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ON THE COMPUTATION OF THE GALOIS GROUP

OF LINEAR DIFFERENCE EQUATIONS

RUYONG FENG

Abstract. We present an algorithm that determines the Galois group of lin-
ear difference equations with rational function coefficients.

1. Introduction

The current algorithms for computing the Galois groups of linear difference equa-
tions were only valid for equations of special types, such as second order equations,
equations of diagonal form or with constant coefficients and so on. In [11, 12], a
(q-)difference analogue of Kovacic’s algorithm was developed for linear (q-)difference
equations of order two. For the basic hypergeometric equations and Mahler equa-
tions of order two, algorithms were given in [23, 24]. In [31], algorithms for linear
difference equations of diagonal form were developed. For linear difference equa-
tions with constant coefficients, an algorithm can be found in [29], where the author
further showed that there is a recursive procedure that derives the Galois group
from the ideal of algebraic relations among solutions, and vice versa. In [7], some
general properties of Galois groups were established for linear difference equations
of order two on elliptic curves and were applied to the calculation of some Galois
groups. In [19], upper and lower bounds were given for the Galois groups of Frobe-
nius difference equations over (Fq(s, t), φq), where φq(s) = sq and φq(a) = a for
all a ∈ Fq(t). In contrast, algorithms for computing the Galois groups of linear
differential equations have been well-developed (see [2, 3, 14, 17, 27]). Particularly,
in [14], Hrushovski developed an algorithm that calculates the Galois group of all
linear differential equations with rational function coefficients. His algorithm in-
volved many arguments from logical language and has recently been reworked by
Rettstadt in [22] and by the author in [9]. In this paper, we develop an algorithm
for computing the Galois group of linear difference equations with rational func-
tion coefficients of arbitrary order. Our algorithm can be considered as a difference
analogue of Hrushovski’s algorithm.

The philosophy of computing the Galois groups of linear difference equations is
quite similar to that of linear differential equations. Galois groups of these two kinds
of equations are linear algebraic groups over the field of constants. Hence bounds
for the defining equations of linear algebraic groups developed for the differential
case can be applied to the difference case without any modification. However, there
exist some results in differential algebra whose difference analogues are no longer
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correct, and vice versa. For example, associated primes of a radical differential
ideal are still differential ideals, while those of a radical σ-ideal need not be σ-ideals
but σδ-ideals for some integer δ. This forces us to consider σδ-ideals. Another
example is that the Picard-Vessiot extension ring for a linear differential equation
is not necessarily the coordinate ring of a trivial torsor for the Galois group, while
that for a linear difference equation is the coordinate ring of a trivial torsor. This
implies that one only needs to consider objects such as hypergeometric elements
that are defined over the base field.

Throughout this paper, C stands for the algebraic closure of a field that is finitely
generated over the rational numbers. k stands for the field of rational functions in
x with coefficients in C and k̄ denotes the algebraic closure of k. The difference
field which we are interested in is the field k with an automorphism σ given by
σ(x) = x+ 1 and σ(c) = c for c ∈ C. Consider the linear difference equation

(1.1) σ(Y ) = AY,

where Y is an n × 1 vector with indeterminate entries and A ∈ GLn(k). Let
R be the Picard-Vessiot extension ring of k for (1.1). The Galois group of (1.1)
over k, denoted by Gal(R/k), is defined to be the set of σ-k-automorphisms of
R, i.e., k-automorphisms of R that commute with σ. Let F be a fundamental
matrix of (1.1) with entries in R, i.e., F ∈ GLn(R) satisfying σ(F ) = AF . Then
for any φ ∈ Gal(R/k), φ(F ) is another fundamental matrix of (1.1). Thus there
exists [φ] ∈ GLn(C) such that φ(F ) = F [φ]. The map given by φ → [φ] is a
group homomorphism of Gal(R/k) into GLn(C). Denote by G the set {[φ] | φ ∈
Gal(R/k)}. It was proved in (Theorem 1.13, page 11 of [31]) that G is a linear
algebraic group defined over C. The reader is referred to Chapter 1 of [31] for more
information about the Galois theory of linear difference equations.

The group G can be reformulated as the stabilizer of some ideal in a σ-ring,
which we describe below. Let Y denote an n × n matrix (yi,j), where the yi,j are
indeterminates. Sometimes, in brief, we also consider Y as a set of indeterminates.
By setting σ(Y ) = AY , one can extend σ from k to k[Y, 1/ det(Y )] so that it
becomes a difference extension ring of k. An ideal I ⊆ k[Y, 1/ det(Y )] is called a
σ-ideal if σ(I) ⊆ I. The results in section 1.1 of [31] imply that R is isomorphic
to k[Y, 1/ det(Y )]/I for some maximal σ-ideal I. Define an action of GLn(C) on
k[Y, 1/ det(Y )] given by g · Y = Y g for all g ∈ GLn(C). Suppose that J is an ideal
of k[Y, 1/ det(Y )]. The stabilizer of J , denoted by stab(J), is defined as

stab(J) = {g ∈ GLn(C) | P (Y g) ∈ J, ∀ P ∈ J},
which is an algebraic subgroup of GLn(C). Set

IF = {P ∈ k[Y, 1/ det(Y )] | P (F ) = 0} .
Then IF is a maximal σ-ideal and G = stab(IF ). By the uniqueness of the Picard-
Vessiot extension ring of k for (1.1), one sees that for any maximal σ-ideal I of
k[Y, 1/ det(Y )], there is g ∈ GLn(C) such that g ·I = IF . From this, one can readily
verify that the stabilizers of maximal σ-ideals in k[Y, 1/ det(Y )] are conjugate. In
other words, as linear algebraic groups, these stabilizers are isomorphic. Therefore
we shall also call the stabilizer of a maximal σ-ideal of k[Y, 1/ det(Y )] the Galois
group of (1.1) over k. Using the Gröbner basis method, one can easily obtain the
defining equations of stab(I) once a Gröbner basis of I is known. Thus, the above
definition indicates that finding a maximal σ-ideal of k[Y, 1/ det(Y )] will suffice to
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determine the Galois group. We shall give in this paper an algorithm that computes
a maximal σ-ideal of k[Y, 1/ det(Y )].

The rest of the paper is organized as follows. In section 2, we introduce some ba-
sic results that provide the theoretical background of our algorithm. Meanwhile, we
introduce some basic definitions such as proto-groups, proto-maximal σ-ideals and
so on. In section 3, we show how to compute a proto-maximal σ-ideal. In section
4, we describe a method to extend a proto-maximal σ-ideal to a maximal σδ-ideal
so that one can easily obtain a maximal σ-ideal by taking the intersection of ideals.
In section 5, the methods developed in the previous sections are summarized as an
algorithm, and an example is presented to illustrate the algorithm. In Appendix A,
we describe a method to find coefficient bounds for generators of a proto-maximal
σ-ideal. In Appendix B, an algorithm for computing σδ-hypergeometric elements
in k[Y, 1/ det(Y )]/Iirr is developed, where Iirr is a prime σδ-ideal.

2. Some basic results

In this section, we shall introduce some basic results about proto-groups, k-
torsors and several related problems whose algorithmic solutions will be needed in
our algorithm.

Let H be an algebraic subgroup of GLn(C). For ease of notation, we shall
use H(k) (resp. H(k̄)) to denote k-points (resp. k̄-points) of H. Hu stands for
the algebraic subgroup of H generated by unipotent elements and H◦ denotes the
identity component of H.

2.1. Proto-groups. As in the differential case, degree bounds on proto-groups play
a central role in the main algorithm presented in this paper. In this subsection, we
will first introduce the notion of proto-groups and then present a degree bound on
them as well as a property of them.

Definition 2.1. Let H be an algebraic subgroup of GLn(C). H is said to be
bounded by a positive integer d if there is a set S ⊆ C[Y ] such that H is the set of
zeroes of S in GLn(C) and elements of S are of degree not greater than d.

Definition 2.2. Let G,H be two algebraic subgroups of GLn(C). H is said to be
a proto-group of G if they satisfy the following condition:

Hu ≤ G◦ ≤ G ≤ H.

In the case that G is the Galois group of (1.1) over k, H is called a proto-Galois
group of (1.1) over k.

Remark 2.3. Let G,H be two algebraic subgroups of GLn(C) and G ≤ H.

(a) Suppose that H is a proto-group of G and H̄ is an algebraic group satisfying
G ≤ H̄ ≤ H. Then H̄ is also a proto-group of G, since H̄u ≤ Hu.

(b) IfHu = 1, thenH is reductive. However, in general, the converse is not true.
For instance, let H = GLn(C). Then H is reductive but Hu = SLn(C).

(c) Due to the Theorem on page 99 of [13], Hu = 1 if and only if H consists of
semisimple elements. This implies that Hu = 1 if and only if H◦ is a torus.
Therefore, if H◦ is a torus, then H is a proto-group of G. Conversely, if H
is a proto-group of G and G◦ is a torus, then H◦ is a torus too.

(d) If H is a proto-Galois group of (1.1) over k and I is a maximal σ-ideal of
k[Y, 1/ det(Y )], then H is a proto-group of some algebraic group conjugate
to stab(I).
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944 RUYONG FENG

Below are some examples of algebraic groups and their proto-groups.

Example 2.4.

(1) Let H be an algebraic group satisfying SLn(C) ≤ H ≤ GLn(C). Then H
is a proto-group of SLn(C), since Hu = SLn(C).

(2) Let Gμ,ν =

{(
a b
0 c

)∣∣∣∣ a, c ∈ C×, b ∈ C
aμcν = 1

}
where μ, ν ∈ Z and C× is the

multiplicative group of C. Then G0,0 is a maximal proto-group of Gμ,ν for
all μ, ν ∈ Z, since

Gμ,ν
u =

{(
1 b
0 1

)∣∣∣∣ b ∈ C

}
and if g ∈ GL2(C)\G0,0, then the algebraic subgroup of GL2(C) generated
by g and G0,0 contains a unipotent element not in Gμ,ν

u .
(3) Let

H =

{(
a 0
0 b

)∣∣∣∣ a, b ∈ C×
}
∪
{(

0 a
b 0

)∣∣∣∣ a, b ∈ C×
}
.

