1 with coefficients in Z, by 
Proposition 2.9, one has that

h(resY (P1, P2)) = h

⎛
⎝
⎛
⎝· · · :

�d∑
j=1

βd,jmd,jnd,j : · · ·

⎞
⎠
⎞
⎠

≤ n2h(C1) + n1h(C2) = n2h(P1) + n1h(P2). �
Corollary 2.13. Suppose that P ∈ k(t)[X, Y ] \ {0} and a, b ∈ k(t). Then

h(P (X + a, Y + b)) ≤ h(P ) + deg(P,X)h(a) + deg(P, Y )h(b).

Proof. Denote d1 = deg(P, X) and d2 = deg(P, Y ) and write

P =
d1∑
i=0

d2∑
j=0

ci,jX
iY j , ci,j ∈ k(t).

An easy calculation yields that

P (X + a, Y + b) =
d1∑

l1=0

d2∑
l2=0

⎛
⎝ d1∑

i=l1

d2∑
j=l2

(
i

l1

)(
j

l2

)
ci,ja

i−l1bj−l2

⎞
⎠X l1Y l2 .

Note that 
∑d1

i=l1

∑d2
j=l2

(
i
l1

)(
j
l2

)
ci,ja

i−l1bj−l2 is homogeneous in ci,j of degree 1, homoge-
neous in 1, a of degree d1 and homogeneous in 1, b of degree d2 with coefficients in Z. By 
Proposition 2.9,

h(P (X + a, Y + b)) = h

⎛
⎝
⎛
⎝· · · :

d1∑
i=l1

d2∑
j=l2

(
i

l1

)(
j

l2

)
ci,ja

i−l1bj−l2 : · · ·

⎞
⎠
⎞
⎠

≤ h(P ) + d1h(a) + d2h(b). �
When h is an absolute logarithmic height defined in an algebraic number field, the 

results in Corollaries 2.12 and 2.13 with error terms have already been proved in [2].

Corollary 2.14. Suppose that M = (ai,j) is an l×m matrix with ai,j ∈ k(t) and h(ai,j) ≤
κ. Assume that the linear system Mx = 0 has a nonzero solution. Then Mx = 0 has a 
nonzero solution a with h(a) ≤ r2(r + 1)κ, where a is viewed as a point in Pm−1(k(t))
and r = rank(M).
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Proof. The assertion is clear in the case M = 0. Suppose that M �= 0 and r = rank(M). 
Without loss of generality, assume that the first r-rows of M are linearly independent 
over k(t) and denote by M̃ the r×m matrix formed by those rows. Then M and M̃ have 
the same solution space and thus there is no harm to replace M by M̃ . Since M̃x = 0
has a nonzero solution, r < m. Without loss of generality, we further assume that the 
matrix M1 formed by the first r-columns of M̃ is invertible. Denote by b the (r + 1)-th 
column of M̃ . Using Cramer’s rule, (D1/ det(M1), . . . , Dr/ det(M1))t is the solution of 
M1x = −b, where Di is the determinant of the matrix obtained by replacing the i-th 
column of M1 by −b, and (·)t denotes the transpose of a vector. Set

a = (D1, . . . , Dr,det(M1), 0, . . . , 0︸ ︷︷ ︸
m−r−1

)t.

Then a is a solution of M̃x = 0. Note that Di and det(M1) are homogeneous in 
a1,1, . . . , ar,r+1 of degree r. By Proposition 2.9, h(a) ≤ rh((a1,1 : · · · : ar,r+1)). By 
Corollary 2.11,

h((a1,1 : · · · : ar,r+1)) ≤
∑
i,j

h(ai,j) ≤ r(r + 1)κ.

So h(a) ≤ r2(r + 1)κ. �
Note that all valuations constructed by places of L over k are non-archimedean (see 

page 62 of [14] for the construction). By Proposition 2.4 on page 57 in [14] with s = 0, 
one sees that if G and H are polynomials in k(t)[X1, . . . , Xm], then

h(GH) = h(G) + h(H),

from which we have the following proposition.

Proposition 2.15.

1. Suppose that G, H ∈ k(t)[X1, . . . , Xm] and G divides H. Then h(G) ≤ h(H).
2. Suppose that H is a nonzero polynomial in k(t)[X] and a is a zero of H in k(t). 

Then h(a) ≤ h(H).

Proof. The first assertion is clear. The second one follows from the facts that X − a

divides H and h(X − a) = h(a). �
The following result is claimed on page 13 of [18]. We present a proof here for com-

pleteness.
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Proposition 2.16. Suppose that a = (a0 : · · · : an) ∈ Pn(k(t)). Let b be a point in 

P (d+n
n )−1(k(t)) with all monomials in a0, . . . , an of total degree d as coordinates. Then 

h(b) = dh(a).

Proof. Due to Proposition 2.9, one sees that h(b) ≤ dh(a). It remains to prove the 
converse. Let L = k(t, a0, . . . , an). For each place p of L over k, one has that

max{−ordp(as00 · · · asnn ) | si ≥ 0, s0 + · · · + sn = d} ≥ nmax
i=0

{−ordp(adi )}

= d
nmax

i=0
{−ordp(ai)}.

By definition, h(b) ≥ dh(a). So h(b) = dh(a). �
3. The Riemann-Roch spaces

Throughout this section, let K be an algebraically closed field of characteristic zero 
with an absolute logarithmic height h. The heights of elements in K and nonzero poly-
nomials with coefficients in K are defined as in Definition 2.5. Furthermore, we assume 
that

(A1) Propositions 2.7 and 2.9 hold for h and K in place of k(t). Consequently, Corollar-
ies 2.10, 2.11, 2.12, 2.13 and 2.14 hold for h and K in place of k(t).

(A2) Propositions 2.15 and 2.16 also hold for h and K in place of k(t).

