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Abstract Let F be an irreducible differential polynomial over k(t) with k being an algebraically

closed field of characteristic zero. The authors prove that F = 0 has rational general solutions if

and only if the differential algebraic function field over k(t) associated to F is generated over k(t) by

constants, i.e., the variety defined by F descends to a variety over k. As a consequence, the authors

prove that if F is of first order and has movable singularities then F has only finitely many rational

solutions.
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1 Introduction

Let K be a differential field of characteristic zero. Differential descent theory asks whether
a differential algebraic variety over K can descend to an algebraic variety over CK , the field
of constants of K, and it is viewed as a differential analogue of Shimura-Matsusaka theory
of fields of moduli. This theory is initiated by Matsuda in [1, 2] for first order algebraic
differential equations and further developed by Buium for higher order and partial differential
equations. Let F be the differential algebraic function field over K associated to some irreducible
differential algebraic variety. Then the descent problem is equivalent to the one asks whether
F is generated over K by constants. In the case when K is an ordinary differential field and
tr.deg(F/K) = 1, Matsuda in [1, 2] and Nishioka in [3] proved that F has no movable singularity
if and only if there is an algebraic extension L of K such that F(L) is generated over L by
constants. In [4], Buium proved the higher dimension and partial differential version of the
results of Matsuda and Nishioka.
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This paper is mainly concerned about algebraic ordinary differential equations with rational
general solutions. Rational solutions are of special interest in the community of symbolic
computation. Algorithms have already been well-developed for linear differential equations
(e.g., see [5–8] ). However, the situation is quite different in the case of nonlinear differential
equations. Although a few algorithms have been developed to deal with the equations of special
types, there is no complete algorithm to find all rational solutions so far even if we restrict
ourselves to the first order equations. In [9], the authors succeeded in computing all rational
(algebraic) solutions of first order autonomous differential equations by introducing an algebro-
geometric method. Since then, this method has partially been generalized into the general first
order differential equations and partial differential equations (e.g., see [10–13]). The readers are
referred to [14] for a survey of the recent developments in this direction. Theoretically, in order
to find all rational solutions, one only needs to compute a degree bound for all rational solutions
and then reduce the problem to solving algebraic equations via the method of undetermined
coefficients. Eremenko proved in [15] that such degree bound exists for a first order differential
equation. Recently, Freitag and Moosa in [16] showed that all algebraic solutions of first order
differential equations are of bounded height.

In this paper, we shall investigate the differential descent problem for ordinary differential
equations with rational general solutions. We prove that a given ordinary differential equation
F = 0 has rational general solutions if and only if the differential algebraic function field
associated to F is generated over the base field by constants. We also prove that F = 0
has algebraic general solutions if the corresponding function field contains enough arbitrary
constants. The paper is organized as follows. In Section 2, we introduce some basic notations
and results of differential algebra. In Section 3, we present our main results. In Section 4, we
restrict ourselves to the first order case. We prove that if F = 0 has movable singularities then
F = 0 has only finitely many rational solutions.

2 Preliminaries

In this section, we introduce some basic notations and results of differential algebra. The
readers are referred to [2, 17, 18] for details.

Definition 2.1 A derivation on a ring R is a map δ : R → R satisfying that for all
a, b ∈ R,

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b).

A ring equipped with a derivation is called a differential ring. A differential ring R is called a
differential field if R is a field. An ideal I ⊂ R is called a differential ideal if δ(I) ⊂ I. Let R be
a differential ring (resp. field) with derivation δ. Then the set {c ∈ R | δ(c) = 0} is a subring
(resp. subfield) of R, which is called the ring (resp. field) of constants of R and denoted by CR.

Throughout this paper, k stands for an algebraically closed field of characteristic zero and
K = k(t) denotes the field of rational functions in t. Let δ denote the usual derivation with
respect to t. Then K becomes a differential field. We shall use K{y} to denote the differential
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polynomial ring over K in the differential indeterminate y, i.e., K{y} = K[y0, y1, · · · ] with
y0 = y and δ(yi) = yi+1 for any i ≥ 0. Let F ∈ K{y} \ K be a differential polynomial. Then
there is a unique nonnegative integer d such that F ∈ K[y0, y1, · · · , yd] \ K[y0, y1, · · · , yd−1].
This unique integer is called the order of F and denoted by ord(F ). When ord(F ) = 1, we
call F a first order differential polynomial. We shall use [F ] to denote the differential ideal in
K{y} generated by F , i.e. the smallest differential ideal in K{y} containing F . We use 〈F 〉 to
stand for the algebraic ideal in K[y0, y1, · · · , yd] generated by F , where d = ord(F ). For any η

