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DIFFERENCE GALOIS GROUPS UNDER SPECIALIZATION

RUYONG FENG

Abstract. We present a difference analogue of a result given by Hrushovski
on differential Galois groups under specialization. Let k be an algebraically
closed field of characteristic zero and let X be an irreducible affine algebraic
variety over k. Consider the linear difference equation

σ(Y ) = AY,

where A ∈ GLn(k(X)(x)) and σ is the shift operator σ(x) = x+1. Assume that

the Galois group G of the above equation over k(X)(x) is defined over k(X),

i.e., the vanishing ideal of G is generated by a finite set S ⊂ k(X)[X, 1/det(X)].
For a c ∈ X, denote by vc the map from k[X] to k given by vc(f) = f(c) for
any f ∈ k[X]. We prove that the set of c ∈ X satisfying that vc(A) and vc(S)
are well-defined and the affine variety in GLn(k) defined by vc(S) is the Galois
group of σ(Y ) = vc(A)Y over k(x) is Zariski dense in X.

We apply our result to van der Put-Singer’s conjecture which asserts that
an algebraic subgroup G of GLn(k) is the Galois group of a linear difference
equation over k(x) if and only if the quotient G/G◦ by the identity component
is cyclic. We show that if van der Put-Singer’s conjecture is true for k = C,
then it will be true for any algebraically closed field k of characteristic zero.

1. Introduction

Let K be a function field of one variable over Q and let L be a linear differential
operator with coefficients in the differential field (K(t), d/dt). For a place p in K,
Σp denotes its residue field, and Lp denotes the differential operator over Σp(x)
obtained by applying p to the coefficients of L. In [14], Hrushovski proved that for
many places p in K, the Galois group of L(y) = 0 over K̄(t) specializes precisely to
the Galois group of Lp(y) = 0 over Σ̄p(t). As a corollary, he proved a function field
analogue of Grothendieck-Katz’s conjecture on p-curvatures. The reader is referred
to [15] for this conjecture and to ([5],[21]) for its generalizations. In particular,
Di Vizio in [5] presented a positive answer of a q-analogue of Groethendieck-Katz’s
conjecture, i.e., an analogue statement for q-difference equations. The difference
analogue of the Grothendieck-Katz’s conjecture is not true (see a counterexample
on page 58 of [26]). But one can still ask whether Hrushovski’s result holds true
for linear difference equations. The goal of this paper is to provide an affirmative
answer to this question. Let us start with an example.

Example 1.1. Let X = A1(C) and denote C(X) = C(t). Consider

σ(Y ) = diag(t, x, x+ t)Y,
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where σ is the shift operator σ(x) = x+ 1. Denote A(t) = diag(t, x, x+ t). Due to

van der Put-Singer’s method (see Section 2.2 of [26]), G3
m(C(t)) is the Galois group

of the above equation over C(t)(x), where Gm stands for the multiplicative group.
Now let c ∈ A1(C) \ {0}. By van der Put-Singer’s method again, one sees that the
Galois group of σ(Y ) = vc(A)Y over C(x) equals G3

m(C) if and only if c is neither
a root of unity nor an integer. On the other hand, the vanishing ideal of G3

m(C) is
generated by S = {X1,2, X1,3, X2,1, X2,3, X3,1, X3,2}. For any c ∈ C, the variety in
GL3(C) defined by vc(S) is G

3
m(C).

This example implies that on the one hand there are infinitely many “good”
c ∈ A1(C) such that the Galois group of σ(Y ) = vc(A)Y over C(x) is equal to
G3

m(C); on the other hand these good c do not form an open subset of A1(C) in
the sense of Zariski topology. Thus other algebraic structures rather than Zariski
open sets are necessary to describe these good c. For this purpose, we introduce
basic open subsets of the corresponding variety (see Definition 2.1).

Throughout this paper, k denotes an algebraically closed field of characteristic
zero. Let X be an irreducible affine algebraic variety over k. k[X] (resp., k(X))

denotes the ring (resp., field) of regular (resp., rational) functions on X, and k(X)(x)

stands for the field of rational functions in x with coefficients in k(X), the algebraic

closure of k(X). Over k(X)(x), we can define a shift operator σ as the following:

σ(x) = x+ 1 and σ(c) = c for all c ∈ k(X). Consider the linear difference equation

(1.1) σ(Y ) = AY,

where Y is an n-vector of indeterminates and A ∈ GLn(k(X)(x)). Let X = (Xi,j)

be an n×n matrix of indeterminates and let k(X)(x)[X, 1/ det(X)] denote the ring

over k(X)(x) generated by entries of X and 1/ det(X). The main result of this
paper is as follows.

Theorem 1.2. Suppose that G is the Galois group of σ(Y ) = AY over k(X)(x)
and the vanishing ideal of G is generated by a finite set S ⊂ k[X][X]. Then there is
a basic open subset U of X such that for any c ∈ U , the variety in GLn(k) defined
by vc(S) is the Galois group of σ(Y ) = vc(A)Y over k(x).

We prove in Theorem 2.16 that every basic open subset of X is Zariski dense in
X. Theorem 1.2 together with Theorem 2.16 then gives a positive answer to the
question posed at the beginning of this paper. Similar to the Hrushovski’s treat-
ment in [14], the proof of the above theorem relies on the computation of difference
Galois groups and other algorithmic aspects of linear difference equations, which
are developed in [9,20,26], etc. Our way to compute difference Galois groups is via
the Picard-Vessiot theory. Recall that there is another way, the so-called Tannakian
category method, to construct Galois groups. Based on this category approach, a
similar result was obtained in [2] for differential Galois groups of quantum com-
pletely integrable systems.

Theorem 1.2 can be applied to van der Put-Singer’s conjecture concerning the
inverse problem in difference Galois theory. Let G be an algebraic subgroup of
GLn(k). Theorem 1.2 allows one to conclude that if G(k(X)) is the Galois group

of a linear difference equation over k(X)(x), then G is the Galois group of a linear
difference equation with coefficients in k(x). This enables us to reduce van der Put-
Singer’s conjecture to the case where the field of constants is the field of complex
numbers. Note that in [18] the specialization technique is also applied to realize
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a semisimple, simply-connected linear algebraic group defined over Fq as a Galois
group of a Frobenuis difference equation.

Recently, parameterized Galois theories were developed in [4, 6, 11, 19], etc., for
linear difference (or differential) equations with parameters admitting actions of the
derivations or endomorphisms. These parameterized Galois theories provide a pow-
erful tool to measure the differential (or difference) dependencies among solutions
of the corresponding equations and have found many applications in combinatorics
and the theory of special functions. However, the present paper focuses on linear
difference equations with parameters where the derivations or endomorphisms act
trivially. These equations can be regarded as a family of linear difference equations
parameterized by an irreducible affine variety, and the Galois groups then measure
the algebraic relations among solutions at generic points. The main result of this
paper tells us for what specializations of the parameters these algebraic relations
among solutions are preserved precisely. From Example 5.11, one may see that
there are specializations which destroy the algebraic relations completely.

The rest of this paper is organized as follows. In Section 2, we introduce the
notion of basic open subsets of an irreducible affine variety X over k and present the
properties of these subsets. Sections 3 and 4 present some preliminary results for
the proof of Theorem 1.2. In Section 3, we deal with algebraic groups defined over
k(X). Precisely, we prove that for almost all c ∈ X, vc preserves the structure of
algebraic groups and is bijective from the characters of a connected algebraic group
G to those of Gc, the specialized group of G. In Section 4, we consider σ-ideals. We
show that given a ν-maximal σ-ideal of k(X)(x)[X, 1/ det(X)] (see Definition 4.2)
generated by a finite set S ⊂ k[X][X], there is a basic open subset U of X such
that vc(S) generates a ν-maximal σ-ideal of k(x)[X, 1/ det(X)] for all c ∈ U . We
prove Theorem 1.2 in Section 5 and apply this theorem to the inverse problem in
difference Galois theory in Section 6.

Notation. When P is an element in k[X][X, 1/ det(X)] or a matrix with entries in
k[X], we also use P (c) to denote vc(P ). All varieties in this paper will be affine.

k, L algebraically closed fields of characteristic zero
Ga (resp., Gm) additive (resp., multiplicative) group
X,Y affine algebraic varieties over k
k[X] the ring of regular functions on X

k(X) the field of rational functions on X

pY/X the projection from Y to X induced by k[X] ⊂ k[Y]
vc the map from k[X] to k given by vc(f) = f(c)

Γ, Γ̃ finitely generated subgroups of Ga(k(X)) or Gm(k(X))

Ũ , U, U1, U2, · · · basic open subsets of X or Y
Xf {c ∈ X|f(c) �= 0}, where f �= 0

G an algebraic subgroup of GLn(k(X)) (or GLn(k))
G◦ the identity component of G
χ(G) the group of characters of G

G(k(X)(x)) the set of k(X)(x)-points of G
Z(f) the set of integer zeros of f
X (resp., Z) n× n matrix with indeterminate entries Xi,j (resp., Zi,j)
L[X]≤d the set of polynomials in L[X] with total degree ≤ d
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2. Basic open subsets of X

In this section, we shall introduce an algebraic structure of X which is Zariski
dense in X and consists of good specializations. Throughout this section, we fix an
algebraic closed field L containing k(X) and all k-algebras will be in L. Assume
that Γ is a finitely generated subgroup of Ga(L) or Gm(L). Denote by Y the variety
over k associated to k[X][Γ], the k[X]-algebra in L generated by Γ and denote by
pY/X the morphism from Y to X induced by the inclusion k[X] ⊂ k[X][Γ]. Note
that k[Y] = k[X][Γ] and Y can be identified with the set of all k-homomorphisms
from k[X][Γ] to k. Under this identification, for c ∈ Y, we use vc to denote the
k-homomorphism corresponding to c. One sees that for f ∈ k[X][Γ], vc(f) is equal
to the value at c of f viewed as a regular function on Y, i.e., vc(f) = f(c). We are
interested in those c ∈ Y whose induced maps vc are injective on Γ. Set

(2.1) B(X,Γ) = pY/X ({c ∈ Y|vc is injective on Γ}) .