Remark 3.1. Under the assumption that Corollary 2.10 holds for h and K, one has that 
h(a) = 0 for all a ∈ Q. To see this, we first have that h(m) = 0 for all m ∈ Z. Then for 
m1, m2 ∈ Z \ {0},

h (m1/m2) ≤ h(m1) + h(1/m2) = h(m1) + h(m2) = 0.

So h(a) = 0 for all a ∈ Q.

Let L be an algebraic function field of one variable over K and D a divisor of L. 
Suppose that LK(D) �= {0}. In this section, we are going to give bounds for the degrees 
and height of a certain nonzero element in LK(D). Let us start with two lemmas.

Lemma 3.2. Let fi =
∑

s≥0 ai,sz
s ∈ K[[z]] for i = 1, . . . , r. Write 

∏r
i=1 fi =

∑
s≥0 csz

s

with cs ∈ K. Then

h(cs) ≤
r∑

(s + 1) smax
j=0

{h(ai,j)}.

i=1



14 R. Feng et al. / Advances in Applied Mathematics 139 (2022) 102373
Proof. One can easily check that

cs =
∑

0≤l1,...,lr≤s,
l1+···+lr=s

a1,l1 · · · ar,lr .

By Corollary 2.10, one has that

h(cs) ≤
r∑

i=1

s∑
j=0

h(ai,j) ≤
r∑

i=1
(s + 1) smax

j=0
{h(ai,j)}. �

Lemma 3.3. Suppose that Q ∈ K[z, Y ] and f =
∑

i≥0 aiz
i ∈ K[[z]] with Q(z, f) = 0. 

Then for i ≥ 0,

h(ai) ≤ (deg(Q,Y ) + 1)ih(Q).

Proof. Denote n = deg(Q, Y ). Dividing Q by some power of z if necessary, we may 
assume that z � Q. Note that this operation does not change the height of Q. It is easy to 
verify that h(Q(0, Y )) ≤ h(Q). Since Q(0, Y ) �= 0 and Q(0, a0) = 0, by Proposition 2.15, 
h(a0) ≤ h(Q(0, Y )) ≤ h(Q). Now set Q1 = Q(z, a0 + zY ). Then by Corollary 2.13,

h(Q1) = h(Q(z, a0 + zY )) = h(Q(z, a0 + Y ))

≤ h(Q) + nh(a0) ≤ h(Q) + nh(Q) = (n + 1)h(Q).

Again, we may assume that z � Q1. One sees that a1+a2z+· · · is a solution of Q1(z, Y ) =
0. Using a similar argument, one has that h(a1) ≤ h(Q1) ≤ (n + 1)h(Q). Set Qi+1 =
Qi(z, ai + zY ) for i = 1, 2, . . . . Repeating the previous process yields that h(ai) ≤
(n + 1)ih(Q). �

Now suppose that L = K(x, y) where x is transcendental over K and [L : K(x)] < ∞. 
Furthermore, assume that P ∈ K[X, Y ] is a nonzero irreducible polynomial such that 
P (x, y) = 0. Let us first adapt a result given in [17] on the degree bound for a basis of 
a Riemann-Roch space. For this, we need to recall some notations introduced in [17]. 
Write

P (X,Y ) = A0(X)Y n + A1(X)Y n−1 + · · · + An(X), (2)

where Ai ∈ K[X], A0 �= 0 and deg(P, Y ) = n. Set

y1 = 1, y2 = A0(x)y, . . . , yn = A0(x)yn−1 + · · · + An−2(x)y.

Then the yi’s are integral over K[x]. To see this, note that yi is integral over K[x] if and 
only if yi has no pole lying above x − c for any c ∈ K. Suppose that p is a pole of some 



R. Feng et al. / Advances in Applied Mathematics 139 (2022) 102373 15
yi lying above x − c for some c ∈ K. Then p is a pole of y and thus a zero of y−1. On 
the other hand,

yi = A0(x)yi−1 + · · · + Ai−2(x)y = −Ai−1(x) −Ai(x)y−1 − · · · −An(x)y−n+i−1

which implies that p is not a pole of yi, a contradiction. Let d(X) be the discriminant 
of P with respect to Y . Let D =

∑
p
dpp be a divisor of L. It is clear that LK(0) = K. 

Thus we assume D �= 0 in the rest of the article. Additionally, we adopt the following 
notations, where tdeg(·) denotes the total degree of a polynomial.

Notation 3.4.

δD =
∑
p

|dp|,

ρ = tdeg(P ),

qD(X) = d(X)ρ(ρ+δD)
∏

p∈supp(D),
ordp(x)≥0

(X − πp(x))ρ(ρ+δD),

U = supp(div(x)−) ∪ supp(div(y)−) ∪ supp(div(qD(x))),

h(D) = max{h(P ),max{h(πp(x)) | ∀ p ∈ U}}.

Remark 3.5. Note that supp(D) ⊂ U . To see this, for p ∈ supp(D) with ordp(x) ≥ 0, 
p is a zero of x − πp(x) and thus a zero of qD(x). So p ∈ supp(div(qD(x))) ⊂ U . For 
p ∈ supp(D) with ordp(x) < 0, p ∈ supp(div(x)−) which is obvious in U .

In [17], when K = C, Schmidt gave a degree bound for a basis of the Riemann-Roch 
space LC(D) of a divisor D. Moreover, he proved that if P has coefficients in a subfield k
of C and D is defined over k then there is a basis of LC(D) whose elements are in k(x, y). 
After small modifications of Schmidt’s results, we are able to prove that Schmidts’s result 
on degree bound is also valid for the algebraically closed field K. Suppose that k ⊂ K is 
an algebraically closed subfield such that P (X, Y ) ∈ k[X, Y ]. By Definition 2.3, one sees 
that each divisor of k(x, y) is also a divisor of K(x, y). Suppose that f ∈ k(x, y) \{0}. To 
avoid confusion, we denote by divk(f) the divisor of f viewed as an element in k(x, y)
and by divK(f) the divisor of f viewed as an element in K(x, y).