in some differential extension field of K, K〈η〉 stands for the differential field generated over K

by η, i.e. the smallest differential field containing K and η.
Let F be a differential polynomial of order d and assume that it is irreducible as an algebraic

polynomial in y0, y1, · · · , yd. One may expect to construct a function field associated to F by
the standard procedure. However, [F ] is not always a prime differential ideal. So K{y}/[F ] may
not be a domain and the standard procedure may not work for the differential case. Ritt in [18]
introduced the notion of the general component of F by which one can construct a functional
field. Denote

ΣF = {A ∈ K{y}| ∃m > 0 s.t. SmAm ∈ [F ]} ,

where S = ∂F/∂yd is called the separant of F . ΣF is called the general component of F = 0.
It was proved on page 31 of [18] that ΣF is a prime differential ideal. Then the quotient
ring K{y}/ΣF is a differential domain and the field of its fractions is a differential field. We
shall view this differential field as a function field associated to F . On the other hand, since
F is irreducible, K[y0, y1, · · · , yd]/〈F 〉 is a domain. In general, the quotient rings K{y}/ΣF

and K[y0, y1, · · · , yd]/〈F 〉 are not isomorphic, because K{y}/ΣF is not a finitely generated
K-algebra. However the following lemma shows that the fields of fractions of K{y}/ΣF and
K[y0, y1, · · · , yd]/〈F 〉 are isomorphic.

Lemma 2.2 Assume that F ∈ K{y} is an irreducible differential polynomial of order d.
Then the fields of fractions of K{y}/ΣF and K[y0, y1, · · · , yd]/〈F 〉 are isomorphic.

Proof Denote by F1 and F2 the fields of fractions of K{y}/ΣF and K[y0, y1, · · · , yd]/〈F 〉
respectively. Consider the natural homomorphism

π : K[y0, y1, · · · , yd] −→ K{y}/ΣF

f −→ f + ΣF .

Due to Rosenfeld’s Lemma in [19], ker(π) = ΣF ∩ K[y0, y1, · · · , yd] = 〈F 〉. Hence, the quotient
ring K[y0, y1, · · · , yd]/〈F 〉 can be embedded into K{y}/ΣF , and then F2 can be considered as
a subfield of F1. One sees easily that as the extension fields of K(y0, y1, · · · , yd−1),

[F1 : K(y0, y1, · · · , yd−1)] ≤ [F2 : K(y0, y1, · · · , yd−1)] = deg(F, yd)

where deg(F, yd) denotes the degree of F in yd. Therefore, F1 = F2.

Definition 2.3 Any field that is isomorphic to the field of fractions of K{y}/ΣF is called
the differential algebraic function field over K associated to F . Throughout this paper, we shall
denote by F the differential algebraic function field over K associated to F .
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Let U be a universal extension of K (see Theorem 2 on page 134 of [17]). A zero of ΣF is
an element in U which annihilates every differential polynomial in ΣF . A zero η ∈ U of ΣF is
called a generic zero of ΣF if

ΣF = {P ∈ K{y}|P (η) = 0} .

It is well-known that given a differential ideal distinct from K{y}, it has a generic zero if and
only if it is prime. Now suppose that η is a generic zero of ΣF then the field of fractions of
K{y}/ΣF is isomorphic to K〈η〉 as differential fields. Hence, K〈η〉 is the differential function
field associated to F .

Definition 2.4 A generic zero η of ΣF is called a rational general solution of F = 0 if η

is rational in t, i.e.,

η =
u0 + u1t + · · · + untn

v0 + v1t + · · · + tm
,

where ui, vj ∈ U are constants. η is called an algebraic general solution of F = 0 if η is algebraic
over K(CU )(= CU (t)).

3 Main Results

In this section, we shall prove that F = 0 has rational general solutions if and only if F is
generated over K by constants. Let us first introduce some notations from [9]. For nonnegative
integers n, m, set

Mn,m(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
n+1

0

)
yn+1

(
n+1

1

)
yn · · · (

n+1
m

)
yn+1−m(

n+2
0

)
yn+2

(
n+2

1

)
yn+1 · · · (

n+2
m

)
yn+2−m

...
...