Then H is a proto-group of any of its algebraic subgroups, since Hu = 1.

(4) LetG be an element in
{
ASL2

4 , SSL2
4 , ASL2

5

}
where ∗SL2 stands for the preim-

age of ∗ under the canonical projection from SL2(C) to PSL2(C). Then
C× ·G is a proto-group of G.

The key point of Hrushovski’s algorithm is the following proposition, which pro-
vides a degree bound on proto-groups.

Proposition 2.5 (Corollary 3.7 of [14], Corollary B.15 of [9]). One can find an

integer d̃ only depending on n such that for any algebraic subgroup G of GLn(C),

there is a proto-group of G bounded by d̃.

The above proposition implies that given any linear difference equation of order
n, there exists a proto-Galois group of it bounded by the integer d̃. The integer d̃
can be explicitly given as follows (see Corollary B.15 of [9] for details). Set

(2.1) κ1 = max
i

⎧⎪⎨
⎪⎩
((n2+(2n)3·8

n2

n2

)
i

)2
⎫⎪⎬
⎪⎭ , κ2 = κ1(2n)

3·8n
2
(
n2 + (2n)3·8

n2

n2

)

and

κ3 = κ2(κ
2
1 + 1)max

i

{(
κ2
1 + 1

i

)}
, I(n) = J

(
max

i

{(
n2 + 1

i

)2
})

,

where J(m) is an integer value function called Jordan bound and it is not greater

than
(√

8m+ 1
)2m2

−
(√

8m− 1
)2m2

. Then

(2.2) d̃ = (κ3)
I(n)−1.

It is well-known in the theory of linear algebraic groups that any algebraic sub-
group of a diagonalizable group D is the intersection of the kernels of some char-
acters of D (see the Proposition on page 103 of [13]). Given a connected algebraic
group H, the following proposition describes algebraic subgroups of H, which are
characterized by characters of H.
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Proposition 2.6. Suppose that H is a connected algebraic subgroup of GLn(C).
Then G is the intersection of the kernels of some characters of H if and only if H
is a proto-group of G.

Proof. Assume that H is a proto-group of G. Let χ1, · · · , χ� be generators of
X(H), the group of characters of H. Define a map ψ : H → (C×)� given by
ψ(h) = (χ1(h), · · · , χ�(h)). Then ψ(H) is a diagonalizable group and ψ(G) is one
of its algebraic subgroups. Due to the Proposition on page 103 of [13], ψ(G) is the
intersection of the kernels of some characters of ψ(H). Denote these characters by
χ̄1, · · · , χ̄l. Notice that ψ induces a group homomorphism

ψ∗ : X
(
(C×)�

)
→ X(H),

χ → χ ◦ ψ.

We claim that G =
⋂l

i=1 ker (ψ
∗(χ̄i)). Obviously, G ⊆ ∩l

i=1 ker (ψ
∗(χ̄i)). Suppose

that h ∈ ∩l
i=1 ker (ψ

∗(χ̄i)). Then χ̄i(ψ(h)) = 1 for all 1 ≤ i ≤ l. This implies that
ψ(h) ∈ ψ(G). Lemma B.10 of [9] states that Hu = ker(ψ). Hence ker(ψ) ⊆ G and

then h ∈ G. In what follows,
⋂l

i=1 ker (ψ
∗(χ̄i)) ⊆ G. This proves the claim.

Conversely, assume that G is the intersection of the kernels of some characters
of H. Then Hu = ker(ψ) ⊆ G. Since Hu is connected, Hu ⊆ G◦. Thus H is a
proto-group of G. �

The connection between proto-groups and σ-ideals in k[Y, 1/ det(Y )] is provided
by geometric objects called k-torsors, which are introduced in the next section.

2.2. k-Torsors. Throughout the paper, we shall use Zero(J) to denote the set
of zeroes of J in GLn(k̄), where J is a subset of k[Y, 1/ det(Y )]. Suppose that
Z ⊆ GLn(k̄) is a variety defined over k. We shall use Ik(Z) to denote the set of all
polynomials in k[Y, 1/ det(Y )] that vanish on Z.

Definition 2.7. (see Definition 3.13 of [29]) Let Z ⊆ GLn(k̄) be a variety defined
over k and H an algebraic subgroup of GLn(k̄) defined over k. Z is said to be a
k-torsor for H if for any z1, z2 ∈ Z, there is a unique h ∈ H such that z1 = z2h.
A k-torsor Z for H is said to be trivial if Z ∩GLn(k) �= ∅, i.e., Z = BH for some
B ∈ GLn(k).

Remark 2.8. Note that if Z is a trivial k-torsor for H, then Z = BH for any
B ∈ Z ∩GLn(k).

Let I be a maximal σ-ideal of k[Y, 1/ det(Y )]. Then one has that

Proposition 2.9 (Proposition 1.20, p. 15 of [31]). Zero(I) is a trivial k-torsor for
G(k̄), where G = stab(I).

For convenience, we introduce proto-maximal σ-ideals, which are defined to be
the ideals of trivial k-torsors for proto-Galois groups.

Definition 2.10. Let I be a σ-ideal in k[Y, 1/ det(Y )] and G = stab(I). Then I is
said to be proto-maximal if G is a proto-Galois group of (1.1) over k and Zero(I)
is a trivial k-torsor for G(k̄).

Remark 2.11.

(a) Proposition 2.9 implies that maximal σ-ideals are proto-maximal.
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946 RUYONG FENG

(b) Suppose that I is a proto-maximal σ-ideal and Ĩ is a maximal σ-ideal

containing I. Let H = stab(I) and G = stab(Ĩ). We claim that H is a

proto-group of G. In fact, let B be an element in Zero(Ĩ) ∩ GLn(k). As

Zero(I) and Zero(Ĩ) are trivial k-torsors,

Zero(Ĩ) = BG(k̄) ⊆ Zero(I) = BH(k̄).

Hence G ≤ H. By Remark 2.3, since H is a proto-Galois group, there is
g ∈ GLn(C) such that H is a proto-group of gGg−1, i.e., Hu ≤ gGg−1 ≤
H. Note that g−1Hug ≤ Hu because g−1Hug is generated by unipotent
elements and g−1Hug ≤ G ≤ H. As Hu is connected and both g−1Hug
and Hu are of the same dimension, g−1Hug = Hu. Therefore Hu ≤ G,
which implies that H is a proto-group of G.

Suppose that H is a connected algebraic subgroup of GLn(C) and Z is a trivial
k-torsor for H(k̄). Then for any B ∈ Z ∩GLn(k), the map given by

k[Y, 1/ det(Y )]/Ik(H) → k[Y, 1/ det(Y )]/Ik(Z)(2.3)

P (Y ) → P (B−1Y )

is an isomorphism of k-algebras. A theorem of Rosenlicht ([18,25,28]) implies that
invertible regular functions on Z are closely related to characters of H. This theo-
rem states: let G be a connected linear algebraic group defined over an algebraically
closed field k̄ and let y be a regular function on G with 1/y also a regular function,
then y is a k̄ multiple of a character. Notice that characters of H can be viewed as
elements in C[Y, 1/ det(Y )]/IC(H).

Lemma 2.12. Suppose that J is a prime σδ-ideal of k[Y, 1/ det(Y )] where δ ≥ 1,
and Zero(J) is a trivial k-torsor for H(k̄) where H is a connected algebraic sub-
group of GLn(C). Let B ∈ Zero(J) ∩ GLn(k). If χ is a character of H, then
χ(B−1Y ) is invertible in k[Y, 1/ det(Y )]/J . Conversely, if P is an invertible ele-
ment in k[Y, 1/ det(Y )]/J , then P = rχ(B−1Y ) for some r ∈ k and some character
χ of H.

Proof. We only need to prove the second assertion. Since C is algebraically closed,
H(k̄) viewed as a linear algebraic group defined over k̄ is still connected. The
map (2.3) implies that P (BY ) is invertible in k[Y, 1/ det(Y )]/Ik(H). Applying
the above theorem of Rosenlicht to P (BY ), one has that P (BY ) = rχ for some
r ∈ k̄ and some character χ. Observe that k[Y, 1/ det(Y )]/J is a σδ-extension
domain of k. Due to Lemma 1.19 on page 15 of [31], (k[Y, 1/ det(Y )]/J) ∩ k̄ = k.
Hence (k[Y, 1/ det(Y )]/Ik(H)) ∩ k̄ = k. We then conclude that r ∈ k and P =
rχ(B−1Y ). �

In section 4, one will see that invertible elements of k[Y, 1/ det(Y )]/J are actually
σδ-hypergeometric over k. In the case where δ = 1 and J is a proto-maximal σ-
ideal, algebraic relations among these σ-hypergeometric elements will reveal the
characters of stab(J) that determine the Galois group G.

2.3. Some related problems. In this paper, we shall need algorithmic solutions
of the following problems.

(P1) Given an ideal in k[Y ], compute a Gröbner basis of it with respect to some
monomial ordering. The reader is referred to section 2.7 of [5] and section
5.5 of [1] for the algorithms.
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THE GALOIS GROUP OF LINEAR DIFFERENCE EQUATIONS 947

(P2) Given an ideal in k[Y ], compute its radical and its associated primes. There
are several methods for this problem, for instance the methods presented
in [10], sections 2 and 4 of [8], section 8.7 of [1], parts 36 and 42 of [26].

(P3) Compute the Galois group of linear difference equations of diagonal form.
Equivalently, given b1, · · · , b� ∈ k, compute a set of generators of the fol-
lowing Z-module:{
(z1, · · · , z�) ∈ Z�

∣∣∣∣∣ ∃ f ∈ k× s.t.

�∏
i=1

bzii =
σδ(f)

f

}
, where δ ≥ 1.

When k = Q(x), a method was described in section 2.2 of [31]. Using the
results in section 3.2 of [6], one can adapt the method in [31] to solve the
problem with k = C(x). This problem is the bottleneck in extending our
algorithm to equations over a larger base field.