Lemma 3.6. Suppose that k ⊂ K is an algebraically closed subfield such that P (X, Y ) ∈
k[X, Y ]. Then for every f ∈ k(x, y) \ {0}, divk(f) = divK(f).

Proof. If f ∈ k then there is nothing to prove. Suppose that f /∈ k. Since a zero (resp. 
pole) of f in k(x, y) is also a zero (resp. pole) of f in K(x, y), f /∈ K. Due to Theorem 
4 on page 18 of [5],
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deg(divk(f)+) = deg(divk(f)−) = [k(x, y) : k(f)].

Similarly, one has that

deg(divK(f)+) = deg(divK(f)−) = [K(x, y) : K(f)].

As k is algebraically closed, [k(x, y) : k(f)] = [K(x, y) : K(f)]. This implies that 
deg(divk(f)+) = deg(divK(f)+) and deg(divk(f)−) = deg(divK(f)−). On the other 
hand, one has that divk(f)+, divk(f)− are divisors of K(x, y) and divK(f)+−divk(f)+ ≥
0, divK(f)−−divk(f)− ≥ 0. Therefore divk(f)+ = divK(f)+ and divk(f)− = divK(f)−. 
Consequently, divk(f) = divK(f). �
Proposition 3.7. Let ρ, δD, qD be as in Notation 3.4. Then there are integers π1, . . . , πn, 
and a monic factor q of qD with deg(q) < ρ(ρ + δD), Bi,j ∈ K[X] with deg(Bi,j) <
2ρ(ρ + 2δD) such that LK(D) has a basis of the type

xl

⎛
⎝ n∑

j=1

Bi,j(x)
q(x) yj

⎞
⎠ (3)

where i runs over all integers s ∈ {1, 2, . . . , n} satisfying πs ≥ 0 and l runs over all 
integers in {0, 1, . . . , πi}.

Proof. If LK(D) = {0}, we take all πi < 0 for i = 1, . . . , n and the assertion is obvious. 
Now assume LK(D) �= {0} and a1, . . . , am ∈ L is a basis of LK(D) over K. Let k ⊂ K

be a field finitely generated over Q such that P ∈ k[X, Y ], a1, . . . , am ∈ k(x, y) and the 
center of p has coordinates in k∪{∞} for every place p in supp(D). Then the irreducible 
parametrization corresponding to p has coordinates in k̄((z)) for any p ∈ supp(D), 
where k̄ is the algebraic closure of k. We embed k̄ into C and view P as a polynomial in 
C[X, Y ]. Then P is irreducible over C because P is irreducible over k̄. Denote by L̃ the 
field of fractions of C[X, Y ]/(P ), where (P ) stands for the ideal in C[X, Y ] generated 
by P . Then k̄(x, y) can be viewed as a subfield of L̃. Note that D is still a divisor of 
both k̄(x, y) and L̃. By Lemma 3.6, Lk̄(D) ⊂ LC(D). Since D is defined over k̄, by 
Theorems A2 and B2 of [17], LC(D) has a basis of the type (3) with Bi,j ∈ k̄[X], 
deg(q) ≤ deg(P, Y )δD +deg(d)/2 and deg(Bi,j) ≤ deg(P, Y )(deg(P, X) +3δD) +deg(q). 
Note that deg(d) ≤ (2 deg(P, Y ) − 1) deg(P, X) < 2ρ2. One sees that deg(q) < ρ(ρ + δD)
and deg(Bi,j) < 2ρ(ρ + 2δD). Due to Theorem 1 on page 90 of [5], the vector spaces 
Lk̄(D) and LC(D) have the same dimension and then Lk̄(D) has a basis of the type (3)
with Bi,j ∈ k̄[X]. Since Lk̄(D) ⊂ LK(D) by Lemma 3.6 and a1, . . . , am ∈ k(x, y), Lk̄(D)
and LK(D) have the same dimension by Theorem 1 on page 90 of [5]. These imply that 
LK(D) has a basis of the type (3) with Bi,j ∈ k̄[X] ⊂ K[X]. �
Corollary 3.8. Let ρ, δD, q be as in Proposition 3.7 and D̃ = D− div(q(x)). Suppose that 
LK(D̃) �= {0}. Then LK(D̃) contains a nonzero element of the type



R. Feng et al. / Advances in Applied Mathematics 139 (2022) 102373 17
n−1∑
j=0

B̃j(x)yj

where B̃j ∈ K[X] with deg(B̃j) < 4ρ(ρ + δD).

Proof. By Proposition 3.7, there are integers π1, . . . , πn, and Bi,j ∈ K[X] with 
deg(Bi,j) < 2ρ(ρ + 2δD) such that LK(D) has a basis of the type

xl

⎛
⎝ n∑

j=1

Bi,j(x)
q(x) yj

⎞
⎠ (4)

where i runs over all integers s ∈ {1, 2, . . . , n} satisfying πs ≥ 0 and l runs over all 
integers in {0, 1, . . . , πi}. Note that LK(D) = 1

q(x)LK(D̃). Thus LK(D) �= {0} which 
implies that not all πi are negative. Suppose that πi0 ≥ 0. Setting l = 0 in (4) yields that ∑n

j=1
Bi0,j(x)

q(x) yj is an element in LK(D). Write 
∑n

j=1 Bi0,j(x)yj =
∑n−1

j=0 B̃j(x)yj where 

B̃j ∈ K[X]. Note that y1 = 1 and yj =
∑j−1

s=1 Aj−1−s(x)ys for j > 1. One has that

n−1∑
s=0

B̃s(x)ys = Bi0,1(x) +
n∑

j=2

j−1∑
s=1

Aj−1−s(x)Bi0,j(x)ys

= Bi0,1(x) +
n−1∑
s=1

⎛
⎝ n∑

j=s+1
Aj−1−s(x)Bi0,j(x)

⎞
⎠ ys.