. . .
...

(
n+m+1

0

)
yn+m+1

(
n+m+1

1

)
yn+m · · · (

n+m+1
m

)
yn+1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where
(
n+j
m

)
= 0 if m > n + j. Let Dn,m = det(Mn,m). Lemma 3 of [9] implies that the

solutions y in U of Dn,m = 0 are of the following form

y =
antn + · · · + a0

bmtm + · · · + b0
,

where ai, bj ∈ U are constants, and conversely the proof of that lemma implies that all rational
functions of the above form are solutions of Dn,m = 0.

Lemma 3.1 Assume that η ∈ K(CU). Then K〈η〉 is generated over K by constants.

Proof If η = 0, there is nothing to prove. Assume that η �= 0. Write η = P/Q where

P = tn + un−1t
n−1 + · · · + u0, Q = vmtm + · · · + v0, ui, vj ∈ CU .

Without loss of generality, we may assume that P and Q are coprime. We shall prove that
K〈η〉 = K(u0, u1, · · ·, un−1, v0, v1, · · ·, vm). For this, it suffices to show that ui, vj ∈ K〈η〉.
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Differentiating both sides of Qη = P successively yields that

(Qη)(j) = P (j), j = 0, 1, · · · , n, (1)

(Qη)(n+j) = 0, j = 1, 2, · · · , m, (2)

where the superscript ∗(i) denotes the i-th derivative of ∗ with respect to δ. Note that Q(l) = 0
when l > m and

(
n+j

l

)
= 0 when l > n + j. We have that

(Qη)(n+j) =
n+j∑
l=0

(
n + j

l

)
Q(l)η(n+j−l) =

m∑
l=0

(
n + j

l

)
Q(l)η(n+j−l).

Hence, the equations in (2) together with (Qη)(n) = n! can be rewritten in the following matrix
form:

Mn−1,m(η)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 t · · · tm

0 1 · · · mtm−1

...
...

. . .
...

0 0 · · · m!

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
W

⎛
⎜⎜⎜⎜⎜⎜⎝

v0

v1

...

vm

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

n!

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the degree of the numerator of η in t equals n, Lemma 3 of [9] implies that Dn−1,m(η) �= 0.
Therefore W is invertible. This implies that all vi belong to K〈η〉. By the equations (1), one
immediately sees that all ui are in K〈η〉.

Proposition 3.2 F = 0 has rational general solutions if and only if F is generated over
K by constants.

Proof Let η be a generic zero of ΣF , then F = K〈η〉. As η is rational in t, i.e., η ∈ K(CU ),
due to Lemma 3.1, K〈η〉 is generated over K by constants. The “if part” is obvious.

Remark 3.3 Assume that F = K(c1, c2, · · · , cm) where the ci are constants, i.e., ci ∈ CF .
Denote by J the vanishing ideal of (c1, c2, · · · , cm) in K[z1, z2, · · · , zm]. We claim that J

is generated by J ∩ CK [z1, z2, · · · , zm]. To see this, let J̃ be the ideal in K[z1, z2, · · · , zm]
generated by J ∩ CK [z1, z2, · · · , zm]. Suppose that J \ J̃ �= ∅ and f ∈ J \ J̃ . Without loss of
generality, we may assume that f has minimal number of terms among all elements in J \ J̃

and one of the coefficients of f is equal to 1. As f(c1, c2, · · · , cm) = 0, one has that

0 = δ(f(c1, c2, · · · , cm)) = fδ(c1, c2, · · · , cm),

where fδ denotes the polynomial obtained by applying δ to the coefficients of f . Then fδ ∈ J .
Note that fδ has less number of terms than f . Hence fδ ∈ J̃ . Moreover fδ �= 0, because f /∈ J̃ .
As all monomials in fδ already appear in f , there is λ ∈ K such that f − λfδ has less number
of terms than f . However, this implies that f − λfδ ∈ J̃ and thus f ∈ J̃ , a contradiction. This
proves our claim. The claim implies that F is the algebraic function field associated to a variety
defined over CK . Remark that by Lemma 2.2 F is the algebraic function field associated to
the variety defined by F viewed as a polynomial in y, δ(y), · · · , δo(y) with o = ord(F ). In the
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geometric point of view, Proposition 3.2 states that F = 0 has rational general solutions if and
only if the variety defined by F over K is birationally equivalent over K to a variety defined
over CK .