Definition 2.1. A basic open subset of X is defined to be the intersection of finitely
many subsets of X of the form B(X,Γ). When Γ is the subgroup of Ga(L) generated
by a single g ∈ L, we will abbreviate B(X,Γ) to Xg.

Recall that when Γ ⊂ k[X], one can take Y = X and then pY/X is the identity
map and B(X,Γ) = {c ∈ X|vc is injective on Γ}. The reason that Γ is not restricted
to k[X] is as follows. On the one hand, the extension of k[X] is necessary in some
cases such as the defining field of characters of G◦ (see Example 5.10). On the other
hand, if we restrict Γ to k[X] in Definition 2.1, then we do not know whether basic
open sets are preserved by the projection map, although they do if they are only
defined by additive groups (see Lemma 5A.1 of [14]). Two lemmas below imply
that basic open sets without the above restriction are preserved by the projection
map in some sense. The first one is due to Proposition 9 on page 34 of [16].

Lemma 2.2. Assume that Y is a variety over k associated to a finitely generated
k[X]-algebra in L. For any f̃ ∈ k[Y] \ {0}, there is a nonzero f ∈ k[X] such that

Xf ⊂ pY/X(Yf̃ ).

Lemma 2.3. Suppose that Y is as in Lemma 2.2 and U is a basic open subset of
Y. Then pY/X(U) contains a basic open subset of X.

Proof. It suffices to show the assertion with U = B(Y,Γ), where Γ is a finitely
generated subgroup of Ga(L) or Gm(L). Assume that k[Y] is generated by a finite

subset T of L \ {0} as a k[X]-algebra. Let Γ̃ be generated by Γ ∪ T as a group

of the same type as Γ. Then k[Y][Γ] ⊂ k[X][Γ̃] = k[Y][Γ̃]. Let Ỹ and Y′ be the

varieties over k associated to k[X][Γ̃] and k[Y][Γ], respectively. Since Γ̃ ⊂ k[Ỹ],

B(Ỹ, Γ̃) = {c ∈ Ỹ|vc is injective on Γ̃}. Then by definition, one has that

(2.2) B(X, Γ̃) = p
Ỹ/X({c ∈ Ỹ|vc is injective on Γ̃}) = p

Ỹ/X(B(Ỹ, Γ̃)).
Similarly, U = B(Y,Γ) = pY′/Y(B(Y′,Γ)). Furthermore, as the morphism p

Ỹ/Y′

is induced by the inclusion k[Y][Γ] ⊂ k[Ỹ], for any c ∈ Ỹ and any f ∈ Γ,
vp

Ỹ/Y′ (c)
(f) = vc(f). This implies that if vc is injective on Γ, then so is vp

Ỹ/Y′ (c)
.

Hence p
Ỹ/Y′(B(Ỹ,Γ)) ⊂ B(Y′,Γ) and then

(2.3)

p
Ỹ/X(B(Ỹ,Γ)) = pY/X(pY′/Y(pỸ/Y′(B(Ỹ,Γ)))) ⊂ pY/X(pY′/Y(B(Y′,Γ))) = pY/X(U).
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Finally as B(Ỹ, Γ̃) ⊂ B(Ỹ,Γ), the formulas (2.2) and (2.3) yield that

B(X, Γ̃) = p
Ỹ/X(B(Ỹ, Γ̃)) ⊂ p

Ỹ/X(B(Ỹ,Γ)) ⊂ pY/X(U).

�
Remark 2.4. We should remark that the set B(X,Γ) given in Definition 2.1 is
nothing else but a subset of a basic gr-open subset of Spec(k[X]) introduced by
Hrushovski in [14]. Let G be a commutative algebraic group scheme over k[X] and
let Γ be a finitely generated subgroup of G(k[X]). The set of primes p ∈ Spec(k[X])
satisfying that the canonical map k[X] → k[X]/p is injective on Γ is called a basic
gr-open subset of Spec(k[X]), denoted by W(G,Γ). When G = Ga or G = Gm, one
has that

B(X,Γ) = W(G,Γ) ∩max(k[X]),

where max(k[X]) denotes the set of maximal ideals of k[X]. Hrushovski proved
that if k is a number field and dimX = 1, then W(G,Γ) is infinite (see Lemma
5A.10 of [14]). The key idea of his proof is reducing G to the cases that G is an
Abelian variety or Gm or Ga. The case that G is an Abelian variety is due to Néron
(see for example Section 6 in Chapter 9 of [17] or Section 11.1 of [23]). The case
when G = Ga was proved in Lemma 5A.4 of [14]. For the case when G = Gm,
Hrushovski claimed that one can use an entirely similar argument as that in the
proof of Néron’s theorem. A similar claim was also made by Serre in Section 11.1
of [23] for the case when k is a number field and k(X) is a purely transcendental
extension of k. To be complete, we shall provide a detailed proof for the case when
G = Gm. Moreover, we remove the restrictions on k and k[X].

Now we turn to showing that basic open subsets of X are not empty. We first
show that B(X,Γ) is not empty. From (2.1), it suffices to prove that the set {c ∈
Y|vc is injective on Γ} is not empty. Furthermore, since Γ ⊂ k[Y], one sees that
B(Y,Γ) = {c ∈ Y|vc is injective on Γ}. So it suffices to prove that B(Y,Γ) �= ∅.
Due to the Noetherian normalization lemma, it is reasonable to make the following
assumption.

Convention 2.5. Suppose that Y ⊂ km and denote k[Y] = k[η1, · · · , ηm], where
η1, · · · , ηl ∈ L are algebraically independent over k and ηl+i ∈ L is integral over
k[η1, · · · , ηl]. Set η = (η1, · · · , ηm) and ηl = (η1, · · · , ηl).

To prove B(Y,Γ) �= ∅, we need a generalization of Hilbert sets (see Section

12.1 of [10]). Let k̃ ⊂ k be a field finitely generated over Q such that the minimal

polynomial of ηl+i over k(ηl) has coefficients in k̃[ηl] for all i = 1, · · · ,m−l. Assume

that f is a finite set of polynomials in k̃[η, z] irreducible over k̃(η) and monic in z.

Suppose that g ∈ k̃[η] \ {0}, and d = (d1, · · · , dl) ∈ Zl with positive di.

Notation 2.6. Hk̃,Y(d, f , g) denotes the set of c = (c1, · · · , cm) ∈ Y satisfying that

(1) for 1 ≤ i ≤ l, [k̃(c1, · · · , ci) : k̃(c1, · · · , ci−1)] ≥ di, and
(2) g(c) �= 0, and

(3) for each f ∈ f , f(c, z) is irreducible over k̃(c).

We call such Hk̃,Y(d, f , g) a k̃-Hilbert set of Y.

Assume that K is a field of characteristic zero, T = {T1, · · · , Tm}, and Y =
{y1, · · · , yn}. For g ∈ K[T] \ {0} and h1, . . . , hs ∈ K(T)[Y] irreducible over
K(T), denote by HK(h1, . . . , hs; g) the set of all c ∈ Km with g(c) �= 0 and



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

66 RUYONG FENG

h1(c,Y), · · · , hs(c,Y) defined and irreducible in K[Y]. In Section 12.1 of [10], a
set of the form HK(h1, . . . , hs; g) is called a Hilbert subset of Km and the field K
is called a hilbertian field if for every positive integer m, each Hilbert subset of
Km is nonempty. One sees that Hk̃,Y((1, · · · , 1), ∅, g) = Yg and if Y = k̃l, then

Hk̃,Y((1, · · · , 1), f , g) is a usual Hilbert set. Furthermore, one can easily verify that

Hk̃,Y(d1, f1, g1) ∩Hk̃,Y(d2, f2, g2) = Hk̃,Y(d̄, f1 ∪ f2, g1g2),

where the ith coordinate of d̄ is equal to the maximum of the ith coordinates of
d1 and d2 for all i = 1, · · · , l. From this, one sees that the intersection of finitely
many k̃-Hilbert sets is a k̃-Hilbert set. Recall that if k̃ is replaced by an Omega-free
PAC field K, Lemma 27.2.1 on page 660 of [10] implies that HK,Y((1, · · · , 1), f , g)
is not empty. We shall prove that every k̃-Hilbert set is nonempty.

Lemma 2.7. Assume that K is a hilbertian field and K̃ is a finite extension of K.
For any positive integer d, there is α algebraic over K satisfying that [K(α) : K] = d

and K(α) ∩ K̃ = K.

Proof. Consider the polynomial zd−t ∈ K[z, t] which is irreducible over K̃(t). Since

K is hilbertian, there is c ∈ K such that zd − c is irreducible in K̃[z] by Corollary
1.8 on page 10 of [27]. Let α be a root of zd − c = 0 in K̄. Then [K(α) : K] = d. If

K(α) ∩ K̃ �= K, then [K(α) : K(α) ∩ K̃] < d. This implies that zd − c is reducible

over K̃, a contradiction. Hence K(α) ∩ K̃ = K. �
Proposition 2.8. Hk̃,Y(d, f , g) �= ∅.