Therefore B̃0(x) = Bi0,1(x) and B̃s(x) =
∑n

j=s+1 Aj−1−s(x)Bi0,j(x) for s ≥ 1 and so

deg(B̃s) ≤ max
j

deg(Bi0,j) + max
j

deg(Aj) ≤ 2ρ(ρ + 2δD) + ρ < 4ρ(ρ + δD).

The corollary then follows from the fact that LK(D) = 1
q(x)LK(D̃). �

In the rest of this section, let us estimate the heights of the coefficients of B̃j. We 
first estimate the heights of the coefficients of a place represented by an irreducible 
parametrization of P (X, Y ) = 0.

Proposition 3.9. Let ρ = tdeg(P ). Suppose that (zμ + a, zν(c0 + c�1z
�1 + · · · )) is a place 

of P (X, Y ) = 0. Then

h(ci) ≤ (ρ + 1)i+1 max{h(P ), h(a)}

where ci = 0 if i �= �j for all j ≥ 1 and i �= 0.

Proof. We first consider the case μ > 0. Set P̄ (z, Y ) = zdP (zμ + a, zνY ) where d is the 
integer such that P̄ ∈ K[z, Y ] and z � P̄ . By Corollary 2.13, one can verity that
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h(P̄ ) ≤ h(P ) + deg(P,X)h(a) ≤ (ρ + 1) max{h(P ), h(a)}.

As c0+c�1z
�1+· · · is a solution of P̄ (z, Y ) = 0 and deg(P, Y ) = deg(P̄ , Y ), by Lemma 3.3, 

one sees that

h(ci) ≤ (deg(P̄ , Y ) + 1)ih(P̄ ) ≤ (ρ + 1)i+1 max{h(P ), h(a)}.

Suppose that μ < 0. Similarly, set P̄ (z, Y ) = zdP (zμ, zνY ) where d is the integer such 
that P̄ ∈ K[z, Y ] and z � P̄ . Then h(P ) = h(P̄ ) and deg(P, Y ) = deg(P̄ , Y ). Since 
c0 + c�1z

�1 + · · · is a solution of P̄ (z, Y ) = 0, by Lemma 3.3, h(ci) ≤ (ρ + 1)i+1h(P ). �
For a place p = (zμ +a, zν(c0 + c1z+ · · ·)) of P (X, Y ) = 0, the series (zμ +a)l(zν(c0 +

c1z + · · ·))j is called the expansion of xlyj at p, denoted by xlyj |(x,y)=p for brevity.

Lemma 3.10. Let ρ = tdeg(P ). For l ≥ 0, j ∈ {0, . . . , n − 1} and a place p, xlyj has an 
expansion at p of the type

xlyj
∣∣
(x,y)=p

= zdp,l,j

∞∑
s=0

βp,l,j,sz
s

where dp,l,j is an integer greater than −lρ − ρ2 and βp,l,j,s ∈ K with

h(βp,l,j,s) ≤ ((s + 1)2(ρ + 1)s+2 + l) max{h(P ), h(πp(x))}.

Proof. Suppose that

p = (x(z),y(z)) = (zμ + a, zν(c0 + c�1z
�1 + · · · )).

Then h(πp(x)) = h(a). To see this, if μ > 0 then πp(x) = a and we are done, if μ < 0
then πp(x) = ∞ and a = 0 and thus h(πp(x)) = 0 = h(a). By Proposition 3.9, for i ≥ 0,

h(ci) ≤ (ρ + 1)i+1 max{h(P ), h(a)}

where ci = 0 if i �= lj for all j ≥ 1 and i �= 0. Write y(z)j = zjν
∑

s≥0 bj,sz
s. By 

Lemma 3.2 with fi =
∑

s≥0 csz
s, one sees that

h(bj,s) ≤
j∑

i=1
(s + 1) smax

γ=0
{h(cγ)} ≤ j(s + 1) smax

γ=0
{h(cγ)}

≤ (s + 1)(ρ + 1)s+2 max{h(P ), h(a)}.

The last inequality holds because j ≤ n − 1 < ρ + 1.
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We first consider the case μ > 0. Note that (zμ +a)l =
∑l

s=0
(
l
s

)
al−szsμ. This implies 

that (zμ + a)ly(z)j has an expansion of the type zel,j
∑

s≥0 βp,l,j,sz
s at z = 0, where 

el,j = jν and

βp,l,j,s =
l∑

i=0
bj,s−iμ

(
l

i

)
al−i

with bj,i = 0 if i < 0. Therefore by Corollary 2.10,

h(βp,l,j,s) ≤
s∑

i=0
h(bj,i) + lh(a) ≤ ((s + 1)2(ρ + 1)s+2 + l) max{h(P ), h(a)}.

Set dp,l,j = jν. Then we have the required expansion for xlyj at p. Finally, as |ν| ≤
|ordp(y)| ≤ ρ, one has that dp,l,j > −ρ2 ≥ −ρl − ρ2.

Now suppose that μ < 0. In this case, one easily sees that dp,l,j = jν + lμ and 
βp,l,j,s = bj,s. As |μ| ≤ |ordp(x)| ≤ ρ, one has that dp,l,j > −lρ − ρ2. �

Let c = (. . . , cl,j , . . . ) be a vector with indeterminate coordinates and set

g(c) =
n−1∑
j=0

4ρ(ρ+δD)−1∑
l=0

cl,jx
lyj .

Proposition 3.11. Let ρ, δD, h(D) be as in Notation 3.4. Let D̃ be as in Corollary 3.8. 
Suppose that LK(D̃) �= {0}. Then LK(D̃) contains a nonzero element of the type

g(a) =
n−1∑
j=0

4ρ(ρ+δD)−1∑
l=0

al,jx
lyj (5)

with

h(a) ≤ 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−11h(D),

where al,j ∈ K, at least one of al,j equals 1 and a is viewed as a projective point.

Proof. Let U be as in Notation 3.4. By Lemma 3.10, for each place p, j = 0, . . . , n − 1
and l ≥ 0, xlyj has an expansion at p of the type

xlyj
∣∣
(x,y)=p

= zdp,l,j

∞∑
s=0

βp,l,j,sz
s

where dp,l,j is an integer greater than −lρ − ρ2 and βp,l,j,s ∈ K with
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h(βp,l,j,s) ≤ ((s + 1)2(ρ + 1)s+2 + l) max{h(P ), h(πp(x))}.