If we replace “rational general solutions” by “algebraic general solutions” in the above
proposition, the assertion does not hold anymore even if K is replaced by its finite extension.

Example 3.4 Let K = C(t) and F = 2yy1 − 1. Then η =
√

t + c is an algebraic general
solution of F = 0, where c is a constant transcendental over K. Suppose that there is α ∈ C(t)
such that the differential algebraic function field over K(α) associated to F , denoted by F ′,
is generated over K(α) by constants, where C(t) is the algebraic closure of C(t). Since the
transcendental degree of F ′ over K(α) equals one, due to the Primitive Element Theorem, we
have that

F ′ = K(α)〈η〉 = K(α, η) = K(α, c1, c2),

where ci are constants in U . Note that η2 − t = c. Hence, η2 − t is a constant that is
transcendental over K(α). So one of the ci, say c1, can be chosen to be η2 − t. Let P be an
irreducible polynomial in K(α)[z1, z2] satisfying that P (c1, c2) = 0. Since both c1 and c2 are
constants, P can be chosen to be a polynomial with coefficients in CK(α)(= C). Furthermore
as

[F ′ : K(α, c1)] = [K(α, η) : K(α, η2 − t)] = 2,

deg(P, z2) = 2. Under a suitable transformation if necessary, we may assume that

c2
2 −

r(c1)
s(c1)

= 0,

where r, s ∈ C[z] are coprime and not all r, s are the square of some polynomial in C[z]. On
the other hand, c2 = g(η)/h(η) where g, h ∈ K(α)[z] are coprime. Hence, we have that

(
g(η)
h(η)

)2

=
r(η2 − t)
s(η2 − t)

.

Because r, s have coefficients in C, one sees that r(η2−t), s(η2−t) are still coprime as polynomials
in η. Without loss of generality, we may assume that r, g are monic. Then we have that

r(η2 − t) = g(η)2, s(η2 − t) = h(η)2.

Again because r, s have coefficients in C, the above equalities imply that both r and s are the
squares of some polynomials in C[z], a contradiction.

On the other hand, we have the following result.

Proposition 3.5 If tr.deg(CF/CK) = ord(F ) then F = 0 has algebraic general solutions.

Proof Assume that d = ord(F ) and {a1, a2, · · · , ad} is a transcendence basis of CF over
CK . We claim that a1, a2, · · · , ad are algebraically independent over K. Otherwise, there is a
nonzero polynomial P ∈ K[z1, z2, · · · , zd] such that P (a1, a2, · · · , ad) = 0. Write

P =
s∑

j=1

αjz
l1,j

1 z
l1,j

2 · · · zld,j

d ,
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where αj ∈ K and (l1,i, l2,i, · · · , ld,i) �= (l1,j , l2,j , · · · , ld,j) if i �= j. Then the equality P (a1, a2,

· · · , ad) = 0 implies that the set {al1,j

1 a
21,j

2 · · · ald,j

d |j = 1, 2, · · · , s} is linearly dependent over
K. Due to Corollary 1 on page 87 of [17], CF and K are linearly disjoint over CK . Hence
the set {al1,j

1 a
l1,j

2 · · · ald,j

d |j = 1, 2, · · · , s} is linearly dependent over CK . This implies that
a1, a2, · · ·, ad are algebraically dependent over CK . This contradicts to the assumption. Note
that tr.deg(F/K) = ord(F ) = d. So

[F : K(a1, a2, · · · , ad)] < ∞.

Therefore, F has a generic zero that is algebraic over K(a1, a2, · · · , ad), i.e., it has an algebraic
general solution.

4 First Order Ordinary Differential Equations

Let F be an irreducible first order differential polynomial with coefficients in K. In this
section, we shall prove that if F = 0 has infinitely many rational solutions then the differential
function field F is generated over K by constants and thus F = 0 has no movable singularity.
As a corollary, if F = 0 has infinitely many rational solutions then it is of special form (3).
The notion of movable singularities plays an important role in the classification of algebraic
differential equations and the differential descent theory. It was first introduced by Fuchs from
the analytic viewpoint. Roughly speaking, an integral of a differential equation is said to have
movable singularities if this integral has a branch point whose location is “movable”, i.e., the
location depends on the initial condition. In [2], Matsuda presented an algebraic definition of
movable singularities and reproduced many classical results of first order algebraic differential
equations via an abstract treatment. The Matsuda’s treatment has been extended to higher
order and partial differential equations by Buium in [4]. As we will focus on first order algebraic
differential equations, we shall only introduce the algebraic definition of movable singularities
given by Matsuda in [2]. For brevity, we sometimes use ′ to denote the differentiation.