Proof. Suppose that f = {f1, · · · , fs}. For each i = 1, · · · , s, let αi ∈ L satisfy that

fi(αi) = 0 and let βi ∈ L be such that k̃(η, αi) = k̃(ηl, βi). We may choose βi to

be integral over k̃[ηl]. Let f̃i be the polynomial in k̃[y1, · · · , yl, z] irreducible over

k̃ and monic in z such that f̃i(ηl, βi) = 0. Then

degz(f̃i) = [k̃(ηl, βi) : k̃(ηl)] = [k̃(ηl, βi) : k̃(η)][k̃(η) : k̃(ηl)]

= [k̃(η, αi) : k̃(η)][k̃(η) : k̃(ηl)] = degz(fi)[k̃(η) : k̃(ηl)].

Assume that βi = hi(η, αi)/r(ηl) where hi ∈ k̃[y1, · · · , ym, z] and r ∈ k̃[y1, · · · , yl].
Let k′ be a finite extension of k̃ such that all factors of the f̃i irreducible over k

′ are
absolutely irreducible. Using Lemma 2.7 repeatedly, we have c1, · · · , cl ∈ k such
that k̃(c1, · · · , cl) ∩ k′ = k̃ and for each j = 1, · · · , l,

[k̃(c1, · · · , cj) : k̃(c1, · · · , cj−1)] = dj .

Write cl = (c1, · · · , cl). We claim that all f̃i are irreducible over k̃(cl). Otherwise,

assume that f̃i is reducible over k̃(cl) for some i and q is one of its irreducible

factors. Then q is the product of some irreducible factors of f̃i in k′[y1, · · · , yl, z].
Therefore the coefficients of q are all in k′ ∩ k̃(cl), i.e., q ∈ k̃[y1, · · · , yl, z]. This

contradicts the irreducibility of f̃i. This proves our claim. It is easy to see that all
f̃i(y1+c1, · · · , yl+cl, z) are also irreducible over k̃(cl). As k̃(cl) is a finite extension

of the hilbertian field k̃, by Lemma 12.2.2 on page 224 of [10], there is a Hilbert set

H ⊂ k̃l such that for each a ∈ H, all f̃i(a+ cl, z) are irreducible over k̃(cl). Let g̃

be the norm of g down to k̃(ηl). Since g is integral over k̃[ηl] and k̃[ηl] is integrally

closed, g̃ ∈ k̃[ηl]. One sees that for any c ∈ Y if g̃(c) �= 0, then g(c) �= 0. Let H̃

be the set of a ∈ H satisfying that g̃(a + cl)r(a + cl) �= 0. Then H̃ �= ∅ as H is
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Zariski dense. Now let b = (b1, · · · , bm) ∈ Y satisfy that (b1, · · · , bl) = a + cl for

some a ∈ H̃. Such b exists because ηl+1, · · · , ηm are integral over k[ηl]. Let ᾱi ∈ k

be a zero of fi(b, z). Set β̄i = hi(b, ᾱi)/r(a+ cl). Then β̄i is a zero of f̃i(a+ cl, z)

and since f̃i(a+ cl, z) is irreducible over k̃(cl),

degz(f̃i(a+ cl, z)) = [k̃(a+ cl, β̄i) : k̃(a+ cl)] = [k̃(cl, β̄i) : k̃(cl)]

≤ [k̃(b, ᾱi) : k̃(cl)] = [k̃(b, ᾱi) : k̃(b)][k̃(b) : k̃(cl)]

≤ degz(fi(b, z))[k̃(η) : k̃(ηl)] = degz(f̃i).

The last inequality holds because ᾱi is a zero of fi(b, z) and b ∈ Y with η as a

generic point. At the same time, because degz(f̃i(a + cl, z)) = degz(f̃i), one has

that degz(fi(b, z)) = [k̃(b, ᾱi) : k̃(b)]. This implies that fi(b, z) is irreducible over

k̃(b). It is obvious that for each j = 1, · · · , l,

[k̃(b1, · · · , bj) : k̃(b1, · · · , bj−1)] = [k̃(c1, · · · , cj) : k̃(c1, · · · , cj−1)] ≥ dj .

Therefore b ∈ Hk̃,Y(d, f , g). �

Corollary 2.9. Suppose that h ∈ k̃[η][z] is monic and of degree ≥ 1 in z. Then

there exists a k̃-Hilbert set V of Y such that for any c ∈ V , h(c, z) = 0 has a root

in k̃(c) if and only if h = 0 has a root in k̃(η).

Proof. Decompose h into irreducible polynomials in k̃(η)[z], say h1, h2, · · · , hs. Pick

a suitable nonzero g ∈ k̃[η] such that for each i = 1, · · · , s, gdegz(hi)hi = fi(gz) for

some fi ∈ k̃[η, z] being monic in z. One sees that fi is irreducible over k̃(η) and,

moreover, hi has a zero in k̃(η) if and only if so does fi. Let f = {f1, · · · , fs} and

V = Hk̃,Y((1, · · · , 1), f , g). Suppose that c ∈ V . Then fi(c, z) has a zero in k̃(c) if

and only if so does hi(c, z). For an irreducible polynomial in z, it has a zero in its
coefficient field if and only if it is of degree one. The corollary then follows from
the fact that hi(c, z) is irreducible and

degz(hi(c, z)) = degz(fi(c, z)) = degz(fi) = degz(hi).

�

Due to Lemma 5A.3 and Remark 5A.3R of [14], one has the following proposition.

Proposition 2.10. Suppose that Γ is a finitely generated subgroup of Ga(k̃[η]).
Then there is an l-tuple of positive integers d such that Hk̃,Y(d, ∅, 1) ⊂ B(Y,Γ).

Proof. We have that {η1, · · · , ηl} is a transcendental basis of k(Y)/k. Let V be

the k̃-vector space in k̃[η] spanned by Γ. As Γ is finitely generated, V is of finite
dimension. By Remark 5A.3R of [14], there are positive integers d1, · · · , dl such

that for any k̃-homomorphism h : k̃[η] → k̃a ⊂ k, if

(2.4) [k̃(h(η1), . . . , h(ηi)) : k̃(h(η1), . . . , h(ηi−1))] ≥ di

for every i = 1, · · · , l, then h is injective on V . Here k̃a denotes the algebraic
closure of k̃. Now let c ∈ Hk̃,Y((d1, · · · , dl), ∅, 1). Then the restriction of vc on k̃[η]

is a k̃-homomorphism from k̃[η] to k and vc(ηi) = ci, where c = (c1, · · · , cm). By
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definition (see Notation 2.6 (1)),

[k̃(vc(η1), · · · , vc(ηi)) : k̃(vc(η1), · · · , vc(ηi−1))] = [k̃(c1, · · · , ci) : k̃(c1, · · · , ci−1)]

≥ di,

i.e., the restriction of vc satisfies the conditions (2.4). The above statement following
from Remark 5A.3R of [14] then implies that vc is injective on V and thus on Γ.
In other words, c ∈ B(Y,Γ). �

Next, we are going to deal with the case that Γ is a finitely generated subgroup
of Gm(k̃[η]). It has been claimed on page 154 of [23] and in Discussion 5A.8 (4) of
[14] that the proof of Néron’s theorem can be applied to proving that B(Y,Γ) �= ∅.
The readers are referred to Section 6 in Chapter 9 of [17] or Section 11.1 of [23] for
the proof of Néron’s theorem. Here we present a detailed proof of the claim made
by Hrushovski and Serre. Let K ⊂ L be a subfield.

Definition 2.11. Suppose Γ is a subgroup of Gm(K). The radical of Γ in K,
denoted by radK(Γ), is defined to be

{α ∈ Gm(K) | ∃ l > 0 s.t. αl ∈ Γ}.
We say Γ is radical in K if Γ = radK(Γ).

It is easy to see that radK(Γ) is also a subgroup of Gm(K). Moreover, we have
the following proposition.

Proposition 2.12. Suppose that K is a field finitely generated over Q and Γ is a
finitely generated subgroup of Gm(K). Then radK(Γ) is also finitely generated.

Proof. Assume that a1, · · · , am are generators of Γ. We first prove the case that K
is a number field. Let p1, · · · , p� be all prime ideals of OK satisfying that for each
1 ≤ i ≤ �, ordpi

(aj) �= 0 for some 1 ≤ j ≤ m, where ordpi
(aj) denotes the order of

aj at pi. Consider the group homomorphism ϕ : radK(Γ) → Z� defined by

ϕ(α) = (ordp1
(α), · · · , ordp�

(α)).

One can verify that ker(ϕ) = radK(Γ)∩O×
K and so the kernel is finitely generated,

because O×
K is finitely generated. The image of ϕ is also finitely generated, as it is

a subgroup of Z�. Hence radK(Γ) is finitely generated.
Now assume that K is transcendental over Q. Due to the results on page 99

of [28], there is a set S� of prime divisors of K/Q such that for any b ∈ K if
ordp(b) ≥ 0 for all p ∈ S�, then b is algebraic over Q. Let p1, · · · , p� be all elements
in S� satisfying that for each 1 ≤ i ≤ �, ordpi

(aj) �= 0 for some 1 ≤ j ≤ m.
Similarly, consider the group homomorphism ψ : radK(Γ) → Z� defined by

ψ(α) = (ordp1
(α), · · · , ordp�

(α)).

One can check that ker(ψ) = Q̃ ∩ radK(Γ) where Q̃ is the algebraic closure of Q in
K. The image of ψ is a subgroup of Z� and so it is finitely generated. Therefore
to show that radK(Γ) is finitely generated, it suffices to show that ker(ψ) is finitely

generated. Let R = Q̃[a1, 1/a1, · · · , am, 1/am] and let φ be a Q̃-homomorphism

from R to Q̄. Then φ(ai) �= 0 for all 1 ≤ i ≤ m. Let Γ̃ be the subgroup of Gm(Q̄)

generated by φ(a1), · · · , φ(am) and let E = Q̃(φ(a1), · · · , φ(am)). Then Γ̃ = φ(Γ)

and E is a number field. Suppose that γ ∈ ker(ψ), i.e., γ ∈ Q̃ and γd ∈ Γ for some

d > 0. Applying φ to γ yields that γd = φ(γ)d ∈ Γ̃. This implies that γ ∈ radE(Γ̃)
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and thus ker(ψ) ⊂ radE(Γ̃). Since E is a number field, radE(Γ̃) is finitely generated
as we have already proved. So ker(ψ) is finitely generated. �

The example below shows that ifK is not finitely generated over Q, then radK(Γ)
may not be finitely generated.