Set o = minp,l,j{dp,l,j} and write

xlyj |(x,y)=p = zo
∞∑
s=0

αp,l,j,sz
s

One can easily see that αp,l,j,s = 0 if s < dp,l,j − o and αp,l,j,s = βp,l,j,s+o−dp,l,j
if 

s ≥ dp,l,j − o. Therefore for s ≥ dp,l,j − o,

h(αp,l,j,s) = h(βp,l,j,s+o−dp,l,j
) ≤ ((s + 1)2(ρ + 1)s+2 + l) max{h(P ), h(πp(x))},

where the last inequality holds since s + o − dp,l,j ≤ s. Then for each place p, g(c) has 
an expansion at p of the type

g(c)|(x,y)=p = zo
∑
s≥0

⎛
⎝∑

l,j

cl,jαp,l,j,s

⎞
⎠ zs.

Suppose that c̄ = (· · · : c̄l,j : · · · ) where c̄l,j ∈ K. Note that a pole of g(c̄) is either 
a pole of x or a pole of y and so all poles of g(c̄) are in U . Write D̃ =

∑
p
mpp. Then 

g(c̄) ∈ LK(D̃) if and only if ordp(g(c̄)) ≥ −mp for every p ∈ supp(D̃) and ordp(g(c̄)) ≥ 0
for every p ∈ U \ supp(D̃), i.e. ordz(g(c̄)|(x,y)=p) ≥ −mp for every p ∈ supp(D̃) and 
ordz(g(c̄)|(x,y)=p) ≥ 0 for every p ∈ U \ supp(D̃). Equivalently, g(c̄) ∈ LK(D̃) if and only 
if c̄ is a solution of the following linear system⎧⎨

⎩∑
l,j

cl,jαp,l,j,s = 0 | s = 0, . . . ,−mp − o− 1, p ∈ supp(D̃)

⎫⎬
⎭∧

⎧⎨
⎩∑

l,j

cl,jαp,l,j,s = 0 | s = 0, . . . ,−o− 1, p ∈ U \ supp(D̃)

⎫⎬
⎭ .

(6)

Note that D̃ = D− div(q(x)). By Remark 3.5, supp(D) ⊂ U and thus supp(D̃) ⊂ U . By 
definition, h(πp(x)) ≤ h(D) for all p ∈ U . So for l ≤ 4ρ(ρ + δD) − 1 and p ∈ U ,

h(αp,l,j,s) ≤ ((s + 1)2(ρ + 1)s+2 + l)h(D)

≤ (ρ + δD)(s + 1)2(ρ + 1)s+3h(D).

The second inequality holds because (s + 1)2(ρ + 1)s+3 − 4ρ ≥ (s + 1)2(ρ + 1)s+2. In 
what follows, we shall estimate −mp when mp < 0. Note that

deg(div(q(x))+) = deg(q) deg(div(x)+) = deg(q)n ≤ ρ2(ρ + δD).
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Hence |mp| ≤ δD + deg(div(q(x))+) < (ρ + 1)2(ρ + δD). Since o > −ρl − ρ2 and l ≤
4ρ(ρ + δD) − 1, one has that

−mp − o− 1 < (ρ + 1)2(ρ + δD) + ρl + ρ2

≤ 5ρ2(ρ + δD) + 2ρ(ρ + δD) + ρ2 + δD

= 5(ρ + 1)2(ρ + δD) − 7ρ2 − 8ρδD − 5ρ− 4δD
≤ 5(ρ + 1)2(ρ + δD) − 24.

Therefore the heights of the coefficients of the system (6) are not greater than

T � (ρ + δD)(5(ρ + 1)2(ρ + δD) − 23)2(ρ + 1)5(ρ+1)2(ρ+δD)−21h(D)

≤ 25(ρ + δD)3(ρ + 1)5(ρ+δD)3−17h(D).

The system (6) contains 4nρ(ρ + δD) ≤ 4ρ2(ρ + δD) variables and thus the rank of the 
system (6) is not greater than 4ρ2(ρ + δD). Notice that the system (6) has a nonzero 
solution due to Corollary 3.8. Therefore by Corollary 2.14, the system (6) has a nonzero 
solution c̄ with

h(c̄) ≤ (4ρ2(ρ + δD))2(4ρ2(ρ + δD) + 1)T ≤ 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−11h(D).

Let λ be a nonzero coordinate of c̄ and set a = c̄/λ. Then g(a) is the desired element. �
Proposition 3.12. Let a be as in Proposition 3.11 and let ρ, δD, h(D) be as in Notation 3.4. 
Suppose that Q1 ∈ K[X, Z], Q2 ∈ K[Y, Z] are nonzero irreducible polynomials such that 
Q1(x, g(a)/q(x)) = 0 and Q2(y, g(a)/q(x)) = 0. Then

h(Q1), h(Q2) ≤ 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−9h(D).

Proof. Suppose that a = (. . . , al,j , . . . ). Set

G(X,Y, Z) = q(X)Z −
n−1∑
j=0

4ρ(ρ+δD)−1∑
l=0

al,jX
lY j .