Lemma 2.2 implies that F is not only a differential field but also an algebraic function field
of one variable over the field K. A V -ring of F over K is a subring D of F satisfying that

1) K ⊂ D;
2) D �= F ;
3) if a ∈ F \ D, then a−1 ∈ D.
One may wonder whether every V -ring is a differential subring of F , i.e., V ′ ⊂ V . The

following example shows that this is not always true.

Example 4.1 Let K = C(t) and F = yy′ − 1. Then F = K(y) with y′ = 1/y and the set

D =
{

f(y)
g(y)

∣∣∣∣ f, g ∈ K[y], gcd(f, g) = 1 and y does not divide g(y)
}

is a V -ring which is not closed under the differentiation ′, because y ∈ D but y′ = 1/y /∈ D.

In [2] (see Theorem 11 on page 70), Matsuda proved that there are only finitely many V -
rings of F that are not closed under the differentiation and he introduced the following algebraic
definition of movable singularities.
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Definition 4.2 ([2], Definition on page 7) F = 0 (or F) is said to have no movable
singularity if each V -ring of F is closed under differentiation.

The Fuchs’ theorem states that if F (or F ) has no movable singularity then F must be of
special form.

Theorem 4.3 ([2], Theorem 2 on page 11) Let x be an element of F which is transcen-
dental over K. Denote by f(Y ) the minimal polynomial of x′ over K(x):

f(Y ) = Y n +
n∑

i=1

ai(x)Y n−i, ai(x) ∈ K(x). (3)

If F has no movable singularity, then ai(x) ∈ K[x] and if ai(x) �= 0 then deg(ai(x)) ≤ 2i.

It was proved in [2] on page 29 that if F is generated over K by constants then F = 0 has
no movable singularity and therefore F is of the form (3). The following proposition states that
for a first order differential polynomial, it has rational general solutions if and only if it has
infinitely many rational solutions. Hence, by Proposition 3.2 and Theorem 4.3, if a first order
differential polynomial has infinitely many rational solutions then it has the form (3).

Proposition 4.4 If F = 0 has infinitely many rational solutions then all but finitely many
solutions of F = 0 are rational in t. In particular, the generic zeroes of ΣF are rational in t.

Proof Due to Theorem 1 of [15], there is an integer N such that all rational solutions of
F = 0 are of degree not greater than N . By reduction process (see page 6 of [18]), there exist
nonnegative integers μ, ν such that

Sμ
F Iν

FDN,N =
∑

Aiδ
i(F ) + R,

where IF is the leading coefficient of F in y1 and if R �= 0 then deg(R, y1) < deg(F, y1). As all
rational functions of degree not greater than N are solutions of DN,N = 0, all rational solutions
of F = 0 are solutions of DN,N = 0 and thus they are solutions of R = 0. This implies that
F and R have infinitely many common zeroes. However, since F is irreducible, if R �= 0 then
there are only finitely many common zeroes of F and R, a contradiction. Therefore, R = 0.
So except for the common solutions of F = 0 and Sμ

F Iν
F = 0 which are only finitely many, all

solutions of F = 0 are also solutions of DN,N = 0 and thus they are rational in t. Since the
generic zeroes of ΣF do not annihilate Sμ

F Iν
F , they are zeroes of DN,N and thus the second

assertion holds.
By Propositions 4.4 and 3.2, one immediately has the following corollaries.

Corollary 4.5 If F = 0 has infinitely many rational solutions, then F is of the form (3).
Moreover, if deg(F, y′) = 1, then

F = y′ + a2y
2 + a1y + a0, ai ∈ K,

i.e., it is a Riccati equation.

Corollary 4.6 If F = 0 has movable singularities then F = 0 has only finitely many
rational solutions.
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If the number of rational solutions of F = 0 is finite, one may ask whether one can give a
bound for it. Below are some examples.