Example 2.13. Let K = Q(ξ2, ξ3, · · · ) where ξi is a primitive ith root of unity,
and let Γ = {1}. Then radK(Γ) contains all ξi, and thus it is not finitely generated.

For a positive integer � and a subgroup Γ of Gm(k̃[η]), denote

Γ� = {γ ∈ Γ|γ� = 1}.

Lemma 2.14. Suppose that � is a positive integer and Γ is a finitely generated
subgroup of Gm(k̃[η]) which is radical in k̃(η). Then there exists a k̃-Hilbert set V

of Y such that for any c ∈ V , vc(Γ) is a subgroup of Gm(k̃(c)) and vc(Γ�) = vc(Γ)�.
Moreover, vc(Γ) is finitely generated.

Proof. Let h be a polynomial in k̃[η][z] such that

z� − 1 = h
∏
c∈Γ�

(z − c).

Then h = 0 has no roots in k̃(η), because Γ is radical in k̃(η). By Corollary 2.9,

there exists a k̃-Hilbert set Ṽ of Y such that for any c ∈ Ṽ , h(c, z) = 0 has no root

in k̃(c). Set g = b1 · · · bN where b1, · · · , bN are generators of Γ. Let V = Ṽ ∩ Yg

and c ∈ V . Then bi(c) �= 0 for all 1 ≤ i ≤ N and thus the restriction of vc on Γ is
a group homomorphism. This implies that vc(Γ) is a finitely generated subgroup

of Gm(k̃(c)) because Γ is finitely generated. In addition, note that c ∈ Ṽ and

z� − 1 = h(c, z)
∏
c∈Γ�

(z − vc(c)).

One sees that vc(Γ)�, the set of all roots of z
�−1 = 0 in vc(Γ), equals {vc(c)|c ∈ Γ�}

and the latter set is nothing else but vc(Γ�). �

Proposition 2.15. Suppose that Γ is a finitely generated subgroup of Gm(k̃[η]).

There exists a k̃-Hilbert set V of Y such that V ⊂ B(Y,Γ).

Proof. Set Γ̃ = radk̃(η)(Γ). Then due to Proposition 2.12, Γ̃ is finitely generated.

Let q ∈ k̃[ηl] be a nonzero element such that Γ̃ ⊂ k̃[η, 1/q]. We will first show the

proposition for Yq and Γ̃.

Let T be the torsion group of Γ̃ and let � be an integer greater than 1 and
divided by |T |. By Lemma 2.14, there exists a k̃-Hilbert set V1 of Yq such that for

any a ∈ V1, va(Γ̃) is a finitely generated subgroup of Gm(k̃(a)) and va(Γ̃�) = va(Γ̃)�.

Suppose that {b1 = 1, b2, · · · , bν} is a set of representatives of Γ̃/Γ̃�. Corollary 2.9

implies that there exists a k̃-Hilbert set V2 of Yq such that for any a ∈ V2, z
� −

va(bi) = 0 has a root in k̃(a) if and only if z�− bi = 0 has a root in k̃(η). Since Γ̃ is

radical in k̃(η), all roots of z� − bi = 0 in k̃(η) are in Γ̃ and then z� − bi = 0 has a

root in k̃(η) only if i = 1. Thus for each a ∈ V2, z
� − va(bi) = 0 has a root in k̃(a)

only if i = 1. We claim that V1 ∩ V2 ⊂ B(Yq, Γ̃). Suppose that a ∈ V1 ∩ V2. Let

I = v−1
a (1) ∩ Γ̃. Then I is a finitely generated subgroup of Γ̃. We shall show that

I = I� and I is free. This will imply I = 1 because � > 1, and thus va is injective on
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Γ̃, i.e., a ∈ B(Yq, Γ̃). Since |T | divides �, if I = I�, then I is torsion-free and then
it is free. So we only need to prove that I = I�. Suppose w ∈ I. Write w = biw̄

�

for some i and some w̄ ∈ Γ̃. Then va(w̄)
−� = va(bi). In other words, va(w̄)

−1 is a

root of z� − va(bi) = 0 in k̃(a). The assumption on a indicates that bi = 1. This

implies w = w̄� and then va(w̄)
� = 1, i.e., va(w̄) ∈ va(Γ̃)�. As va(Γ̃�) = va(Γ̃)�,

there is u ∈ Γ̃� such that va(w̄) = va(u). For such u, w̄u−1 ∈ I. As u� = 1,
w = w̄� = (w̄u−1)� ∈ I�. Therefore I = I�. This proves our claim.

Now assume that V1 ∩ V2 = Hk̃,Yq
(d, {f̃1, · · · , f̃s}, g̃) where f̃i ∈ k̃[η, 1/q][z] is

irreducible over k̃(η) and monic in z, and g̃ ∈ k̃[η, 1/q]. For each i = 1, · · · , s, there
are positive integers di, ei and fi ∈ k̃[η, z] irreducible over k̃(η) and monic in z such

that qdi f̃i = fi(q
eiz). Set f = {f1, · · · , fs}. Let μ be a positive integer such that

qμg̃ ∈ k̃[η] and set g = qμ+1g̃. One then has that Hk̃,Y(d, f , g) ⊂ B(Y,Γ). �

Theorem 2.16. Every basic open subset of X is Zariski dense.

Proof. We first show that every basic open subset of X is not empty. Assume
that Γ1, · · · ,Γs are subgroups of Ga(L) and Γs+1, · · · ,Γ� are subgroups of Gm(L).

Let Yi and Ỹ be the varieties associated to k[η,Γi] and k[η,
⋃�

i=1 Γi], respectively.

By definition, one has that B(X,Γi) = pYi/X(B(Yi,Γi)) and p
Ỹ/Yi

(B(Ỹ,Γi)) ⊂
B(Yi,Γi). Applying pYi/X to the latter inclusion yields that

pYi/X(pỸ/Yi
(B(Ỹ,Γi))) ⊂ pYi/X(B(Yi,Γi)) = B(X,Γi).

Therefore to show that
⋂�

i=1 B(X,Γi) �=∅, it suffices to show that
⋂�

i=1 B(Ỹ,Γi) �=∅.
The latter assertion follows from Propositions 2.10 and 2.15 where k̃ is taken to be
the field finitely generated over Q such that the Γi are in k̃[η].

Suppose that U is a basic open subset of X and U is not Zariski dense, i.e., there
is a nonzero g ∈ k[X] which vanishes on U . By Definition 2.1, vc(g) = g(c) �= 0 for
all c ∈ Xg. So U ∩Xg = ∅. However by Definition 2.1 U ∩Xg is a basic open subset
of X and thus it is not empty, a contradiction. �

The following two lemmas will be used later.

Lemma 2.17. Suppose that f ∈ k[X][z]. There is a finitely generated subgroup Γ

of Ga(k(X)) such that for any c ∈ B(X,Γ), one has that Z(f) = Z(f(c, z)).

Proof. Let α1, · · · , α� be all zeros of f in k(X)\Z and let a be the leading coefficient

of f . Set Γ to be the subgroup of Ga(k(X)) generated by 1, a, α1, · · · , α� and let
Y be the variety associated to k[X][α1, · · · , α�]. Suppose that c ∈ B(X,Γ). By
the definition of basic open subsets, c can be extended to a point c̃ ∈ B(Y,Γ).
One sees that the Z(f) ⊂ Z(f(c̃, z)) and vc̃(αi) /∈ Z for all 1 ≤ i ≤ �. Therefore
Z(f) = Z(f(c̃, z)) = Z(f(c, z)). �

In the following, for a matrix M with entries in k[X], the rank of M is defined
to be the rank of M regarded as a matrix over k(X).

Lemma 2.18. Assume that M is a matrix in k[X]�×n. Then there is a nonzero
g ∈ k[X] such that for any c ∈ Xg, rank(M) = rank(M(c)).

Proof. Clearly, rank(M(c)) ≤ rank(M) for all c ∈ X. Let r = rank(M). If r = 0,
there is nothing to prove. Suppose that r > 0 and g is a nonzero r × r minor of
M . Suppose c ∈ Xg. It is easy to see that vc(g) is an r × r minor of M(c). Since
vc(g) �= 0, rank(M(c)) ≥ r. This implies that r = rank(M(c)). �
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3. Algebraic groups under specialization

Assume that G is an algebraic subgroup of GLn(k(X)) defined over k[X], i.e.,
the vanishing ideal of G is generated by a finite subset S in k[X][X]. Let X be a
basis of χ(G◦) as a free Abelian group. We further assume that every character
in X is represented by an element in k[X][X, 1/ det(X)]. Recall that G◦ is also
defined over k[X] (see (7.3) on page 210 of [13]). We shall use Gc to denote the
variety in GLn(k) defined by vc(S) for c ∈ X. In this section, we shall prove that
there is a nonzero c ∈ k[X] such that if c ∈ Xc, then Gc is an algebraic subgroup
of GLn(k) satisfying that dim(Gc) = dim(G) and vc(X) is a basis of χ(G◦

c). Note
that when G is commutative, the results of Lemma 3.3 and Proposition 3.5 have
already appeared in [14] (see Example 5A.6 and Lemma 5.11, respectively).

Let us start with a few remarks which follow from the application of Remark
5A.5 of [14] to polynomial equalities with coefficients in k(X).