Then deg(G, X) ≤ 4ρ(ρ + δD) − 1 and g(a)/q(x) is a solution of G(x, y, Z) = 0. Denote 
R = resY (P, G). Since P (X, Y ) is irreducible and it does not divide G(X, Y, Z), R is 
nonzero. Furthermore R(x, g(a)/q(x)) = 0 and then Q1 divides R. Now let us estimate 
the height of q(X). Suppose that b1, . . . , bd are all roots of q(X) = 0 where d = deg(q). 
Then bi is either a zero of d(X) or it is equal to πp(x) for some p ∈ supp(D). In the 
first case, h(bi) ≤ (2ρ − 1)h(P ) by Corollary 2.12 and in the second case h(bi) ≤ h(D). 
Therefore h(bi) ≤ (2ρ − 1)h(D). Each coefficient of q(X) is a homogeneous polynomial 
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in 1, b1, . . . , bd of degree d. By Proposition 2.9, h(q(X)) ≤ dh((1 : b1 : · · · : bd)). Due to 
Corollary 2.11, h((1 : b1 : · · · : bd)) ≤

∑d
i=1 h(bi). Since d = deg(q) ≤ ρ(ρ + δD),

h(q(X)) ≤ d

d∑
i=1

h(bi) ≤ d2(2ρ− 1)h(D) ≤ (ρ + δD)2(2ρ3 − ρ2)h(D).

Let c be a point in some projective space with the coefficients of q(X) and all al,j as 
coordinates. By Corollary 2.11,

h(c) ≤ h(q) + h(a)

≤ (ρ + δD)2(2ρ3 − ρ2)h(D) + 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−11h(D)

≤ 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−10h(D).

Equivalently, h(G) ≤ 1600(ρ + δD)6(ρ +1)5(ρ+δD)3−10h(D). Due to Proposition 2.15 and 
Corollary 2.12, one has that

h(Q1) ≤ h(R) ≤ deg(G,Y )h(P ) + deg(P, Y )h(G)

≤ (ρ− 1)h(D) + 1600ρ(ρ + δD)6(ρ + 1)5(ρ+δD)3−10h(D)

≤ 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−9h(D).

Using a similar argument, one has that

h(Q2) ≤ deg(G,X)h(P ) + deg(P,X)h(G)

which is also less than 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−9h(D). �
4. Main result

Throughout this section, let K, h be as in Section 3 and L stands for an algebraic 
function field of one variable over K, i.e. L = K(x, y) where x is transcendental over 
K and [L : K(x)] < ∞. Suppose that p is a place of L over K. Let πp be defined as 
in Section 2.1. We start with a height inequality for points on an algebraic curve of 
special type. This inequality is an easy corollary of Proposition on page 14 of [18]. For 
completeness, we present a detailed proof and estimate the constant term.

Proposition 4.1. Suppose that Q is a nonzero polynomial in K[X, Y ] satisfying deg(Q, Y ) =
tdeg(Q). Then for each (α, β) ∈ K2 with Q(α, β) = 0,

h(β) ≤ h(α) + h(Q).
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Proof. Suppose that n = tdeg(Q). Let m0, . . . , m� be all monomials in X, Y of total 
degrees not greater than n. Without loss of generality, we assume that m0 = 1 and 
m� = Y n. Write Q = cY n+

∑�−1
i=0 bimi where c, bi ∈ K and c �= 0. In Proposition 2.9, we 

take r = 1, s1 = � − 1, Φ = (X1,0 : · · · : X1,�−1 : −1
c

∑�−1
i=0 biX1,i) and a = (1 : m1(α, β) :

· · · : m�−1(α, β)). Then Φ(a) = (m0(α, β) : · · · : m�(α, β)) and by Propositions 2.16
and 2.9, one has that

nh((1 : α : β)) = h(Φ(a)) ≤ h(a) + h(Φ) = h(a) + h(Q). (7)

Let n0, . . . , nm be all monomials in X, Y of total degrees not greater than n − 1. One 
can check that there are nd1 , . . . , ndn

such that Xndi
�= nj for any i, j and

{mi | i = 0, . . . , �− 1} = {ni | i = 0, . . . ,m} ∪ {Xndi
| i = 1, . . . , n},

where � = m + n + 1. In Proposition 2.9, we take r = 2, s1 = 1, s2 = m, Φ = (φ0 : · · · :
φ�−1) with φi = X1,0X2,i for i = 0, . . . , m and φi = X1,1X2,di−m

for i = m +1, . . . , � − 1, 
a1 = (1 : α) and a2 = (n0(α, β) : · · · : nm(α, β)). Reordering the subscripts if necessary, 
we may assume that

(m0, . . . ,mm+n) = (n0, . . . ,nm, Xnd1 , . . . , Xndn
).

We then have that Φ(a1, a2) = a and

h(a) = h(Φ(a1,a2)) ≤ h(a1) + h(a2) = h(α) + h(a2). (8)

By Proposition 2.16 again, h(a2) = (n − 1)h((1 : α : β)). This together with (7) and (8)
yields that

h((1 : α : β)) ≤ h(α) + h(Q).

The proposition then follows from the fact that h(β) ≤ h((1 : α : β)). �
As a corollary, we have the following quasi-equivalence of heights for points on an 

algebraic curve of special type.

Corollary 4.2. Suppose that Q =
∑m

i=0
∑n

j=0 ai,jX
iY j with ai,j ∈ K, m = deg(Q, X)

and n = deg(Q, Y ). Assume that for all 0 ≤ i ≤ m and 0 ≤ j ≤ n if ai,j �= 0 then 
mj + ni ≤ mn. Then for each (α, β) ∈ K2 with Q(α, β) = 0,

nh(β) −mnh(Q) ≤ mh(α) ≤ nh(β) + mnh(Q).

Proof. Set Q̃ =
∑m

i=0
∑n

j=0 ai,jX
niY mj . Then deg(Q̃, Y ) = deg(Q̃, X) = tdeg(Q̃) and 

h(Q̃) = h(Q). Suppose that (α, β) ∈ K2 satisfies Q(α, β) = 0. Then Q̃(α1/n, β1/m) = 0. 
By Proposition 4.1, h(β1/m) ≤ h(α1/n) +h(Q̃). By Proposition 2.7, one has that nh(β) ≤
mh(α) + mnh(Q). Similarly, one has that mh(α) ≤ nh(β) + mnh(Q). �
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The polynomial Q usually does not satisfy the assumption of Proposition 4.1, i.e. 
deg(Q, Y ) = tdeg(Q). In order to apply Proposition 4.1, Eremenko proved in [9] that 
if div(y)− ≤ div(x)− then the irreducible polynomial Q with Q(x, y) = 0 satisfies 
deg(Q, Y ) = tdeg(Q). The following lemma is a generalization of Lemma 1 in [9].