(P4) Given linear difference equations with coefficients in k, compute all hyper-
geometric solutions. The reader is referred to ([4, 20]) for algorithms.

3. The computation of proto-maximal σ-ideals

Let F be a fundamental matrix of (1.1) and let d be a positive integer or ∞.
Denote

(3.1) IF,d = 〈{P (Y ) ∈ k[Y ]≤d | P (F ) = 0}〉,
where k[Y ]≤d denotes the set of polynomials in k[Y ] with degrees not greater than
d, and 〈∗〉 denotes the ideal in k[Y, 1/ det(Y )] generated by ∗. When d = ∞, IF,d

is equal to IF defined in the Introduction. One can readily verify that IF,d is a
σ-ideal and furthermore IF is a maximal σ-ideal. The fact that k[Y, 1/ det(Y )] is a
Noetherian ring implies that for sufficiently large d, IF,d is a proto-maximal σ-ideal.
Therefore to achieve a proto-maximal σ-ideal, one only needs to solve the following
two problems: (a) Given an integer d, how does one compute IF,d? (b) When is
the integer d large enough such that IF,d is proto-maximal?

3.1. The computation of IF,d. In [16], Kauers and Zimmerman presented an
algorithm for computing generators for the ideal of algebraic relations among so-
lutions of linear difference equations with constant coefficients. Their algorithm
relies on the fact that one can explicitly write down solutions of the equations of
such type. Here, our task is different. We only compute the ideal generated by
algebraic relations with bounded degree, while we are interested in linear difference
equations with coefficients in k.

We first show which fundamental matrix F we take in this section. Let SC be
the difference ring of germs at infinity of C (see Example 1.3 on page 4 of [31] for
the definition). Let ρ be a nonnegative integer such that i is not a pole of entries
of A and det(A(i)) �= 0 if i ≥ ρ. Define an element Z = (Z0, Z1, · · · ) of GLn(SC)
as follows: Zi = 0 for 0 ≤ i < ρ, Zρ ∈ GLn(C) (arbitrary) and Zi+1 = A(i)Zi for
i ≥ ρ. Define a map

ψ : k[Y, 1/ det(Y )] → SC

as follows:

for f ∈ k, ψ(f) = (0, · · · , 0, f(i), f(i+ 1), · · · , ) and ψ(Y ) = Z,

where i is a nonnegative integer such that j is not a pole of f if j ≥ i. Proposition
4.1 on page 45 of [31] states that ψ induces an embedding of k[Y, 1/ det(Y )]/I into
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948 RUYONG FENG

SC , where I = ker(ψ) that is a maximal σ-ideal. Let F be the image of Y in
k[Y, 1/ det(Y )]/I. From this construction, we have that IF,d = IZ,d.

The results in Appendix A imply that one can compute an integer 
 such that
IF,d has a set of generators consisting of polynomials in C[x][Y ] whose degrees in

x are not greater than 
. Let N =
(
d+n2

d

)
− 1 and m0, · · · ,mN be all elements in

Zn2

≥0 with |mi| ≤ d. Write P =
∑�

i=0

∑N
j=0 cj(�+1)+ix

iY mj for generators P , where

Y mi =
∏

y
mi,j,l

j,l with mi = (mi,j,l). We can then reduce the original problem to
the following one: find a basis of the vector space

U =

⎧⎨
⎩ (c0, c1, · · · , c(N+1)(�+1)−1) ∈ C(N+1)(�+1)

∣∣∣ �∑
i=0

N∑
j=0

cj(�+1)+ix
iFmj = 0

⎫⎬
⎭ .

We are going to solve the latter problem. Observe that σ(xiFmj ) is a k-linear com-
bination of the monomials Fm0 , · · · , xiFmj , · · · , x�FmN . Hence there is a nonzero
linear difference operator L in C[x][σ] such that L(xiFmj ) = 0 for all 0 ≤ i ≤ 

and 0 ≤ j ≤ N . This operator L can be computed using equation (1.1). Notice
that at present, we do not know the ideal I and thus do not know F . Fortunately,
one can easily compute the first many terms of the sequence solution Z that can
be considered as a difference analogue of formal power series solutions of linear
differential equations.

For convenience, write (1.1) and L in the form of linear recurrence equations

(3.2) Ym+1 = A(m)Ym,m ≥ ρ

and

(3.3) L = al(m)ym+l + al−1(m)ym+l−1 + · · ·+ a0(m)ym, m ≥ ν,

where ρ is a positive integer such that i is not a pole of entries of A(x) and
det(A(i)) �= 0 for all i ≥ ρ, and ν is an integer greater than the integer roots
of al(x)a0(x) = 0. One easily sees that

Lemma 3.1. Assume that {sν , sν+1, · · · , } is a solution of (3.3). If there is a
nonnegative integer j such that sν+j = · · · = sν+l−1+j = 0, then si = 0 for all
i ≥ ν.

Let κ be an integer greater than ρ and ν. Notice that the sequence {Zρ, Zρ+1, · · · }
is a solution of (3.2) and for all 0 ≤ i ≤ 
 and 0 ≤ j ≤ N , the sequence {κiZ

mj
κ ,

(κ+ 1)iZ
mj

κ+1, · · · , } is a solution of (3.3). Set

Pc(x, Y ) =
�∑

i=0

N∑
j=0

cj(�+1)+ix
iY mj ,where c = (c0, · · · , cN�+N+�) ∈ C(N+1)(�+1).

Then the sequence {Pc(κ, Zκ), Pc(κ+ 1, Zκ+1), · · · , } is also a solution of (3.3).

Proposition 3.2. c ∈ U if and only if Pc(i, Zi) = 0 for all κ ≤ i ≤ κ+ l − 1.

Proof. Assume that c ∈ U . Then Pc(x, F ) = 0 and thus ψ(Pc(x, F )) = 0. In other
words, there is a positive integer j such that Pc(i, Zi) = 0 for all i ≥ j. Lemma 3.1
implies that Pc(i, Zi) = 0 for all κ ≤ i ≤ κ + l − 1. Conversely, suppose that
Pc(i, Zi) = 0 for all κ ≤ i ≤ κ + l − 1. By Lemma 3.1 again, Pc(i, Zi) = 0 for
all i ≥ κ. This implies that ψ(Pc(x, F )) = 0. Equivalently, Pc(x, F ) = 0. Hence
c ∈ U . �
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THE GALOIS GROUP OF LINEAR DIFFERENCE EQUATIONS 949

The conditions Pc(i, Zi) = 0 for all κ ≤ i ≤ κ+ l − 1 induce a linear system for
c. Solving this system, we obtain a basis of U .

Algorithm 3.3. Compute a basis of IF,d.

(i) Using the results in Appendix A, compute an integer 
 such that IF,d has
generators consisting of polynomials in C[x][Y ] whose degrees in x are not
greater than 
.

(ii) Construct a nonzero operator L in C[x][σ] that annihilates xiFmj for all

0 ≤ i ≤ 
 and 0 ≤ j ≤ N , where m0, · · · ,mN are all elements in Zn2

≥0

satisfying |mi| ≤ d
(iii) Let κ be an integer that is greater than both ρ and all integer roots of the

leading and trailing coefficients of L.
(iv) Compute Zκ, Zκ+1, · · · , Zκ+l−1, where l = ord(L). Set

Pc(x, Y ) =
�∑

i=0

N∑
j=0

cj(�+1)+ix
iY mj , c = (c0, · · · , c(N+1)(�+1)−1).

Putting

Pc(κ, Zκ) = · · · = Pc(κ+ l − 1, Zκ+l−1) = 0,

we obtain a linear system L in c0, c1, · · · , c(N+1)(�+1)−1.

(v) Solve L and return
{
Pc̄(x, Y )

∣∣ c̄ is a zero of L in C(N+1)(�+1)
}
.

Example 3.4. Consider the Fibonacci numbers F (n). It satisfies that(
F (n+ 1)
F (n+ 2)

)
=

(
0 1
1 1

)(
F (n)

F (n+ 1)

)
.

Let

Z =

(
I2,

(
0 1
1 1

)
,

(
0 1
1 1

)2

, · · ·
)
.

We are going to calculate IZ,2. Using the results in Appendix A, one sees that there
are generators of IZ,2 whose degrees in x are zero. Let m0, · · · ,m14 be all vectors
in Z4

≥0 satisfying |mi| ≤ 2. Let

L = σ6 − 4σ5 + 2σ4 + 6σ3 − 4σ2 − 2σ + 1.

Then L annihilates Zmi for all 0 ≤ i ≤ 14. Set κ = 0. Computing the first 6 terms
of Z, denoted by Zi for i = 0, · · · , 5. Set c = (c0, c1, · · · , c14) and let Pc(x, Y ) be
defined as in step (iv). Then

Pc(0, Z0) = c0 + c1 + c4 + c5 + c8 + c14,

Pc(1, Z1) = c0 + c2 + c3 + c4 + c9 + c10 + c11 + c12 + c13 + c14,

Pc(2, Z2) = c0 + c1 + c2 + c3 + 2c4 + c5 + c6 + c7 + 2c8 + c9 + c10

+ 2c11 + c12 + 2c13 + 4c14,

Pc(3, Z3) = c0 + c1 + 2c2 + 2c3 + 3c4 + · · ·+ 4c12 + 6c13 + 9c14,

Pc(4, Z4) = c0 + 2c1 + 3c2 + 3c3 + 5c4 + · · ·+ 9c12 + 15c13 + 25c14,

Pc(5, Z5) = c0 + 3c1 + 5c2 + 5c3 + 8c4 + · · ·+ 25c12 + 40c13 + 64c14.
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Solving the linear system {Pc(i, Zi)|i = 0, · · · , 5}, one has that

c0 = 0, c1 = −c4, c2 = −c4 − c3, c5 = −c8 − c14,

c6 = −c8 − 2c14 − c7 − c11 − c13, c9 = −c14 − c10 − c11 − c12 − c13.

From this, one sees that IZ,2 is generated by y2,1 − y1,2, y2,2 − y1,2 − y1,1.