Remark 3.1. (1) If S̃ ⊂ k[X][X] is a finite set defining G, then there is a

nonempty open subset U of X such that Gc is defined by vc(S̃) for all

c ∈ U . Thus the notation Gc makes sense. To see this, note that S̃ and S
define the same variety if and only if they generate the same radical ideal,
i.e., for every P ∈ S, P̃ ∈ S̃, there are αP,Q̃, βP̃ ,Q ∈ k(X)[X] such that

P dP =
∑
Q̃∈S̃

αP,Q̃Q̃, P̃ =
∑
Q∈S

βP̃ ,QQ,

where dP is a positive integer. Any nonempty open subset of X on which
all αP,Q̃, βP̃ ,Q are well-defined will be the set as required. The open subsets

in (2) and (3) below can be obtained similarly.
(2) Gc is an algebraic group for all c being in some nonempty open subset of

X. By Exercise 5 on page 57 of [13], for a variety H in GLn(k(X)), H
is an algebraic group if and only if In ∈ H and H is closed under taking
products. The latter condition can be described as follows: For each P ∈ S,
there are αP,Q, βP,Q ∈ k(X)[X,Z, 1/ det(XZ)] such that

P (XZ) =
∑
Q∈S

αP,QQ(X) +
∑
Q∈S

βP,QQ(Z).

Likewise, if χ is a character of G, then vc(χ) is a character of Gc for all c
being in some nonempty open subset of X.

(3) Suppose that H and H̃ are two varieties defined over k[X] and H ∩ H̃ = ∅.
Then Hc ∩ H̃c = ∅ for all c being in some nonempty open subset of X.
Note that H ∩ H̃ = ∅ if and only if there are polynomials P and Q in the
vanishing ideal of H and H̃, respectively, such that P +Q = 1.

We can view G as a family of algebraic varieties Gc in GLn(k) parameterized by
X. More precisely, suppose that X ⊂ km and η is a generic point of X. Denote

J = {P ∈ k[y1, · · · , ym, X, 1/ det(X)]| ∀b ∈ G,P (η,b) = 0}.
Let Y ⊂ km × GLn(k) be the variety defined by J . Then Y is a variety over k of
dimension dim(X) + dim(G). Define

π1 : Y −→ X π2 : Y −→ GLn(k)
(c,b) −→ c (c,b) −→ b

.
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One sees that G = π2(π
−1
1 (η)). Note that π2(π

−1
1 (c)) is the variety in GLn(k)

defined by {P (c, X, 1/ det(X))|P ∈ J}.

Proposition 3.2. There is a nonempty open subset U of X such that for any c ∈ U ,
Gc is an algebraic subgroup of GLn(k) with dimension dim(G) and

[Gc : G◦
c] = [G : G◦] = �.

Proof. Note that {P (η, X, 1/ det(X))|P ∈ J} also defines G. The discussion in

Remark 3.1(1) implies that there is a nonempty open subset Ũ of X such that

Gc = π2(π
−1
1 (c)) for any c ∈ Ũ . Hence it suffices to prove the proposition for

π2(π
−1
1 (c)). Let G1, · · · , G� be all irreducible components of G. Let D be a finitely

generated k[X]-algebra in k(X) such that each Gi is defined over D, i.e., the vanish-

ing ideal of each Gi in k(X)[X, 1/ det(X)] is generated by finitely many polynomials

in D[X, 1/ det(X)]. Let X̃ be the variety over k associated to D. By Lemma 2.2,

for each nonempty open subset Ṽ of X̃, there is a nonempty open subset V of X
such that V ⊂ p

X̃/X(Ṽ ). Furthermore, as the morphism p
X̃/X is induced by the

inclusion k[X] ⊂ k[X̃], one sees that vc(η) = vp
X̃/X(c)

(η) for all c ∈ X̃. This implies

that Gc = Gp
X̃/X(c)

for all c ∈ X̃. Therefore it suffices to prove the proposition with

the variety X̃ over whose coordinate ring all Gi are defined. In the following, for the
sake of notation, we assume that all Gi are defined over k[X]. Let ξi be a generic

point of Gi over k(X) and set

Ji = {Q ∈ k[y1, · · · , ym, X, 1/ det(X)]|Q(η, ξi) = 0}.
Let Yi be the variety over k defined by Ji. Then Yi is irreducible because it

has a generic point (η, ξi). Moreover, one can verify that J =
⋂�

i=1 Ji. Hence

Y =
⋃�

i=1 Yi. Additionally, one has that Gi = π2(π1|−1
Yi

(η)) and π2(π
−1
1 (c)) =⋃�

i=1 π2(π1|−1
Yi

(c)).

By Remark 3.1, there is a nonempty open subset U1 of X such that π2(π
−1
1 (c))

is an algebraic subgroup for any c ∈ U1. Note that π1|Yi
is dominant and because

Gi is irreducible over k(X), so is π1|−1
Yi

(η) which is equal to η×Gi. By Theorem 1

on page 139 of [24] and Proposition on page 33 of [13], there is a nonempty open
subset U2 ⊂ X such that for any c ∈ U2, π1|−1

Yi
(c) is irreducible and of dimension

dim(G). Since Gi∩Gj = ∅ if i �= j, by Remark 3.1 again, there is a nonempty open

subset U3 of X such that for any c ∈ U3 and i �= j, π2(π1|−1
Yi

(c))∩π2(π1|−1
Yj

(c)) = ∅.
Now set U = U1 ∩ U2 ∩ U3. Then for any c ∈ U , we have that π2(π

−1
1 (c)) is an

algebraic group and [π2(π
−1
1 (c)) : π2(π

−1
1 (c))◦] = [G : G◦] = �. Finally, note that

π1|−1
Yi

(c) = c × π2(π1|−1
Yi

(c)). Hence for each c ∈ U , π2(π1|−1
Yi

(c)) is of dimension

dim(G) and so is π2(π
−1
1 (c)). �

Lemma 3.3. Assume that G is generated by unipotent elements. Then there is a
nonempty open subset U of X such that for any c ∈ U , Gc is an algebraic group
generated by unipotent elements and of dimension dim(G).

Proof. Due to Lemma C on page 96 of [13], any unipotent element of G that is
not equal to the identity generates a connected 1-dimensional algebraic subgroup
of G. Let U be the set of all connected 1-dimensional algebraic subgroups of G
and let G̃ be the algebraic subgroup of G generated by

⋃
M∈U M . Then G̃ = G

and by the proposition on page 55 of [13], there are M1, · · · ,M� in U such that
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G̃ = M1M2 · · ·M�. Furthermore, � can be taken to be not greater than 2 dim(G).

Now for each i = 1, · · · , �, there is a nilpotent matrix ni in Matn(k(X)) such that

Mi =

⎧⎨
⎩

n−1∑
j=0

nj
i c

j

j!

∣∣∣∣∣∣ c ∈ k(X)

⎫⎬
⎭ .

Let D be a finitely generated k[X]-algebra in k(X) such that all entries of each ni

are in D, and let X̃ be the variety over k associated to D. By Lemma 2.2 and an
argument similar to that in the proof of Proposition 3.2, one only needs to prove
the lemma with X̃. For the sake of notation, we may assume that all ni are in
Matn(k[X]). Set

(Pi,j) =

�∏
i=1

⎛
⎝n−1∑

j=0

nj
i t

j
i

j!

⎞
⎠ ∈ GLn(k[X][t1, · · · , t�]),

where t1, · · · , t� are indeterminates. Then (Pi,j) is a generic point of G. Assume
that d = dim(G) and Pi1,j1 , · · · , Pid,jd are algebraically independent over k(X). We
claim that there is a nonempty open subset of X such that for any c in this set,
vc(Pi1,j1), · · · , vc(Pid,jd) are algebraically independent over k. For c ∈ X, denote
by Ic the ideal generated by all yi,j − vc(Pi,j) in k[t1, · · · , t�, y1,1, · · · , yn,n]. Let
Sc be the reduced Gröbner basis of Ic with respect to a lexicographic ordering
where every ti is greater than every yl,m and every yl,m with (l,m) �= (is, js) for
all s = 1, · · · , d is greater than every yis,js . Then vc(Pi1,j1), · · · , vc(Pid,jd) are
algebraically dependent over k if and only if Sc contains at least one polynomial in
k[yi1,j1 , · · · , yid,jd ]. Moreover, for every Q ∈ Sc ∩ k[yi1,j1 , · · · , yid,jd ] one has that
Q(vc(Pi1,j1), · · · , vc(Pid,jd)) = 0. By Corollary 8.3 of [7], there is an integer N only
depending on n, � such that for every c ∈ X, the total degree of each polynomial
in Sc is not greater than N . These imply that if vc(Pi1,j1), · · · , vc(Pid,jd) are
algebraically dependent over k, then there is a nonzero Qc in k[yi1,j1 , · · · , yid,jd ] of
total degree not greater than N such that

Qc(vc(Pi1,j1), · · · , vc(Pid,jd)) = 0.

Now for nonnegative integers s1, · · · , sd with s1 + · · ·+ sd ≤ N , write

P s1
i1,j1

· · ·P sd
id,jd

=
∑

μ=(μ1,··· ,μ�)

cs1,··· ,sd,μt
μ1

1 tμ2

2 · · · tμ�

� ,

where 0 ≤ μi ≤ N(n−1) and cs1,··· ,sd,μ ∈ k[X]. Let C be the
(
N+d
d

)
×(N(n−1)+1)�

matrix formed by cs1,··· ,sd,μ. Since Pi1,j1 , · · · , Pid,jd are algebraically independent,

C is of full rank
(
N+d
d

)
, i.e., there is a nonzero

(
N+d
d

)
×
(
N+d
d

)
-minor g of C.