Lemma 4.3. Assume that Q ∈ K[X, Y ] is a nonzero polynomial irreducible over K and 
f, g ∈ L \K satisfying Q(f, g) = 0. Suppose that

m1div (τ1(f))− ≤ m2div (τ2(g))−

where m1, m2 are positive integers and τ1, τ2 are two linear fractional transformations 
with coefficients in Q. Then for every place p of L over K,

m1h(πp(f)) ≤ m2h(πp(g)) + m1m2h(Q).

Proof. Write τ1(X) = a1X+b1
c1X+d1

, τ2(Y ) = a2Y +b2
c2Y +d2

with ai, bi, ci, di ∈ Q and aidi− bici �= 0. 
Denote f̄ = τ1(f)m1 and ḡ = τ2(g)m2 . Let Q̄ ∈ K[Z1, Z2] be a nonzero irreducible 
polynomial such that Q̄(f̄ , ̄g) = 0. Set

H1 = (c1X + d1)m1Z1 − (a1X + b1)m1 ,

H2 = (c2Y + d2)m2Z2 − (a2Y + b2)m2 ,

R1(Z1, Y ) = resX(H1, Q(X,Y )), R2(Z1, Z2) = resY (H2, R1(Z1, Y )).

As Q does not divide H1, R1 �= 0. Similarly, R2 �= 0. Moreover, one can easily check that 
R2(f̄ , ̄g) = 0. Hence Q̄ divides R2. By Proposition 2.15 and Corollary 2.12, one has that

h(Q̄) ≤ h(R2) ≤ deg(R1, Y )h(H2) + deg(H2, Y )h(R1)

≤ deg(H2, Y )(deg(H1, X)h(Q) + deg(Q,X)h(H1))

= deg(H2, Y ) deg(H1, X)h(Q) = m1m2h(Q).

Since div(f̄)− ≤ div(ḡ)−, deg(Q̄, X) = tdeg(Q̄) by the Proposition 2 in [9]. If a place 
p is not a pole of ḡ then it is not a pole of f̄ too. For such places, the lemma follows 
from Propositions 4.1, 2.7 and Corollary 2.10. We are left to consider the case in which 
p is a pole of ḡ. Suppose that p is a pole of ḡ. If p is also a pole of f then h(πp(f)) = 0
and there is nothing to prove. Assume that p is not a pole of f . If p is a pole of g then 
πp(f) is a zero of Q̃(X, 0), where Q̃ = Y rQ(X, 1/Y ) and r is the smallest integer such 
that Q̃ ∈ K[X, Y ], and thus h(πp(f)) ≤ h(Q̃) = h(Q) and we are done. Now suppose 
that p is not a pole of g. Since p is a pole of ḡ, c2πp(g) + d2 = 0, i.e. πp(g) = −d2/c2. 
Applying πp to Q(f, g) = 0 yields that πp(f) is a solution of Q(X, −d2/c2) = 0. Write 
Q =

∑�
i=0 Ai(Y )Xi where Ai(Y ) =

∑s
j=0 ai,jY

j ∈ K[Y ]. Note that Ai(−d2/c2) viewed 
as a polynomial in the ai,j is either 0 or homogeneous in the ai,j of degree 1 with 
coefficients in Q. By Proposition 2.9,
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h(Q(X,−d2/c2)) = h((A0(−d2/c2) : · · · : A�(−d2/c2)))

≤ h((· · · : ai,j : · · · )) = h(Q).

Hence h(πp(f)) ≤ h(Q(X, −d2/c2)) ≤ h(Q) and the lemma holds. �
Lemma 4.4. Assume S is a finite set of places of L over K and f ∈ L. Then there are 
c1, c2 ∈ Q with c2 �= 0 such that

supp
(

div
(

f

c1f + c2

)−)
∩ S = ∅.

Proof. Set

M = {πp(f) | ∀ p ∈ S with ordp(f) ≥ 0} .

Then M is a finite subset of K. Let c1, c2 ∈ Q satisfy that c2 �= 0 and c1a + c2 �= 0 for 
all a ∈ M . For p ∈ S with ordp(f) ≥ 0, one has that

πp(c1f + c2) = c1πp(f) + c2 �= 0, i.e. ordp(c1f + c2) = 0.

This implies that ordp(f/(c1f + c2)) = ordp(f) ≥ 0 for all p ∈ S with ordp(f) ≥ 0. On 
the other hand, for p ∈ S with ordp(f) < 0, one has that

ordp(f/(c1f + c2)) = ordp(f) − ordp(c1f + c2) = ordp(f) − ordp(f) = 0.

In either case, p is not a pole of f/(c1f + c2). Thus c1, c2 have the desired property. �
Lemma 4.5. Suppose that P is a nonzero irreducible polynomial of total degree ρ in 
K[X, Y ] satisfying P (x, y) = 0 and d(X) is the discriminant of P with respect to Y . 
Let x̄ = x/(c1x + c2) where c1, c2 ∈ Q with c2 �= 0. Then

h(πp(x)) ≤ 2ρh(P )

for each p ∈ supp(div(x)−) ∪ supp(div(x̄)−) ∪ supp(div(y)−) ∪ supp(div(d(x))).