3.2. When is IF,d proto-maximal? Let d̃ be a bound on the degree of a proto-
group as given in (2.2). In this section, we shall show that IF,d̃ is proto-maximal.
Before proving this, we first present two properties of IF,d. The first one is that
IF,d is locally maximal, i.e., it is maximal among proper σ-ideals in k[Y, 1/ det(Y )]
which are generated by polynomials in k[Y ]≤d. The second one is that Zero(IF,d)
is a trivial k-torsor for HF,d(k̄) where HF,d = stab(IF,d).

Proposition 3.5. Suppose that J is a proper σ-ideal in k[Y, 1/ det(Y )] generated
by polynomials in k[Y ]≤d. If IF,d ⊆ J , then IF,d = J .

Proof. Since J is a σ-ideal, it is contained in some maximal proper σ-ideal. Hence
there is a fundamental matrix F̄ of (1.1) such that F̄ is a zero of J . Suppose that
F̄ = Fg for some g ∈ GLn(C). Define an automorphism φg of k[Y, 1/ det(Y )] as
follows: φg(f(Y )) = f(Y g) for all f ∈ k[Y, 1/ det(Y )]. Let J̄ = φg(J). One easily
sees that J̄ is still a σ-ideal in k[Y, 1/ det(Y )] generated by polynomials in k[Y ]≤d.
Furthermore, F is a zero of J̄ . Hence by the definition of IF,d, one has

φg(J) = J̄ ⊆ IF,d ⊆ J.

Successive application of φ−1
g to J yields the following sequence:

J ⊆ φ−1
g (J) ⊆ φ−2

g (J) ⊆ · · · .
The Noetherian property of k[Y, 1/ det(Y )] implies that there is some integer l such
that φ−l

g (J) = φ−l+1
g (J). As φ−1

g is an automorphism, J = φg(J). So J = IF,d. �

Corollary 3.6. Suppose that F̄ is a fundamental matrix of (1.1). If F̄ is a zero
of IF,d, then IF,d = IF̄ ,d.

Proof. From the assumption, one has that IF,d ⊆ IF̄ ,d. Then the corollary follows
from Proposition 3.5, because IF̄ ,d is a proper σ-ideal generated by polynomials in
k[Y ]≤d. �

Note that IF,d is contained in the maximal σ-ideal IF . Proposition 2.9 states
that Zero(IF ) is a trivial k-torsor, i.e., Zero(IF )∩GLn(k) �= ∅. We shall show that
the same property holds for IF,d. For short, we denote by HF,d the stabilizer of
IF,d. The ideal IF,d is generated by polynomials in k[Y ]≤d. Using linear algebra,
one has that HF,d is bounded by d, i.e., there is a set S of polynomials in C[Y ]≤d

such that HF,d = Zero(S) ∩GLn(C). Precisely, let Ī = IF,d ∩ k[Y ]≤d. Then Ī is a
k-vector space of finite dimension and IF,d is generated by Ī. Let P1, · · · , Pm be a
basis of Ī and u1, u2, · · · , ul be monomials in Y such that {P1, · · · , Pm, u1, · · · , ul}
is a basis of k[Y ]≤d. Then for g ∈ GLn(C), g ∈ HF,d if and only if the coefficient
of uj in Pi(Y g) is zero for all 1 ≤ i ≤ m, 1 ≤ j ≤ l. Now suppose that g is an
n× n matrix with indeterminate entries. Let ci,j be the coefficient of uj in Pi(Y g)
where i = 1, · · · ,m, j = 1, · · · , l. For all i, j, write ci,j = 1

ai,j

∑ei,j
s=0 ci,j,sx

s, where

ai,j ∈ C[x] and ci,j,s ∈ C[g]. One easily sees that ci,j,s is of degree not greater than
d and the set {ci,j,s|i = 1, · · · ,m, j = 1, · · · , l, s = 0, · · · , ei,j} defines HF,d.
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Proposition 3.7. Zero(IF,d) is a trivial k-torsor for HF,d(k̄), i.e., Zero(IF,d) =
BHF,d(k̄) for any B ∈ Zero(IF,d) ∩GLn(k).

Proof. Let B be an element of Zero(IF )∩GLn(k). Since IF,d ⊆ IF , B ∈ Zero(IF,d).
It suffices to show that Zero(IF,d) = BHF,d(k̄). Let J be the ideal in k[Y, 1/ det(Y )]
generated by {

Q(B−1Y ) | Q ∈ IC(HF,d) ∩ C[Y ]≤d

}
.

Because HF,d is bounded by d, one has that Zero(J) = BHF,d(k̄). We shall show
that J = IF,d. Let G = stab(IF ). For any g ∈ G and P ∈ IF,d ∩ k[Y ]≤d, P (Y g) ∈
k[Y ]≤d and then it belongs to k[Y ]≤d∩IF which is a subset of IF,d. Hence g ∈ HF,d.
Consequently, G ⊆ HF,d. Due to Proposition 2.9, Zero(IF ) = BG(k̄). Therefore
Zero(IF ) ⊆ Zero(J). As IF is radial, J ⊆ IF . This implies that F is a zero of J .
By the definition of IF,d, J ⊆ IF,d. It remains to show that IF,d ⊆ J . Suppose
that P is an element of k[Y ]≤d ∩ IF,d. Then for each h ∈ HF,d, P (Y h) ∈ IF,d and
therefore P (Bh) = 0. Write

P (BY ) =

l∑
i=1

ciPi(Y ),

where Pi(Y ) ∈ C[Y ] and c1, · · · , cl are linearly independent over C. Obviously, for
all i with 1 ≤ i ≤ l, the degree of Pi(Y ) is not greater than d and Pi(h) = 0 for all
h ∈ HF,d. In other words, Pi(Y ) ∈ IC(HF,d) ∩ C[Y ]≤d for all i = 1, · · · , l. Hence
P ∈ J and then IF,d ⊆ J . �

Remark 3.8. As an algebraic subgroup of GLn(k̄), the irreducible components of
HF,d(k̄) are equidimensional. Hence

√
IF,d is an unmixed ideal.

Corollary 3.9. Let Iirr be an associated prime of
√
IF,d. Then stab(Iirr) = H◦

F,d.

Moreover Zero(Iirr) is a trivial k-torsor for H◦
F,d(k̄).

Proof. Let B be an element of Zero(Iirr) ∩GLn(k). By Proposition 3.7,

Zero(Iirr) = BHi(k̄),

where Hi is an irreducible component of HF,d. Since B ∈ Zero(Iirr), Hi = H◦
F,d.

Thus Zero(Iirr) is a trivial k-torsor for H◦
F,d(k̄). It remains to show that stab(Iirr) =

H◦
F,d. Suppose that h ∈ stab(Iirr). Then P (Y h) ∈ Iirr for any P (Y ) ∈ Iirr.

Hence P (Bh) = 0 for any P (Y ) ∈ Iirr, i.e., Bh ∈ Zero(Iirr). Therefore h ∈ H◦
F,d.

Conversely, suppose that h ∈ H◦
F,d. Then BH◦

F,d(k̄)h = BH◦
F,d(k̄). This implies

that for any P (Y ) ∈ Iirr and Z ∈ Zero(Iirr), P (Zh) = 0. As Iirr is prime, P (Y h) ∈
Iirr for any P (Y ) ∈ Iirr. Hence h ∈ stab(Iirr). �

Proposition 3.10. HF,d̃ is a proto-group of stab(I), where I is any maximal σ-
ideal containing IF,d̃. Furthermore, IF,d̃ is proto-maximal.

Proof. Let G = stab(I) and H be an algebraic subgroup of GLn(C) that is bounded

by d̃ and is a proto-group of G. Such H exists by Proposition 2.5. Observe that
there is a fundamental matrix F̄ such that I = IF̄ . Since F̄ is a zero of I and thus
a zero of IF,d̃ too, we have that IF̄ ,d̃ = IF,d̃ due to Corollary 3.6. Let B be an

element of Zero(I) ∩GLn(k) and set

J =
{
Q(B−1Y ) | Q ∈ IC(H) ∩ C[Y ]≤d̃

}
.
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Since H is bounded by d̃, i.e., there is a set S of polynomials in IC(H)∩C[Y ]≤d̃ such

that Zero(S) = H(k̄), Zero(J) = BH(k̄). By Proposition 2.9, Zero(I) = BG(k̄).
Therefore J ⊆ I, because I is radical and H is a proto-group of G. One then has
that F̄ is a zero of J . This implies that

J ⊆ IF̄ ,d̃ = IF,d̃ ⊆ I.

The first inclusion holds because J is generated by a set of polynomials in k[Y ]≤d̃.
Proposition 3.7 implies that

G ≤ HF,d̃ ≤ H.

Then the first assertion of the proposition follows from Remark 2.3, and the second
assertion follows from Proposition 3.7 and the first assertion. �

Example 3.11. Consider

(3.4) σ

⎛
⎝y1
y2
y3

⎞
⎠ =

⎛
⎝0 1 0
0 0 1
x 0 0

⎞
⎠
⎛
⎝y1
y2
y3

⎞
⎠ .

Using the method developed in section 3.1, we can compute a σ-ideal

IZ,2 = 〈y1,1y1,2, y1,1y1,3, y1,1y2,1, y1,1y2,3, y1,1y3,1, y1,1y3,2, y1,2y1,3, y1,2y2,1, y1,2y2,2,
y1,2y3,2, y1,2y3,3, y1,3y2,2, y1,3y2,3, y1,3y3,1, y1,3y3,3, y2,1y2,2, y2,1y2,3, y2,1y3,1,

y2,1y3,3, y2,2y2,3, y2,2y3,1, y2,2y3,2, y2,3y3,2, y2,3y3,3, y3,1y3,2, y3,1y3,3, y3,2y3,3〉.
Furthermore, one has that

stab(IZ,2) =

⎧⎨
⎩

⎛
⎝
α 0 0
0 β 0
0 0 γ

⎞
⎠
∣∣∣∣∣∣
αβγ �= 0

⎫⎬
⎭ ∪

⎧⎨
⎩

⎛
⎝
0 α 0
0 0 β
γ 0 0

⎞
⎠
∣∣∣∣∣∣
αβγ �= 0

⎫⎬
⎭

∪

⎧⎨
⎩

⎛
⎝
0 0 α
β 0 0
0 γ 0

⎞
⎠
∣∣∣∣∣∣
αβγ �= 0

⎫⎬
⎭ .