Example 4.7 Let F = y′ +
∑n

i=0 aiy
i with ai ∈ C(t), an �= 0. Suppose that F = 0 has

only finitely many rational solutions.
1) Case n = 1: It is easy to see that F = 0 has at most one rational solution.
2) Case n = 2: F = 0 has at most two rational solutions. Actually, if F = 0 has three

distinct rational solutions, say f1, f2, f3, then any solution of F = 0 is of the form

c(f3 − f1)f2 − (f3 − f2)f1

c(f3 − f1) − (f3 − f2)
,

where c is an arbitrary constant.
3) Case n > 2: Corollary 4.5 implies that F = 0 always has only finitely many rational

solutions. One may expect that it has at most n rational solutions. Unfortunately, this is not
true. Let

F = y′ − 1
(tn − 1)t

(yn − 1)y.

Then 0, ω, ωt with ωn = 1 are 2n + 1 rational solutions of F = 0.

One can produce a naive bound for the number of rational solutions in the following way.
By Theorem 1 of [15], one computes an integer N for a bound of the degrees of all rational
solutions of F = 0. For 0 ≤ l ≤ N , set

fl(t) =
aN tN + · · · + a1t + a0

tl + bl−1tl−1 + · · · + b0
,

where ai, bj are indeterminates. Substituting fl(t) to F = 0 and clearing the denominators yield
a system Sl of polynomial equations in ai, bj . Let rl be the resultant of aN tN + · · ·+a1t+a0 and
tl + bl−1t

l−1 + · · ·+ b0 with respect to t. Let Tl = Sl ∪{rlz − 1}, and let (a, b, z) be a zero of Tl

where a = (aN , aN−1, · · · , a0) and b = (bl−1, bl−2, · · · , b0). Since rl(a, b) �= 0, the polynomials∑N
i=0 ait

i and tl +
∑l−1

i=0 bit
i are coprime. This implies that each zero of Tl produces a rational

solution of F = 0 with l as the degree of its denominator. Conversely, each rational solution
of F = 0 with l as the degree of its denominator will induce a zero of Tl. As F = 0 has only
finitely many rational solutions, Tl is a system of dimension zero. Elimination theory (see for
example Corollary 8.28 on page 347 of [20]) allows us to estimate the number of zeroes of Tl.
Now let sl be the number of zeroes of Tl and set

μ =
∑

0≤l≤N

sl + 1.

Then μ is a bound for the number of rational solutions of F = 0. Usually, the bound μ generated
by the above method depends not only on the degree of F but also on the coefficients of F

where F is viewed as a polynomial in t, y, y′.



DESCENT OF ODEs 2123

References

[1] Matsuda M, Algebraic differential equations of the first order free from parametric singularities

from the differential-algebraic standpoint, J. Math. Soc. Japan, 1978, 30: 447–455.

[2] Matsuda M, First Order Algebraic Differential Equations, LNM, Springer-Verlag Berlin Heidel-

berg, 1980, 804.

[3] Nishioka K, Algebraic differential equations of Clairaut type from the differential-algebraic stand-

point, J. Math. Soc. Japan, 1979, 31(3): 553–559.

[4] Buium A, Differential Function Fields and Moduli of Algebraic Varieties, LNM1226, Springer-

Verlag Berlin Heidelberg, 1986.

[5] Abramov S and Kvashenko K, Fast algorithm to search for the rational solutions of linear differ-

ential equations with polynomial coefficients, Proc. ISSAC1991, ACM Press, 1991, 267–270.

[6] Barkatou M A, On rational solutions of systems of linear differential equations, J. Symbolic

Computation, 1999, 28(4/5): 547–568.

[7] Li Z M and Schwarz F, Rational solutions of Riccati-like partial differential equations, J. Symbolic

Computation, 2001, 31: 691–719.

[8] Van der Put M and Singer M F, Galois Theory of Linear Differential Equations, Springer-Verlag,

Berlin Heidelberg, 2003.

[9] Feng R and Gao X G, Rational general solutions of algebraic ordinary differential equations,

Proc. ISSAC’04, ACM, New York, 2004, 155–162.

[10] Grasegger G, Lastra A, Sendra J R, et al., Rational general solutions of systems of first-order

algebraic partial differential equations, J. Computational and Applied Mathematics, 2018, 331:

88–103.
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