Suppose that vc(Pi1,j1), · · · , vc(Pid,jd) are algebraically dependent over k for some
c ∈ Xg. The choice of N implies that the left kernel of vc(C) has a nonzero element.
This contradicts the fact that vc(C) is of full rank. Thus vc(Pi1,j1), · · · , vc(Pid,jd)
are algebraically independent over k for all c ∈ Xg. This proves the claim. By
Proposition 3.2, there is a nonempty open subset U1 of X such that for any c ∈ U1,
Gc is a connected algebraic group of dimension dim(G). Set U = U1 ∩ Xg. Then
for any c ∈ U , since (vc(Pi,j)) is obviously a point of Gc, it is a generic point of
Gc. Hence Gc is generated by unipotent elements. �
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Let H be a connected algebraic subgroup of GLn(k(X)). The following lemma
gives a criterion for a finite subset X to be a basis of χ(H) as a free Abelian group.
We say X is multiplicatively independent if the equality

∏
χ∈X

χdχ = 1 with dχ ∈ Z

implies that dχ = 0 for all χ ∈ X.

Lemma 3.4. Let X ⊂ χ(H) be a finite set. Then X is a basis of χ(H) if and
only if X is multiplicatively independent and

⋂
χ∈X

ker(χ) is generated by unipotent
elements.

Proof. Since X is a basis of χ(H) as a free Abelian group, X is multiplicatively inde-
pendent and

⋂
χ∈X

ker(χ)=
⋂

χ∈χ(H) ker(χ). By Lemma B.10 of [8],
⋂

χ∈χ(H) ker(χ),

which is denoted by Ht in [8], is generated by unipotent elements. This proves
the necessary part. For the sufficient part, it suffices to show that X generates
χ(H). Denote H̄ = H/

⋂
χ∈X

ker(χ). For each χ ∈ χ(H), by Lemma B.10 of [8],

any unipotent element of H is contained in ker(χ) and thus from the assumption⋂
χ′∈X

ker(χ′) ⊂ ker(χ). This implies that
⋂

χ∈χ(H) ker(χ) =
⋂

χ∈X
ker(χ). Then

one has that χ(H) ∼= χ(H̄) (see Exercise 12 on page 108 of [13]). Here the iso-

morphism sends χ to χ̄, where χ̄ : H̄ → Gm(k(X)) is given by χ̄(c̄) = χ(c) for all
c ∈ H. Since X is multiplicatively independent, so is {χ̄|χ ∈ X}. Thus {χ̄|χ ∈ X}
is a basis of χ(H̄) and then X is a basis of χ(H). �

Proposition 3.5. There is an open subset U of X satisfying that for any c ∈ U ,
Gc is an algebraic group of dim(G) and vc(X) is a basis of χ(G◦

c).

Proof. Let pχ, χ ∈ X be distinct primes. By Lemma C on page 104 of [13], there is
g ∈ G such that χ(g) = pχ for all χ ∈ X. By Lemma 2.2 and an argument similar
to that in the proof of Lemma 3.3, we may assume that the entries of g are in k[X].
Applying Proposition 3.2 to G and G◦, respectively, one gets a nonempty open
subset U1 of X such that for any c ∈ U1, Gc is an algebraic group of dimension
dim(G) and (G◦)c is a connected algebraic group of dimension dim(G◦). By an
argument similar to that in Remark 3.1, we may assume that (G◦)c ⊂ Gc for all
c ∈ U1. Then the dimension argument implies that (G◦)c = G◦

c for all c ∈ U1.
We shall prove that vc(X) is a basis of χ((G◦)c) for all c being in some nonempty
open subset of X. By Remark 3.1, there is a nonempty open subset U2 of X such
that for any c ∈ U2, vc(X) ⊂ χ((G◦)c). Set H =

⋂
χ∈X

ker(χ). Then H is defined

over k[X] and by Lemma B.10 of [8], H is generated by unipotent elements. Let U3

be a nonempty open subset of X such that Hc is an algebraic group generated by
unipotent elements and Hc =

⋂
χ∈X

ker(vc(χ)). Such U3 exists due to Lemma 3.3

and Remark 3.1. Now set U = U1 ∩ U2 ∩ U3 ∩ Xf with f = det(g). Assume that
c ∈ U . We claim that vc(X) is a basis of χ((G◦)c). Since the pχ are distinct primes,
for any integers μχ, χ ∈ X, not all zero,

∏
χ∈X

vc(χ)(g(c))
μχ = vc

⎛
⎝∏

χ∈X

χ(g)μχ

⎞
⎠ =

∏
χ∈X

pμχ
χ �= 1.

This implies that vc(X) is multiplicatively independent. Due to Lemma 3.4 and
the fact that

⋂
χ∈X

ker(vc(χ)) is generated by unipotent elements, vc(X) is a basis

of χ((G◦)c) and thus a basis of χ(G◦
c). �
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4. Difference equations under specialization

Let B ∈ GLn(k(X)(x)) and let σ be the k(X)-automorphism of k(X)(x) which
sends x to x + 1. By setting σ(X) = BX, the automorphism σ can be extended
to an automorphism of k(X)(x)[X, 1/ det(X)]. As we shall deal with a family of
automorphisms, to avoid confusion, the automorphism of k(X)(x)[X, 1/ det(X)]
induced by σ(X) = BX will be denoted by σB. An ideal I of k(X)(x)[X, 1/ det(X)]
is called a σB-ideal if σB(I) = I. Let A be given as in (1.1). For convenience, we
introduce the following notation.

Notation 4.1. Denote by Xh the set of c ∈ X satisfying that A(c) is well-defined
and invertible. One easily sees that Xh is open and nonempty.

Definition 4.2. Let ν be a positive integer and let I ⊂ k(X)(x)[X, 1/ det(X)] be

a σA-ideal generated by some polynomials in k(X)(x)[X]≤ν . I is said to be a ν-
maximal σA-ideal if it is not the whole ring and for any σA-ideal J generated by
some polynomials in k(X)(x)[X]≤ν if I ⊂ J , then either I = J or J is the whole
ring. Likewise we define ν-maximal σA(c)-ideals in k(x)[X, 1/ det(X)].

Let Iν be a ν-maximal σA-ideal and let F be a fundamental matrix of σA(Y ) =

AY over k(X)(x) satisfying that it is a zero of Iν . Then one has that〈{
p ∈ k(X)(x)[X]≤ν | p (F) = 0

}〉
k(X)(x)

⊂ Iν

where 〈∗〉
k(X)(x)

denotes the ideal in k(X)(x)[X, 1/ det(X)] generated by ∗. Propo-
sition 3.5 of [9] implies that the above two sets coincide. From this, one sees that

if J is another ν-maximal σA-ideal, then there is g ∈ GLn(k(X)) such that

J = { p(Xg) | p ∈ Iν } .
Let m be a nonnegative integer. Set

(4.1) I(m, Iν) = Iν ∩ k(X)[x]≤m[X]≤ν ,

where

k(X)[x]≤m[X]≤ν = {p ∈ k(X)[x,X] | degx(p) ≤ m, degX(p) ≤ ν}.
As Iν is finitely generated, there is an integer μ such that I(μ, Iν) generates Iν as

an ideal in k(X)(x)[X, 1/ det(X)]. We call such μ a coefficient bound of Iν . The
discussion above implies that if μ is a coefficient bound of Iν , then it is a coefficient
bound of any ν-maximal σA-ideals. Hence the following definition is reasonable.

Definition 4.3. An integer μ is called a coefficient bound of ν-maximal σA-
ideals if for every ν-maximal σA-ideal Iν , I(μ, Iν) generates Iν as an ideal in

k(X)(x)[X, 1/ det(X)].

Remark 4.4. Note that in [9] we use the symbol IF ,ν to denote the ν-maximal
σA-ideal Iν , where F is a fundamental matrix of (1.1).

Let us sketch the main results of this section. First, we show that there is a
coefficient bound of Iν , say μ, satisfying that it is a coefficient bound of ν-maximal
σA(c)-ideals for all c in some basic open subset of X (see Lemma 4.17). Second,

under the hypothesis that I(μ, Iν) has a k(X)-basis B contained in k[X][x,X], we
prove that there is a basic open subset of X such that for each c in this set, vc(B) is
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a basis of I(μ, Ĩν) as a k-vector space for some ν-maximalσA(c)-ideal Ĩν . The choice

of μ implies that vc(B) generates Ĩν (see Proposition 4.22).
Before we go further, let us first introduce some notation. Let Xd1 , · · · , Xd� be

all monomials in X with degree not greater than ν, where � =
(
n2+ν−1

ν

)
. Then

{Xd1 , · · · , Xd�} is a basis of k(X)(x)[X]≤ν as a vector space over k(X)(x). Let Y
be an n× n matrix with indeterminate entries and for a matrix M , let M t denote
its transpose.

Notation 4.5. Suppose that F is an n× n matrix with entries in a k(X)(x)-algebra
R. Then the map sending X to FX induces a map

Symν : Matn(R) −→ Mat�(R)

F −→ Symν(F ),

where Symν(F ) is defined to be the matrix satisfying that

(Xd1 , · · · , Xd�)t|X=FY = Symν(F )(Xd1 , · · · , Xd�)t|X=Y .

Let l be a positive integer not greater than n. Denote by In,l the set of all
subsets of {1, 2, · · · , n} containing exactly l elements. We define an order ≺ on
In,l as follows: for i, j ∈ In,l, i ≺ j if they satisfy that (1) min i < min j or (2)
min i = min j and i \ {min i} ≺ j \ {min j}.

Notation 4.6. We use Φn,l to denote the map defined as follows:

GLn(k(X)(x)) −→ GL(nl)
(k(X)(x))

Z −→ (Zi,j){1,2,··· ,l}≺i,j≺{n−l+1,··· ,n} ,

where Zi,j denotes the l× l minor of Z that corresponds to the rows with index in
i and the columns with index in j.