Since stab(IZ,2)
◦ is a torus, stab(IZ,2) is a proto-Galois group of (1.1) over k.

Moreover, Zero(IZ,2) = stab(IZ,2)(k̄), i.e., IZ,2 is a trivial k-torsor. So IZ,2 is a
proto-maximal σ-ideal. This example will be continued in Example 4.7.

4. The computation of maximal σδ
-ideals

The results in the previous section enable us to calculate a proto-maximal σ-
ideal. Suppose that we have obtained a proto-maximal σ-ideal, say IF,d̃. Let Iirr

be an associated prime of
√
IF,d̃. It can be obtained with an algorithmic solution

of problem (P2). Since IF,d̃ is a σ-ideal and so is its radical, Iirr is a σδ-ideal for
some positive integer δ. In the following, we will enlarge Iirr to obtain a maximal
σδ-ideal. By Corollary 3.9, one sees that for any B ∈ Zero(Iirr) ∩GLn(k),

(4.1) Zero(Iirr) = BH◦
F,d̃

(k̄) and stab(Iirr) = H◦
F,d̃

.

Let Iδ be a maximal σδ-ideal that contains Iirr and Gδ = stab(Iδ). Obverse that
Proposition 2.9 still holds for maximal σδ-ideals. This implies that Zero(Iδ) =
BGδ(k̄) for any B ∈ Zero(Iδ) ∩ GLn(k). Then equation (4.1) implies that Gδ ⊆
H◦

F,d̃
. We shall show that H◦

F,d̃
is a proto-group of Gδ.
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Lemma 4.1. Let Ĩ be a maximal σδ-ideal and I = Ĩ ∩ σ(Ĩ) ∩ · · · ∩ σδ−1(Ĩ). Then

(a) I is a maximal σ-ideal, and

(b) [stab(I) : stab(Ĩ)] ≤ δ.

Proof. (a) Suppose that Ī is a maximal σ-ideal containing I. We claim that Ī ⊆ Ĩ.

Suppose on the contrary that Ī \ Ĩ �= ∅. Then Ī \ σi(Ĩ) �= ∅ for all 1 ≤ i ≤ δ − 1,

since σ is an isomorphism and Ī is a σ-ideal. Observe that σi(Ĩ) is σδ-maximal for

all 0 ≤ i ≤ δ − 1. Therefore Ī + σi(Ĩ) = k[Y, 1/ det(Y )] for all 0 ≤ i ≤ δ − 1. In

other words, there are ai ∈ Ī , bi ∈ σi(Ĩ) such that ai + bi = 1 for all 0 ≤ i ≤ δ − 1.
One then has that

1 =
δ−1∏
i=0

(ai + bi) =
δ−1∏
i=0

bi + ā

where ā ∈ Ī. From the assumption,
∏δ−1

i=0 bi ∈ I which is a subset of Ī. Hence

1 ∈ Ī, a contradiction. This proves the claim. The claim implies that Ī ⊆ σi(Ĩ)
for all 0 ≤ i ≤ δ − 1. Consequently, Ī ⊆ I. Therefore I = Ī, which is a maximal
σ-ideal.

(b) Let G = stab(I) and G̃ = stab(Ĩ). Let B be an element of Zero(Ĩ)∩GLn(k).
Due to Proposition 2.9, one has that

(4.2) Zero(I) = BG(k̄) and Zero(Ĩ) = BG̃(k̄).

It is easy to see that σi(Ĩ) is a maximal σδ-ideal for all 0 ≤ i ≤ δ − 1. Hence there

are g1, · · · , gδ−1 ∈ GLn(C) such that φgi(σ
i(Ĩ)) = Ĩ, where φgi is an isomorphism

of k[Y, 1/ det(Y )] given by φgi(Y ) = Y gi. This implies that

(4.3) Zero(σi(Ĩ)) = BG̃(k̄)gi, i = 0, 1, · · · , δ − 1.

Equations (4.2) and (4.3) imply that G =
⋃δ−1

i=0 G̃gi. In what follows, [G : G̃] ≤
δ. �

Let I = Iδ ∩ σ(Iδ) ∩ · · · ∩ σδ−1(Iδ). Then IF,d̃ ⊆ I. The above lemma together

with Proposition 3.10 implies that HF,d̃ is a proto-group of stab(I), i.e.,(
HF,d̃

)
u
≤ (stab(I))

◦ ≤ stab(I) ≤ HF,d̃.

Observe that
(
HF,d̃

)
u
=
(
H◦

F,d̃

)
u
. Due to the above lemma again, (stab(I))◦ = G◦

δ .

Thus (
H◦

F,d̃

)
u
≤ G◦

δ ≤ Gδ ≤ H◦
F,d̃

,

i.e., H◦
F,d̃

is a proto-group of Gδ. Proposition 2.6 then implies that Gδ is the

intersection of the kernels of some characters of H◦
F,d̃

. Suppose that χ̄1, · · · , χ̄l are

characters of H◦
F,d̃

such that

ker(χ̄1) ∩ · · · ∩ ker(χ̄l) = Gδ.

Then we have the following lemma.

Lemma 4.2. Let B be an element of Zero(Iδ) ∩GLn(k) and set

S = Iirr ∪ {χ̄i(B
−1Y )− 1 | i = 1, · · · , l}.

Then Zero(Iδ) = Zero(S).
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Proof. It suffices to show that Zero(S) = BGδ(k̄). From (4.1), one has that
Zero(Iirr) = BH◦

F,d̃
(k̄) because B ∈ Zero(Iirr)∩GLn(k). Suppose that Z ∈ BGδ(k̄).

As Gδ is the intersection of the kernels of the characters χ̄1, · · · , χ̄l, one sees that
Z ∈ Zero(S). Conversely, assume that Z ∈ Zero(S). Then Z ∈ Zero(Iirr) and thus
Z = Bh for some h ∈ H◦

F,d̃
(k̄). Meanwhile for each i = 1, · · · , l,

χ̄i(B
−1Z) = χ̄i(h) = 1.

This implies that h ∈ Gδ(k̄). Therefore Zero(S) = BGδ(k̄). �

Lemma 2.12 states that χ̄i(B
−1Y ) is invertible in k[Y, 1/ det(Y )]/Iirr. This to-

gether with the above lemma implies that for computing Iδ, it suffices to find
suitable invertible elements of k[Y, 1/ det(Y )]/Iirr. In the following, we first prove
that invertible elements of k[Y, 1/ det(Y )]/Iirr are actually σδ-hypergeometric over
k and then show that algebraic relations among σδ-hypergeometric elements enable
us to find Iδ. We start with a definition.

Definition 4.3. A nonzero element P of k[Y, 1/ det(Y )]/Iirr is said to be σδ-
hypergeometric over k if P is invertible in k[Y, 1/ det(Y )]/Iirr and σδ(P ) = rP
for some r ∈ k. Suppose that P1, P2 are two σδ-hypergeometric elements over k
of k[Y, 1/ det(Y )]/Iirr. We say P1 and P2 are similar if there is r ∈ k such that
P1 = rP2.

Elements of k[Y, 1/ det(Y )]/Iirr are represented by elements of k[Y, 1/ det(Y )].
Let P be an element of k[Y, 1/ det(Y )]. The image of P in k[Y, 1/ det(Y )]/Iirr is
σδ-hypergeometric over k if and only if

Zero(P ) ∩ Zero(Iirr) = ∅ and σδ(P )− rP ∈ Iirr

for some r ∈ k.

Proposition 4.4. Let B be an element of Zero(Iirr) ∩ GLn(k) and χ a character
of H◦

F,d that is represented by an element of C[Y, 1/ det(Y )]. Then χ(B−1Y ) is a

σδ-hypergeometric element over k of k[Y, 1/ det(Y )]/Iirr. Furthermore, if χ1 and
χ2 are two distinct characters, then χ1(B

−1Y ) and χ2(B
−1Y ) are not similar.

Proof. Obviously, χ(B−1Y ) is invertible in k[Y, 1/ det(Y )]/Iirr. It remains to show
that σδ(χ(B−1Y ))− rχ(B−1Y ) ∈ Iirr for some r ∈ k. We first claim that

σδ(B−1)AδB ∈ H◦
F,d̃

(k),

where Aδ = σδ−1(A)σδ−2(A) · · ·σ(A)A. For any Q ∈ IC(H
◦
F,d̃

), it follows from

(4.1) that Q(B−1Y ) ∈ Iirr. As Iirr is a σδ-ideal, one has Q(σδ(B−1)AδY ) ∈ Iirr.
Since B ∈ Zero(Iirr), Q(σδ(B−1)AδB) = 0. This proves the claim. Now for any
h ∈ H◦

F,d̃
(k̄),

χ(σδ(B−1)AδBh)− χ(σδ(B−1)AδB)χ(B−1Bh) = 0.

This implies that

χ(σδ(B−1)AδY )− χ(σδ(B−1)AδB)χ(B−1Y ) ∈ Iirr.

In other words,

σδ(χ(B−1Y ))− χ(σδ(B−1)AδB)χ(B−1Y ) ∈ Iirr,
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i.e., χ(B−1Y ) is a σδ-hypergeometric element over k of k[Y, 1/ det(Y )]/Iirr. This
proves the first assertion.

Now assume that χ1(B
−1Y ) − rχ2(B

−1Y ) ∈ Iirr for some r ∈ k. Then for any
h ∈ H◦

F,d̃
,

χ1(h) = χ1(B
−1Bh) = rχ2(B

−1Bh) = rχ2(h).

Particularly, putting h = In, one then has that r = 1. Thus χ1 = χ2, a contradic-
tion. �

Let κ2 be a bound as given in (2.1). Proposition B.17 of [9] states that X(H◦
F,d̃

)

has generators that are represented by polynomials in C[Y ]≤κ2
. In the following,

we show how to obtain such generators from a set of σδ-hypergeometric elements
over k in k[Y, 1/ det(Y )]/Iirr. Denote

H =

{
P ∈ k[Y ]≤κ2

∣∣∣∣ P is σδ-hypergeometric over k in k[Y, 1/ det(Y )]/Iirr,
P − rQ /∈ Iirr, ∀ r ∈ k, ∀ Q ∈ H \ {P}

}
.