Proof. Suppose that πp(x) = ∞. Then h(πp(x)) = 0 and the lemma is clear. In the 
following suppose that πp(x) �= ∞. Suppose that p ∈ supp(div(x̄)−). Then πp(c1x +
c2) = c1πp(x) + c2 = 0 and so πp(x) = −c2/c1. Hence h(πp(x)) = 0 and thus the 
lemma holds. Suppose that p ∈ supp(div(y)−). Then πp(y) = ∞ and (πp(x), 0) is a 
zero of P̄ = Y rP (X, 1/Y ) where r is the smallest integer such that Y rP (X, 1/Y ) ∈
K[X, Y ]. In other word, πp(x) is a zero of P̄ (X, 0). Note that h(P̄ ) = h(P ). Hence 
h(πp(x)) ≤ h(P̄ (X, 0)) ≤ h(P ) ≤ 2ρh(P ). Finally, suppose that supp(div(d(x))) �= ∅, i.e. 
d(x) /∈ K and p ∈ supp(div(d(x))). If p is a pole of d(x) then it is a pole of x and we are 
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already done. Suppose that p is a zero of d(x). Then πp(d(x)) = 0 which implies that 
d(πp(x)) = 0. Hence h(πp(x)) ≤ h(d(X)) ≤ 2ρh(P ). �

Now we are ready to prove the main result of this paper.

Theorem 4.6. Let P be an irreducible polynomial in K[X, Y ] of degree m with respect to 
X and of degree n with respect to Y . Suppose that ρ = tdeg(P ) and 0 < ε < 1. Then for 
every a, b ∈ K with P (a, b) = 0, one has that

(1 − ε)nh(b) − C ≤ mh(a) ≤ (1 + ε)nh(b) + C

where

C = 75 · 213 · (1/ε)6(ρ + 1)
40(ρ+1)9

ε3 h(P ).

Proof. Let L be the field of fractions of K[X, Y ]/(P ). Then L is an algebraic function 
field of one variable over K. Set x = X+(P ) and y = Y +(P ). Then P (x, y) = 0. Choose 
c1, c2 ∈ Q with c2 �= 0 such that

supp(div(x/(c1x + c2))−) ∩ supp(div(y)−) = ∅.

Such c1, c2 exist because of Lemma 4.4. Let λ2 be the smallest integer not less than ρ
2ε

and let λ1 be the largest integer not greater than λ2 + ρ/2. Then ρ
2ε ≤ λ2 < ρ

2ε + 1 and 
λ2 + ρ/2 − 1 < λ1 ≤ λ2 + ρ/2. These imply that

λ1 − λ2 ≥ ρ

2 − 1, λ1

λ2
≤ 1 + ε, λ1 + λ2 ≤ 2(ρ + 1)

ε
. (9)

Set x̄ = x/(c1x + c2) and

D = λ1ndiv(y)− − λ2mdiv(x̄)−.

Note that deg(div(y)−) = [L : K(y)] = m and deg(div(x̄)−) = [L : K(x̄)] = n. One sees 
that

deg(D) = λ1nm− λ2nm = (λ1 − λ2)nm.

As nm ≥ n + m − 1 ≥ ρ − 1 and λ1 − λ2 ≥ ρ/2 − 1, deg(D) ≥ (ρ − 1)(ρ − 2)/2 is not 
less than the genus of P (X, Y ) = 0. Consequently, LK(D) �= {0}. Let δD, h(D) be as 
in Notation 3.4. Then h(D) ≤ 2ρh(P ) by Lemma 4.5 and by (9), δD = (λ1 + λ2)nm <
2(1 + ρ)ρ2/ε.

Due to Proposition 3.11, LK(D) contains a nonzero element z = g(a)/q(x), i.e. 
div(z) + D ≥ 0, where g(a) is of the form (5). As supp(div(x̄)−) ∩ supp(div(y)−) = ∅, 
one sees that
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div(z)− ≤ λ1ndiv(y)−, λ2mdiv(x̄)− ≤ div(z)+ = div(1/z)−.

Suppose that Q1 ∈ K[X, Z], Q2 ∈ K[Y, Z] are nonzero irreducible polynomials such that 
Q1(x, z) = 0 and Q2(y, z) = 0. By Proposition 3.12, one has that

h(Q1), h(Q2) ≤ 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−9h(D) � T.

Let p be a place of L over K such that πp(x) = a and πp(y) = b. By Lemma 4.3,

h(πp(z)) ≤ λ1nh(b) + λ1nh(Q2),

λ2mh(a) ≤ h(πp(z)) + λ2mh(Q1).

The above two inequalities imply that

λ2mh(a) ≤ λ1nh(b) + λ1nh(Q2) + λ2mh(Q1).

In other words, mh(a) ≤ (λ1/λ2)nh(b) + (m + nλ1/λ2)T . Note that by (9) λ1/λ2 ≤
1 + ε ≤ 2. One has that

mh(a) ≤ (1 + ε)nh(b) + 3ρT. (10)

Note that ρ + δD ≤ ρ + 2(ρ + 1)ρ2/ε < 2(ρ + 1)3/ε. One sees that

3ρT = 3ρ× 1600(ρ + δD)6(ρ + 1)5(ρ+δD)3−9h(D)

≤ 9600ρ2(2(ρ + 1)3/ε)6(ρ + 1)5(ρ+2(ρ+1)ρ2/ε)3−9h(P )

≤ 9600 · 26 · (1/ε)6(ρ + 1)5(ρ+2(ρ+1)ρ2/ε)3+11h(P )

≤ 75 · 213 · (1/ε)6(ρ + 1)
40(ρ+1)9

ε3 h(P ) � C.

The last inequality holds because

5(ρ + 2(ρ + 1)ρ2/ε)3 + 11 < 5(ρ + 2(ρ + 1)ρ2/ε + 2)3 < 40(ρ + 1)9(1/ε)3.

Set D̃ = λ2mdiv(x̄)− − (2λ2 − λ1)ndiv(y)−. Then

λ2 − (2λ2 − λ1) = λ1 − λ2 ≥ ρ

2 − 1,

2λ2 − λ1

λ2
= 2 − λ1

λ2
≥ 1 − ε,

λ2 + 2λ2 − λ1 = 3λ2 − λ1 ≤ 2λ2 −
ρ

2 + 1 <
2(ρ + 1)

ε
.

Using a similar argument, one has that
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(1 − ε)nh(b) ≤ mh(a) + C. (11)

Combining (11) with (10) yields the conclusion. �
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