Remark 4.7. (1) By the definition, one sees that

Symν(F1F2) = Symν(F1)Symν(F2)

and if F is invertible, then so is Symν(F ).
(2) Write F = (fi,j) with fi,j ∈ R. Then the vector space spanned by the

entries of Symν(F ) coincides with the one spanned by
∏

i,j f
si,j
i,j with 0 ≤∑

i,j si,j ≤ ν. To see this, let V denote the latter vector space. Obviously,

all entries of Symν(F ) are in V . On the other hand, by the definition of
Symν , one has that

(· · · ,
∏
i,j

f
si,j
i,j , · · · )t = (Xd1 , · · · , Xd�)t|X=F = Symν(F )(Xd1 , · · · , Xd�)t|X=In ,

which implies that each
∏

i,j f
si,j
i,j is a Q-combination of the entries of

Symν(F ). Hence these vector spaces are equal to each other.
(3) One sees that Φn,l(In) = I(nl)

and if M is a permutation matrix, then so

is Φn,l(M). Furthermore, the Cauchy-Binet formula (see Proposition 2.1.2
on page 18 of [22]) implies that Φn,l is actually a group homomorphism.
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4.1. Coefficient bounds of ν-maximal σA-ideals. In this subsection, we shall
show that there is a coefficient bound N of ν-maximal σA-ideals and a basic open
subset U of X such that N is also a coefficient bound of ν-maximal σA(c)-ideals
for all c ∈ U . Such a coefficient bound can be derived from a degree bound of the
certificates of hypergeometric solutions of a suitable linear difference equation.

Definition 4.8. Let R be a σ-extension ring of k(X)(x). h ∈ R is said to be

hypergeometric over k(X)(x) if h is invertible in R and σ(h)h−1 ∈ k(X)(x), which
is called the certificate of h. A solution h of (1.1) is called a hypergeometric solution

if h = vh where v ∈ k(X)(x)n and h is hypergeometric over k(X)(x).

Let us recall the method developed in [9] to compute a coefficient bound of a
ν-maximal σA-ideal Iν . Denote

Sν = Iν ∩ k(X)(x)[X]≤ν .

Then Sν is a k(X)(x)-vector space of finite dimension and it generates Iν . Suppose

that {p1, · · · , pl} is a k(X)(x)-basis of Sν . Let X
d1 , · · · , Xd� be as in Notation 4.5.

After an invertible linear transformation of p1, · · · , pl if necessary, we may assume
that for each i = 1, · · · , l

(4.2) pi = Xdi +

�∑
j=l+1

ci,jX
dj

with ci,j ∈ k(X)(x). For f ∈ k(X)(x) \ {0}, deg(f) stands for the degree of f which
is defined to be the maximum of the degrees of its numerator and denominator.
For convenience, set deg(0) = −∞. Then we have the following claim.

Claim 4.9. �m is a coefficient bound of Iν if m is not less than deg(ci,j) for all i, j.

Clearing the denominators of ci,j in (4.2), we obtain p̃i ∈ k(X)[x,X] with
degX(p̃i) ≤ ν and degx(p̃i) ≤ (� − l)m < �m. In other words, p̃i ∈ I(�m, Iν)
and {p̃1, · · · , p̃l} is a basis of Sν , where I(�m, Iν) is defined as in (4.1). Hence �m is
a coefficient bound of Iν . This proves our claim. So in order to obtain a coefficient
bound of Iν , it suffices to compute a degree bound of ci,j . In the following, we
show that a degree bound of ci,j can be achieved via computing the certificates of
hypergeometric solutions of certain linear difference equations. We have that

σA((X
d1 , · · · , Xd�)t) = Symν(A)(Xd1 , · · · , Xd�)t,

where Symν is defined as in Notation 4.5. From (4.2), {p1, · · · , pl, Xdl+1 , · · · , Xd�}
is another k(X)(x)-basis of k(X)(x)[X]≤ν , and, moreover, one has that

(4.3) (p1, · · · , pl, Xdl+1 , · · · , Xd�)t =

(
Il C
0 I�−l

)
(Xd1 , · · · , Xd�)t,

where C = (ci,j)1≤i≤l,l+1≤j≤� with ci,j given in (4.2). Since Sν is stable under the
action of σA, one has that

σA((p1, · · · , pl, Xdl+1 , · · · , Xd�)t) =

(
B1 0
B2 B3

)
(p1, · · · , pl, Xdl+1 , · · · , Xd�)t,

where B1 ∈ GLl(k(X)(x)), B3 ∈ GL�−l(k(X)(x)), and B2 is an (� − l) × l matrix

with entries in k(X)(x). Applying σA to (4.3) yields that(
Il σ(C)
0 I�−l

)
Symν(A)(Xd1 , · · · , Xd�)t =

(
B1 0
B2 B3

)(
Il C
0 I�−l

)
(Xd1 , · · · , Xd�)t.
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As Xd1 , · · · , Xd� are linearly independent over k(X)(x), the above equality implies

(4.4)

(
Il σ(C)
0 I�−l

)
Symν(A) =

(
B1 0
B2 B3

)(
Il C
0 I�−l

)
.

Denote by s the first row of

Φ�,l

((
Il C
0 I�−l

))
,

where Φ�,l is defined as in Notation 4.6. Applying Φ�,l to (4.4), we obtain that(
σ(s)
∗

)
Φ�,l (Symν(A)) =

(
det(B1) 0

∗ ∗

)(
s
0

)

which implies that

σ(s)Φ�,l (Symν(A)) = det(B1)s.

Let h be the hypergeometric element in some σ-extension ring of k(X)(x) with
det(B1) as its certificate. Then sth is a hypergeometric solution of the following
linear difference equation:

(4.5) σΦ�,l(Symν(A))−t(Y ) = Φ�,l (Symν(A))−t Y,

where ∗−t denotes the transpose of the inverse of ∗. For each i ∈ I�,l, denote by
si the l × l-minor of (Il, C) corresponding to the columns with index in i. Then
s = (si)i∈I�,l

and one can verify that

(4.6) si =

{
1, i = {1, 2, · · · , l},
(−1)l−jci,j , i = {1, 2, · · · , i− 1, i+ 1, · · · , l, j}

for all i ∈ {1, 2, · · · , l} and all j ∈ {l + 1, · · · , �}. Therefore to compute a degree
bound for ci,j , we only need to compute a degree bound for entries of s.

It is well known that the equation (4.5) is equivalent to a linear difference oper-

ator with coefficients in k(X)(x) (see Section 1 of [1]). Precisely, there is a matrix

T ∈ GLμ(k(X)(x)) such that σ(T )Φ�,l(Symν(A))−tT−1 is of the form⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . .
. . .

. . .
...

1 0
0 · · · · · · 0 1

−a0 −a1 · · · · · · −aμ−1

⎞
⎟⎟⎟⎟⎟⎠ ,

where μ =
(
�
l

)
= |I�,l|, the order of the matrix Φ�,l(Symν(A)). In other words,

under the transformation T , the equation (4.5) is equivalent to

L = σμ + aμ−1σ
μ−1 + · · ·+ a0,

and the solution sth of (4.5) is transformed into

T sth =

⎛
⎜⎜⎜⎝

1
r̃
...∏μ−2

i=0 σi(r̃)

⎞
⎟⎟⎟⎠ h̃,
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where h̃ is a hypergeometric solution of L(y) = 0 and r̃ is the certificate of h̃.
Denote by deg(T−1) the maximum of the degrees of entries of T−1 and denote⎛

⎜⎜⎜⎝
wi1

wi2
...

wiμ

⎞
⎟⎟⎟⎠ = T−1

⎛
⎜⎜⎜⎝

1
r̃
...∏μ−2

i=0 σi(r̃)

⎞
⎟⎟⎟⎠ .

Since deg(
∏j

i=0 σ
i(r̃)) ≤ (j + 1) deg(r̃) for all 0 ≤ j ≤ μ− 2,

deg(wij ) ≤ μ deg(T−1) + μ(μ− 1) deg(r̃)

for all j = 1, · · · , μ. On the other hand, since s = (wi1 , · · · , wiμ)h
−1h̃, by (4.6),

(4.7) deg(ci,j) = deg(sj/si1) = deg(wj/wi1) ≤ 2μ deg(T−1) + 2μ(μ− 1) deg(r̃),

where i1 = {1, 2, · · · , l}, j = {1, · · · , i − 1, i + 1, · · · , l, j}. Therefore to bound the
degree of ci,j , it suffices to bound the degrees of the certificates of all hypergeometric
solutions of L(y) = 0. For the latter purpose, we introduce the following definition.

Definition 4.10. A nonnegative integer N is call a hyper-bound for L if the cer-
tificates of all hypergeometric solutions of L(y) = 0 are of degree ≤ N .

Remark 4.11. (1) In the above discussion, we need to already know how large
the dimension of Sν is. In the case when this dimension cannot be de-
termined previously, we can compute hyper-bounds for linear difference
operators corresponding to σΦ�,l(Symν(A))−t(Y ) = Φ�,l(Symν(A))−tY with
l = 1, 2, · · · , �. Each hyper-bound gives a potential coefficient bound of Iν .
The maximum of these potential coefficient bounds will be what we need.

(2) The method described above also works for linear difference equations
with coefficients in k(x). Particularly, let c ∈ Xh where Xh is given
in Notation 4.1. We can find a coefficient bound for ν-maximal σA(c)-
ideals from hyper-bounds for linear difference operators corresponding to
σΦ�,l(Symν(A(c)))−t(Y ) = Φ�,l(Symν(A(c)))−tY with l = 1, 2, . . . , �.