Note that H contains all σδ-hypergeometric elements over k in k[Y, 1/ det(Y )]/Iirr
that are not pairwise similar and are presented by polynomials in k[Y ] with degree
not greater than κ2. It follows from Lemma 2.12 that one can construct characters
of H◦

F,d̃
from elements of H. Precisely, let B ∈ Zero(Iirr) ∩ GLn(k) and define a

map τB from H to X(H◦
F,d̃

) as follows:

(4.4)
τB : H −→ X(H◦

F,d̃
)

P −→ χ,

where χ satisfies that P − rχ(B−1Y ) ∈ Iirr. By Lemma 2.12, for each P ∈ H,
there is a character χ such that τB(P ) = χ, and such a character is unique by
Proposition 4.4. Therefore τB is well-defined. Now suppose that χ is an element
of X(H◦

F,d̃
) that is presented by a polynomial in C[Y ]≤κ2

. Due to Proposition 4.4

again, χ(B−1Y ) is a σδ-hypergeometric element over k in k[Y, 1/ det(Y )]/Iirr. Note
that χ(B−1Y ) ∈ k[Y ]≤κ2

. So there is some P in H which is similar to χ(B−1Y ).
One sees easily that τB(P ) = χ. In the sequel, τB(H) contains all elements of
X(H◦

F,d̃
) that are represented by polynomials in C[Y ]≤κ2

. Therefore τB(H) is the

desired set of generators of X(H◦
F,d̃

).

We can compute H by Algorithm B.1 in Appendix B. Suppose that we have
obtained such H and assume that H = {P1, · · · , Pν}. Let bj be the certificate of
Pj , i.e., σ

δ(Pj)− bjPj ∈ Iirr for all 1 ≤ j ≤ ν. Set

Z =

⎧⎨
⎩(m1, · · · ,mν) ∈ Zν

∣∣∣∣∣∣ ∃ f ∈ k×, s.t.

ν∏
j=1

b
mj

j =
σδ(f)

f

⎫⎬
⎭ .

Then Z is a finitely generated Z-module. The solution of problem (P3) allows us
to compute a set of generators of Z. Assume that m1, · · · ,mμ are generators of Z
and further suppose that

ν∏
j=1

b
mi,j

j =
σδ(fi)

fi
,

where fi ∈ k× and mi = (mi,1, · · · ,mi,μ). For each i = 1, · · · , μ, write mi =

m+
i −m−

i , where m
+
i ,m

−
i are in Zν

≥0 and m+
i

(
m−

i

)T
= 0. Denote by P the vector
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(P1, · · · , Pμ) and Pm =
∏ν

j=1 P
mj

j , where m = (m1, · · · ,mν). Set

(4.5) Pc =
〈
Iirr ∪

{
Pm+

i − cifiP
m−

i

∣∣∣ i = 1, · · · , μ
}〉

,

where c = (c1, · · · , cμ) ∈ (C×)μ. It is easy to verify that Pc is a σδ-ideal.

Lemma 4.5. There exists a c = (c1, · · · , cμ) ∈ (C×)μ such that Pc is a proper
σδ-ideal of k[Y, 1/ det(Y )].

Proof. Let Iδ be a maximal σδ-ideal containing Iirr and Fδ a fundamental matrix
of σδ(Y ) = AδY such that Fδ is a zero of Iδ, where Aδ = σδ−1(A)σδ−2(A) · · ·A.
Then Fδ is also a zero of Iirr. So for all j with 1 ≤ j ≤ ν,

σδ(Pj)(Fδ)− bjPj(Fδ) = σδ(Pj(Fδ))− bjPj(Fδ) = 0.

This implies that for all i with 1 ≤ i ≤ μ,

σδ(Pmi(Fδ))−
ν∏

j=1

b
mi,j

j Pmi(Fδ) = σδ(Pmi(Fδ))−
σδ(fi)

fi
Pmi(Fδ) = 0.

Hence for each i = 1, · · · , μ, Pmi(Fδ) = cifi for some ci ∈ C×. Set c = (c1, · · · , cμ).
Then one sees that Fδ is a zero of Pc. Consequently, Pc is proper. �

We can calculate a c such that Pc is proper as follows: let Q1, · · · , Ql ∈ k[Y ]
generate the ideal Iirr and z a new indeterminate. Consider c1, · · · , cμ as parameters
and denote by Jc the ideal in k[Y, z, c1, · · · , cμ] generated by

Q1, · · · , Ql, det(Y )z − 1,Pm+
1 − c1f1P

m−
1 , · · · ,Pm+

μ − cμfμP
m−

μ .

Then algorithms for comprehensive Gröbner systems allow us to find a suitable
c ∈ (C×)μ such that Jc is a proper ideal. The reader is referred to [15, 21, 30, 32]
and the references cited therein for the algorithms.

Proposition 4.6. Assume that Pc is proper and Iδ is a maximal σδ-ideal contain-
ing Pc. Then

Zero(Pc) = Zero(Iδ), i.e., Iδ =
√
Pc.

Proof. Let B be an element of Zero(Iδ) ∩ GLn(k) and Gδ = stab(Iδ). Due to
Proposition 2.9,

Zero(Iδ) = BGδ(k̄).

Obviously, Iδ is a maximal σδ-ideal containing Iirr. The discussion after Lemma 4.1
states that H◦

F,d̃
is a proto-group of Gδ. By Proposition 2.6, Gδ is the intersection

of the kernels of some characters of H◦
F,d̃

. Let Λ be the set of these characters.

Note that τB(H) is a set of generators of X(H◦
F,d̃

) where τB is defined as in (4.4).

Suppose that χ̄ ∈ Λ. Then

(4.6) χ̄ =

ν∏
i=1

τB(Pi)
αi ,

where αi ∈ Z. From the definition of the map τB, for each i = 1, · · · , ν, there is
ri ∈ k× such that

(4.7) Pi(Y )− riτB(Pi)(B
−1Y ) ∈ Iirr.
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Lemma 4.2 implies that χ̄(B−1Y ) − 1 ∈ Iδ. Denote by Ȳ the image of Y in
k[Y, 1/ det(Y )]/Iδ. Then χ̄(B−1Ȳ ) − 1 = 0. This together with (4.6) and (4.7)
implies that

(4.8)

ν∏
i=1

τB(Pi)
αi(B−1Ȳ )− 1 =

ν∏
i=1

r−αi
i Pαi

i (Ȳ )− 1 = 0.

Applying σδ to (4.8), one has that

(4.9)

ν∏
i=1

σδ
(
r−αi
i

)
bαi
i Pαi

i (Ȳ )− 1 = 0.

Combining (4.8) and (4.9), one has that
ν∏

i=1

bαi
i =

ν∏
i=1

σδ (rαi
i )

rαi
i

.

Set α = (α1, · · · , αν) ∈ Zν . Then α ∈ Z. So there are integers z1, · · · , zμ such
that α = z1m1 + · · ·+ zμmμ.

Let Z be an element of Zero(Pc). Then one has that Pmj (Z) = cjfj for all

1 ≤ j ≤ μ, because Pm−
j (Z) �= 0. By (4.6) and (4.7) again,

χ̄(B−1Z)− 1 =
ν∏

i=1

τB(Pi)
αi(B−1Z)− 1 = Pα(Z)

ν∏
i=1

r−αi
i − 1

=

μ∏
j=1

Pzjmj (Z)
ν∏

i=1

r−αi
i − 1 =

μ∏
j=1

(cjfj)
zj

ν∏
i=1

r−αi
i − 1.

This implies that the polynomial χ̄(B−1Y )− 1 takes a constant value on Zero(Pc).
Particularly, putting Z = B, one has that χ̄(B−1B)−1 =

∏μ
j=1(cjfj)

zj
∏ν

i=1 r
−αi
i −

1 = 0. In the sequel, χ̄(B−1Z)− 1 = 0 for all Z ∈ Zero(Pc). Therefore

Zero(Pc) ⊆ Zero(Iirr ∪ {χ̄(B−1Y )− 1 | χ̄ ∈ Λ}).
The former set contains Zero(Iδ) and the latter one is equal to Zero(Iδ) by Lemma
4.2. Consequently, Zero(Pc) = Zero(Iδ). �

Suppose that a proper Pc has been calculated. One can then compute
√
Pc with

an algorithmic solution of problem (P2) and I =
√
Pc ∩ σ(

√
Pc) ∩ · · · ∩ σδ−1(

√
Pc)

with the algorithm presented in (section 6.3, page 260 of [1]). Then the ideal I is
a maximal σ-ideal by Lemma 4.1.

Example 4.7. (Example 3.11 continued) IZ,2 is radical and we have the following
irreducible decomposition:

IZ,2 =〈y1,1, y1,2, y2,2, y2,3, y3,1, y3,3〉 ∩ 〈y1,1, y1,3, y2,1, y2,2, y3,2, y3,3〉
∩ 〈y1,2, y1,3, y2,1, y2,3, y3,1, y3,2〉.

Set Iirr = 〈y1,1, y1,2, y2,2, y2,3, y3,1, y3,3〉. Then one can easily verify that Iirr is a
σ3-ideal and

stab(Iirr) =

⎧⎨
⎩
⎛
⎝α 0 0
0 β 0
0 0 γ

⎞
⎠
∣∣∣∣∣∣αβγ �= 0

⎫⎬
⎭ .

X(stab(Iirr)) is generated by y1,1, y2,2, y3,3. Thus we only need to compute σ3-
hypergeometric elements in k[Y, 1/ det(Y )]/Iirr which are represented by linear
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polynomials in k[Y ]. By Algorithm B.1, we can see that y1,3, y2,1, y3,2 are σ3-
hypergeometric elements of k[Y, 1/ det(Y )]/Iirr and further they are not pairwise
similar. More precisely,

σ3(y1,3) = (x+ 2)y1,3, σ3(y2,1) = xy2,1 σ3(y3,2) = (x+ 1)y3,2.

An easy calculation yields that (0, 0, 0) is the only element (m1,m2,m3) in Z3 such
that

xm1(x+ 1)m2(x+ 2)m3 = σ3(f)/f

for some f ∈ k. When m1 = m2 = m3 = 0, we can take f = 1 and then
Proposition 4.6 implies that Iirr is a maximal σ3-ideal. Let

I = Iirr ∩ σ(Iirr) ∩ σ2(Iirr) = IZ,2.

Lemma 4.1 implies that IZ,2 is a maximal σ-ideal. Thus the Galois group is
stab(IZ,2), which has already been explicitly given in Example 3.11.

5. The algorithm and an example

We are now ready to present the algorithm for computing the Galois group
stab(I), where I is a maximal σ-ideal of k[Y, 1/ det(Y )].

Algorithm 5.1. Input: a linear difference equation of the form (1.1).
Output: the Galois group of (1.1) over k.

(i) Compute a proto-maximal σ-ideal IF,d̃ by Algorithm 3.3.

(ii) Using the algorithms for problem (P2), compute an associated prime of√
IF,d̃, denoted by Iirr. Compute a positive integer δ such that Iirr is a

σδ-ideal.
(iii) By Algorithm B.1, compute a set of σδ-hypergeometric elements over k

in k[Y, 1/ det(Y )]/Iirr, whose elements are represented by polynomials in
k[Y ]≤κ2

, and are not pairwise similar. Denote them by P1, · · · , Pν .
(iv) Let bi be the certificates of Pi, i.e., σδ(Pi) − biPi ∈ Iirr where bi ∈ k×

and i = 1, · · · , ν. Using the method for problem (P3), compute a set of
generators of the following Z-module:

Z =

{
(m1, · · · ,mν) ∈ Zν

∣∣∣∣∣ ∃ f ∈ k×, s.t.
ν∏

i=1

bmi
i =

σδ(f)

f

}
.

Denote those generators by m1, · · · ,mμ.
(v) Set P = (P1, · · · , Pν) and find fi, the element in k× such that Pmi =

σδ(fi)/fi, where i = 1, · · · , ν. Set

Pc = Iirr ∪
{
Pm+

i − cifiP
m−

i

∣∣∣ i = 1, · · · , μ
}
,

where c = (c1, · · · , cμ) ∈ (C×)μ, and m+
i ,m

−
i are elements in Zν

≥0 satisfy-

ing m+
i −m−

i = mi and m+
i

(
m−

i

)T
= 0. By the algorithms developed in

[15, 21, 30, 32], compute a c ∈ (C×)μ such that Pc is proper.
(vi) With the algorithms for problem (P2) and the algorithm presented in (sec-

tion 6.3, page 260 of [1]), compute
√
Pc and

I =
√
Pc ∩ σ

(√
Pc

)
∩ · · · ∩ σδ−1

(√
Pc

)
.
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Due to Proposition 4.6,
√
Pc is a maximal σδ-ideal and then I is a maximal

σ-ideal by Lemma 4.1.
(vii) Using Gröbner basis computation, compute stab(I) and then return stab(I).

Correctness of the algorithm comes from the results presented in the previous
sections.

Remark 5.2.

(a) One may suspect that the complexity of the algorithm would be very high,

since the degree bounds d̃ and κ2 given in (2.1) and (2.2) are quite large.
These degree bounds guarantee the termination of the algorithm. Addi-
tionally, one needs to find a coefficient bound for generators of IF,d̃ (see

Appendix A). It seems that there does not exist a universal coefficient

bound, i.e., a coefficient bound only depending on d̃, the order n, and the
degrees of the coefficients of equations.

(b) Except for one particular case where the Galois group has a torus as its
identity component, we are not able to decide whether IF,d is proto-maximal

or not when d < d̃. This is why our algorithm does not begin by computing
IF,d with d = 1, 2, · · · . On the other hand, assume that the Galois group
has a torus as its identity component. Then the first step of the algorithm
can be improved as follows. For d ≥ 0 and e ≥ 0, denote by IF,d,e the
σ-ideal generated by polynomials in

{P ∈ C[x][Y ] |P (F ) = 0, degx(P ) ≤ e, degY (P ) ≤ d} ,
where degY (P ) stands for the total degree of P in y1,1, · · · , yn,n. We first
set d = 1 and e = 0 and compute IF,d,e by the method developed in
section 3.1. Then decide if IF,1,0 is proto-maximal. If IF,1,0 is proto-
maximal, then we are done. Otherwise, increase d or e and repeat the
process. Note that by Remark 2.3 stab(IF,d,e) is a proto-Galois group if
and only if stab(IF,d,e)

◦ is a torus. Using the Gröbner basis method, one
can verify whether stab(IF,d,e)

◦ is a torus and whether Zero(IF,d,e) is a
k-torsor for stab(IF,d,e)(k̄) once a zero of IF,d,e in GLn(k̄) is computed. As
Zero(IF,d) ⊆ Zero(IF,d,e), if Zero(IF,d,e) is a k-torsor, then it must be a triv-
ial k-torsor. In the sequel, one can verify whether IF,d,e is proto-maximal.

(c) In Examples 3.11 and 5.3, since the coefficient matrices are monomial (see
page 57 of [13] for the definition), the Galois groups are algebraic subgroups
of the group of monomial matrices and thus their identity components are
tori. Therefore, in these two examples, a small d such as 2 is large enough
to obtain proto-maximal σ-ideals.

In the following, we give an example to illustrate the algorithm.

Example 5.3. Consider the following linear difference equation:

(5.1) σ

⎛
⎝y1
y2
y3

⎞
⎠ =

⎛
⎝0 1 0
x 0 0
0 0 1

x

⎞
⎠
⎛
⎝y1
y2
y3

⎞
⎠ .

(i) Using the method developed in section 3.1, we compute an ideal Ĩ generated
by polynomials in IF,2 ∩ C[Y ]:

Ĩ = 〈y3,2, y3,1, y2,3, y2,1y2,2, y1,3, y1,2y2,2, y1,1y2,1, y1,1y1,2〉.
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Ĩ is a σ-ideal and

stab(Ĩ) =

⎧⎨
⎩
⎛
⎝α 0 0
0 β 0
0 0 γ

⎞
⎠
∣∣∣∣∣∣αβγ �= 0

⎫⎬
⎭ ∪

⎧⎨
⎩
⎛
⎝0 α 0
β 0 0
0 0 γ

⎞
⎠
∣∣∣∣∣∣αβγ �= 0

⎫⎬
⎭ .

As stab(Ĩ)◦ is a torus, stab(Ĩ) is a proto-Galois group of (5.1) over k.

Furthermore, it is easy to verify that Zero(Ĩ) is a trivial k-torsor. Thus Ĩ
is a proto-maximal σ-ideal.

(ii) Ĩ is radical and one can compute its irreducible decomposition as follows:

Ĩ = 〈y1,1, y1,3, y2,2, y2,3, y3,1, y3,2〉 ∩ 〈y1,2, y1,3, y2,1, y2,3, y3,1, y3,2〉.

Set Iirr = 〈y1,1, y1,3, y2,2, y2,3, y3,1, y3,2〉. Then Iirr is a σ2-ideal and

stab(Iirr) = {diag(α, β, γ)|αβγ �= 0}.

(iii) Observe that the group of characters of stab(Iirr) is generated by linear
polynomials. Using Algorithm B.1, we can find that σ2-hypergeometric
elements of k[Y, 1/ det(Y )]/Iirr that are represented by linear polynomials
in k[Y ] are y1,2, y2,1, y3,3. Precisely,

σ2(y1,2) = xy1,2, σ2(y2,1) = (x+ 1)y2,1, σ2(y3,3) =
1

x(x+ 1)
y3,3.

(iv) Set

Z =

{
(m1,m2,m3) ∈ Z3

∣∣∣∣ ∃ f ∈ k×, s.t. xm1(x+ 1)m2

(
1

x(x+ 1)

)m3

=
σ2(f)

f

}
.

One sees that Z is generated by (1, 1, 1) and when m1 = m2 = m3 = 1,
one can take f = 1.

(v) Let Pc = 〈Iirr ∪ {y1,2y2,1y3,3 − c}〉 where c ∈ C×. One sees that for any
c ∈ C×, Pc is proper. Take c = 1. Then one can verify that P1 is a radical
ideal and thus it is a maximal σ2-ideal.

(vi) Compute I = P1 ∩ σ(P1). One has that

I = 〈y3,2, y3,1, y2,3, y2,2y2,1, y1,3, y2,2y1,2, y1,2y22,1y3,3 − y2,1, y
2
1,2y2,1y3,3 − y1,2,

y1,2y2,1y3,3 + y1,1y2,2y3,3 − 1, y1,1y2,1, y1,1y1,2〉.

(vii) Using Gröbner basis computation, we have that

stab(I) =

⎧⎨
⎩
⎛
⎝α 0 0
0 β 0
0 0 γ

⎞
⎠
∣∣∣∣∣∣αβγ = 1

⎫⎬
⎭ ∪

⎧⎨
⎩
⎛
⎝0 α 0
β 0 0
0 0 γ

⎞
⎠
∣∣∣∣∣∣αβγ = 1

⎫⎬
⎭ .

Appendix A. Coefficient bounds for generators of IF,d

Note that IF,d is generated by

S = {P (Y ) ∈ k[Y ]≤d | P (F ) = 0},

which is a k-vector space of finite dimension. We are going to find coefficient bounds
for S. Precisely, we shall find an integer 
 such that there is a basis of S satisfying

that the coefficients of elements in this basis are of degree ≤ 
. Let N =
(
d+n2

d

)
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and M1, · · · ,MN be the monomials in entries of F with degrees not greater than d.
Observe that for a basis of S, it suffices to find a basis of the following vector space{

(a1, · · · , aN ) ∈ kN

∣∣∣∣∣
N∑
i=1

aiMi = 0

}
.

Furthermore, one sees that (M1, · · · ,MN )T is a solution of a linear difference equa-
tion, which can be constructed from (1.1). Hence our original problem can be
reduced to the following one.

Problem A.1. Assume that v = (v1, · · · , vn)T is a nonzero solution of (1.1), where
the vi are in some Picard-Vessiot extension ring of k. Set

W = {(a1, a2, · · · , an) ∈ kn | a1v1 + · · ·+ anvn = 0}.
Find an integer 
 depending on n and A, such that W has a basis consisting of
vectors whose entries are of degree not greater than 
.

Without loss of generality, we may assume that v1, · · · , vr are linearly indepen-
dent over k and

vr+i = ci,1v1 + · · ·+ ci,rvr, i = 1, · · · , n− r.

For all i with 1 ≤ i ≤ n− r, denote ci = (ci,1, ci,2, · · · , ci,n), where ci,r+i = −1 and
ci,r+j = 0 for all 1 ≤ j ≤ n − r with j �= i. Then {c1, · · · , cn−r} is a basis of W .
Actually, for any a = (a1, · · · , an) ∈ W , we have that a = −(ar+1c1+· · ·+ancn−r).
In the following, we are going to find a bound for deg(ci,j), where i = 1, · · · ,
n− r, j = 1, · · · , r. Let V be the solution space of (1.1) and set

Ṽ = {w ∈ V | ciwT = 0, ∀ i = 1, · · · , n− r}.

Then Ṽ is a C-vector space of finite dimension. Moreover, we have

Lemma A.2. dim(Ṽ ) = r.

Proof. Clearly, v ∈ Ṽ . Suppose that {v1, · · · ,vμ} is a basis of the vector space
over C spanned by the orbit of v under the action of Gal(K/k), the Galois group of
(1.1), where K is the ring of fractions of the Picard Vessiot extension of k for (1.1).

Then vi ∈ Ṽ for all i with 1 ≤ i ≤ μ. Hence dim(Ṽ ) ≥ μ. In the following, we shall
prove that μ ≥ r. Denote the matrix consisting of the first μ rows of (v1, · · · ,vμ)
by D and the remaining ones by U . For any φ ∈ Gal(K/k), there is [φ] ∈ GLμ(C)
such that φ(D) = D[φ] and φ(U) = U [φ]. Without loss of generality, we may
assume that det(D) �= 0. As for any φ ∈ Gal(K/k), φ(det(D)) = det(D) det([φ]).
One sees from Corollary 1.15 of [29] that det(D) is invertible in K and therefore D
is invertible. Now for any φ ∈ Gal(K/k),

φ(UD−1) = U [φ][φ]−1D−1 = UD−1.

The Galois theory implies that C = UD−1 ∈ k(n−μ)×μ. Set C̃ = (−C, In−μ). Then

C̃

(
D
U

)
= 0.

Particularly, C̃v = 0. This implies that dim(W ) = n− r ≥ n− μ and then μ ≥ r.

So dim(Ṽ ) ≥ r. On the other hand, one has that dim(Ṽ ) + n − r ≤ n and then

dim(Ṽ ) ≤ r. Hence dim(Ṽ ) = r. �
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Assume that {v1 = v,v2, · · · ,vr} is a basis of Ṽ and M is the n × r matrix
consisting of the vectors v1, · · · ,vr. For 1 ≤ i1 < · · · < ir ≤ n, denote the
determinant of the sub-matrix consisting of the i1-th,i2-th, · · · , ir-th rows of M by
di1,i2,··· ,ir . Then an easy calculation implies that

di1,i2,··· ,ir = bi1,i2,··· ,ird1,2,··· ,r,where bi1,i2,··· ,ir ∈ k.

Particularly,

b1,2,··· ,j−1,j+1,··· ,r,r+i = (−1)r−jci,j , for all 1 ≤ i ≤ n− r and all 1 ≤ j ≤ r.

Let b = (b1,2,··· ,r, · · · , bn−r+1,n−r+2,··· ,n)
T . On the other hand, one can construct

from A an invertible matrix Ãr with entries in k such that bd1,2,··· ,r is a solution

of σ(Y ) = ÃrY . Notice that the matrix Ãr only depends on A and r. Moreover,
one can easily verify that d1,2,··· ,r is σ-hypergeometric over k. This implies that
bd1,2,··· ,r is a σ-hypergeometric solution. By means of cyclic vector, the system
of the form (1.1) can be reduced into a scalar linear difference equation. Then
the algorithms for problem (P4) allow us to find all σ-hypergeometric solutions of
(1.1). Therefore one can find an integer 
/2 such that σ-hypergeometric solutions

of σ(Y ) = ÃrY are of the form wh where h is σ-hypergeometric over k and w is a
vector whose entries are elements in k with degree not greater than 
/2. Particu-
larly, bd1,2,··· ,r = w̄h̄ where w̄ = (w̄1, · · · , w̄n) ∈ kn satisfying deg(w̄i) ≤ 
/2 and h̄
is hypergeometric over k. Observe that b1,2,··· ,r = 1. Then one has that b = w̄/w̄1.
Hence entries of b are of degree ≤ 
. Specially, deg(ci,j) ≤ 
.

In the case that we do not know the dimension of Ṽ , we can take r = 1, 2, · · · ,
n − 1 and construct the corresponding systems σ(Y ) = Ã1Y, · · · , σ(Y ) = Ãn−1Y ,
respectively. Compute all σ-hypergeometric solutions of these systems and let 
/2
be an integer such that these σ-hypergeometric solutions are of the form wh where
h is σ-hypergeometric over k and w is a vector whose entries are rational functions
in x with degrees not greater than 
/2. Then we have that deg(ci,j) ≤ 
. This
solves Problem A.1.

Appendix B. σδ
-Hypergeometric elements

In this appendix, we shall describe a method to compute σδ-hypergeometric el-
ements in k[Y, 1/ det(Y )]/Iirr. In fact, instead of all σδ-hypergeometric elements
in k[Y, 1/ det(Y )]/Iirr, we only find those σδ-hypergeometric elements that are not
pairwise similar and are represented by polynomials in k[Y ]≤d, the set of polynomi-
als in k[Y ] with degrees not greater than d. Assume that m1, · · · ,m� are polyno-
mials in k[Y ]≤d satisfying that {m̄1, · · · , m̄�} is a k-basis of k[Y ]≤d/(Iirr∩k[Y ]≤d),
where m̄i is the image of mi. With Gröbner basis computation, one can find these
mi. As σδ preserves the degrees of elements of k[Y ], there is Ã ∈ GL�(k) such that

σδ((m̄1, m̄2, · · · , m̄�)) = (m̄1, m̄2, · · · , m̄�)Ã.

The invertible matrix Ã can be constructed from A. Now suppose that P =
∑

cimi

is a σδ-hypergeometric element, where ci ∈ k, i.e., σδ(P )− rP ∈ Iirr for some r ∈ k
and P is invertible in k[Y, 1/ det(Y )]/Iirr. Then one can verify that c1, · · · , c� and
r satisfying

Ãσδ

⎛
⎜⎝
c1
...
c�

⎞
⎟⎠ = r

⎛
⎜⎝
c1
...
c�

⎞
⎟⎠ .
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Let h be a σδ-hypergeometric element satisfying σδ(h) = r−1h. Then (c1, · · · , c�)Th
is a σδ-hypergeometric solution of the following linear difference equation

(B.1) σδ(Y ) = Ã−1Y.

Consequently, for those c1, · · · , c� and r, it suffices to find all σδ-hypergeometric
solutions of the above linear difference equation. Using the algorithms for problem
(P4), one can find all σδ-hypergeometric solutions of (B.1). In particular, one
can find σδ-hypergeometric solutions c1h1, · · · , clhl that are not pairwise similar
where h1, · · · , hl are σδ-hypergeometric and c1, · · · , cl are vectors with entries in
k. Here two vectors h1,h2 are said to be similar if h1 = rh2 for some r ∈ k×.
Furthermore, if h is a σδ-hypergeometric solution of (B.1), then there is a unique
j with 1 ≤ j ≤ l such that h = bcjhj for some b ∈ k. Write ci = (ci,1, · · · , ci,�)
and set Pi =

∑�
j=1 ci,jmj , where i = 1, 2, · · · , l. Then σδ(Pi)− riPi ∈ Iirr for some

ri ∈ k. It remains to select those Pi that are invertible in k[Y, 1/ det(Y )]/Iirr. Note
that Pi is invertible in k[Y, 1/ det(Y )]/Iirr if and only if Zero(Pi) ∩ Zero(Iirr) = ∅.
The latter condition can be detected by Gröbner basis computation. Precisely, it
suffices to decide if 1 is in the ideal 〈Iirr, Pi〉. The previous results are summarized
in the following algorithm.

Algorithm B.1. Compute all σδ-hypergeometric elements in k[Y, 1/ det(Y )]/Iirr
that are represented by polynomials in k[Y ]≤d and are not pairwise similar.

(a) Compute a Gröbner basis for Iirr ∩ k[Y ] and then find the monomials
m1, · · · ,m� in k[Y ]≤d such that {m̄1, · · · , m̄�} is a k-basis of k[Y ]≤d/
(Iirr∩k[Y ])≤d, where m̄i denotes the image of mi in k[Y ]≤d/(Iirr∩k[Y ])≤d.

(b) Construct an invertible matrix Ã ∈ GL�(k) such that

σδ((m̄1, m̄2, · · · , m̄�)) = (m̄1, m̄2, · · · , m̄�)Ã.

(c) Compute σδ-hypergeometric elements of σδ(Y ) = Ã−1Y, which are not
pairwise similar. Denote them by c1h1, · · · , clhl, where h1, · · · , hl are σδ-
hypergeometric and c1, · · · , cl are vectors with entries in k.

(d) Write ci = (ci,1, · · · , ci,�) and set Pi =
∑�

j=1 ci,jmj, where i = 1, 2, · · · , l.
(e) Decide whether 1 is in 〈Iirr ∩ k[Y ], Pi, det(Y )z − 1〉 with Gröbner basis

computation. Return those Pi satisfying 1 ∈ 〈Iirr ∩ k[Y ], Pi, det(Y )z − 1〉.
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