In the rest of this subsection, we shall deal with hyper-bounds for a linear differ-
ence operator L. After multiplying a polynomial in k(X)[x], we may assume that
L has polynomial coefficients, i.e.,

L = an(x)σ
n + · · ·+ a1(x)σ + a0(x)

with ai(x) ∈ k(X)[x] and an(x)a0(x) �= 0. Let us first investigate polynomial
solutions. Set σ̄ = x(σ− 1). Multiplying L with a suitable polynomial in Z[x], one

obtains a new operator of the form
∑n

i=0 āi(x)σ̄
i ∈ k(X)[x][σ̄]. Denote

ρ = max{deg(ā0), · · · , deg(ān)}.

Definition 4.12.
∑n

i=0 coeff(āi, x, ρ)y
i is called the indicial polynomial of L, de-

noted by Ind(L), where coeff(āi, x, ρ) denotes the coefficient of xρ in āi.

Remark 4.13. Let p(x) = cxm + cm−1x
m−1 + · · ·+ c0 be a polynomial of degree m.

Then for each i = 0, · · · , n, one has that

σ̄i(p(x)) = cmixm + terms of lower degree.
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Furthermore,

L(p(x)) = c

(
n∑

i=0

coeff(āi, x, ρ)m
i

)
xρ+m + terms of lower degree.

Therefore if L(p(x)) = 0, then m is an integer zero of Ind(L).

Assume that L ∈ k[X][x, σ]. For c ∈ X, Lc denotes the operator obtained by
applying vc to the coefficients of L.

Lemma 4.14. Let N = max Z(Ind(L)) ∪ {0}. Then there is a basic open subset
U of X such that polynomial solutions of Lc(y) = 0 with c ∈ U are of degree not
greater than N .

Proof. By Lemma 2.17, there is a finitely generated subgroup Γ of Ga(k(X)) such
that for any c ∈ B(X,Γ), Z(Ind(L)) = Z(vc(Ind(L))). Let c be a nonzero element
in k[X] such that for every c ∈ Xc, deg(āi) = deg(vc(āi)) for all 0 ≤ i ≤ n. Let
U = B(X,Γ) ∩ Xc. Suppose that c ∈ U . One has that vc(Ind(L)) = Ind(Lc) and
then

max Z(Ind(Lc)) ∪ {0} = max Z(vc(Ind(L))) ∪ {0}
= max Z(Ind(L)) ∪ {0} = N.

By Remark 4.13, every polynomial solution of Lc has degree not greater thanN . �

To investigate the behavior of the certificates of hypergeometric solutions under
specialization, we need to recall the algorithm given in [20] for finding hypergeo-
metric solutions. Denote

SL =
{
(p, q) ∈ k(X)[x]

∣∣∣ p, q are monic and p|a0(x), q|an(x− n+ 1)
}
.

Algorithm 4.15. Input: L(y) :=
∑n

i=0 ai(x)σ
i(y) with polynomial ai(x)

Output: the certificate of a hypergeometric solution of L(y) = 0 if there exists;
otherwise 0.

(a) For each (p, q) ∈ SL do

(1) Pi(x) := ai(x)
∏i−1

j=0 p(x+ j)
∏n−1

j=i q(x+ j) for all i = 0, 1, · · · , n;
(2) m := max{deg(Pi(x))} and αi := coeff(Pi(x), x,m) for all 0 ≤ i ≤ n;

(3) let Zp,q ⊂ k(X) be the set of all nonzero solutions of

fp,q(y) =
n∑

i=0

αiy
i = 0;

(4) for each β ∈ Zp,q do if the linear difference equation

Lp,q,β =
n∑

i=0

βiPi(x)σ
i = 0

has a nonzero polynomial solution Q(x), then return

β
p(x)

q(x)

Q(x+ 1)

Q(x)
.

Note that one can test if Lp,q,β(y) = 0 has a polynomial solution by
Algorithm Poly in [20].

(b) Return 0.
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Let SL,Zp,q ,Lp,q,β be as in Algorithm 4.15. We set

N(L) = max {0} ∪ Z

⎛
⎝ ∏

(p,q)∈SL,β∈Zp,q

Ind(Lp,q,β)

⎞
⎠+max{deg(an), deg(a0)}.

Recall that the above algorithm allows one to compute the certificates of all hyper-
geometric solutions of L. The certificates in the output are of degree not greater
than

max
(p,q)∈SL,Q∈P

{
deg

(
p(x)

q(x)

Q(x+ 1)

Q(x)

)}
≤ max

(p,q)∈SL,Q∈P
{deg(p) + deg(Q),deg(q) + deg(Q)}

≤ max{deg(a0),deg(an)}+maxQ∈P{deg(Q)},

where P is the set of all polynomial solutions of Lp,q,β(y) = 0 for all (p, q) ∈ SL
and β ∈ Zp,q. If Q(x) is a polynomial solution of Lp,q,β(y) = 0, then deg(Q) is
not greater than max{0} ∪Z(Ind(Lp,q,β)) by Remark 4.13. Therefore by definition
N(L) is a hyper-bound for L. Moreover, we have the following result.

Lemma 4.16. There is a basic open subset U of X such that for any c ∈ U , N(L)
is a hyper-bound for Lc.

Proof. Let SL, fp,q ,Zp,q,Lp,q,β be as in Algorithm 4.15 and let

W = {1, lc(a0(x)), · · · , lc(an(x))}
⋃

V(an(x))
⋃

V(a0(x))
⋃ ⋃

(p,q)∈SL

Zp,q ,

where V(ai(x)) denotes the set of roots of ai(x) = 0 in k(X). Let D̃ ⊂ k(X) be

a finitely generated k[X]-algebra such that W ⊂ D̃ and let Y be the variety over

k associated to D̃. Let Γ be the subgroup of Ga(k(X)) generated by W . Suppose
that c ∈ B(Y,Γ). It is easy to see that SLc

= vc(SL). Furthermore one sees that
for each (vc(p), vc(q)) ∈ SLc

,

fvc(p),vc(q) = vc(fp,q), Zvc(p),vc(q) = vc(Zp,q),

and for each β ∈ Zp,q, Lvc(p),vc(q),vc(β) = vc(Lp,q,β). This together with Algo-
rithm 4.15 implies that all certificates of hypergeometric solutions of Lc(y) = 0 are
of the form

(4.8) vc(β)
vc(p)

vc(q)

Q̄(x+ 1)

Q̄(x)
,

where (p, q) ∈ SL, β ∈ Zp,q and Q̄(x) is a nonzero polynomial solution of the linear

difference equation Lvc(p),vc(q),vc(β)(y) = 0. Now let Ũp,q,β be a basic open subset

of Y such that for any c ∈ Ũp,q,β , nonzero polynomial solutions of vc(Lp,q,β)(y) = 0,
i.e., Q̄(x), are of degree not greater than

max Z(Ind(Lp,q,β)) ∪ {0}.

Such Ũp,q,β exists due to Lemma 4.14. Set

U = B(Y,Γ)
⋂ ⋂

(p,q)∈SL,β∈Zp,q

Ũp,q,β .

Then for any c ∈ U , the degrees of rational functions in (4.8) are not greater
than N(L) and so N(L) is a hyper-bound for Lc. The lemma then follows from
Lemma 2.3 and the fact that Lc = LpY/X(c). �
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Lemma 4.17. There are a coefficient bound N of ν-maximal σA-ideals and a basic
open subset U of X such that N is also a coefficient bound of ν-maximal σA(c)-ideals
for all c ∈ U .

Proof. We keep notation as before. For each l = 1, 2, · · · , �, by the method devel-
oped in Section 1 of [1], compute a matrix Tl ∈ GL(�l)

(k(X)(x)) such that under

the transformation Tl, σΦ�,l(Symν(A))−t(Y ) = Φ�,l(Symν(A))−tY is equivalent to a
linear difference operator Ll. Let Nl be a hyper-bound for Ll. Set

N = � ·max1≤l≤�{2μ̃ deg(T−1
l ) + 2μ̃(μ̃− 1)Nl},

where μ̃ = max{
(
�
l

)
|1 ≤ l ≤ �}. Then by (4.7) and Claim 4.9, N is a coefficient

bound of ν-maximal σA-ideals. Let D̃ ⊂ k(X) be a finitely generated k[X]-algebra
such that the entries of Tl, T

−1
l and Φ�,l(Symν(A))−t are in the field of fractions of

D̃[x] for all l = 1, 2, · · · , �, and let Y be the variety over k associated to D̃. Take a

nonzero h̃ ∈ D̃ such that for any c̃ ∈ Yh̃ and all l = 1, 2, · · · , �, vc̃(Tl) and A(c̃) are
well-defined and invertible, and σΦ�,l(Symν(A(c̃)))−t(Y ) = Φ�,l(Symν(A(c̃)))−tY is
equivalent to the linear difference operator vc̃(Ll) under the transformation vc̃(Tl).
Due to Lemma 4.16, there is a basic open subset U1 of X such that Nl is a hyper-
bound for vc(Ll) for all l = 1, 2, · · · , � and all c ∈ U1. By Lemma 2.2, there is
a nonempty open subset U2 of X such that U2 ⊂ pY/X(Yh̃). Set U = U1 ∩ U2

and suppose that c ∈ U . Let c̃ be an element in Yh̃ ∩ p−1
Y/X(c). One sees that

deg(vc̃(T
−1
l )) ≤ deg(T−1

l ), and by (4.7) and Claim 4.9 again,

Ñ = � ·max1≤l≤�{2μ̃ deg(vc̃(T
−1
l )) + 2μ̃(μ̃− 1)Nl}

is a coefficient bound of ν-maximal σA(c̃)-ideals. The lemma then follows from

Lemma 2.3 and the facts that N ≥ Ñ and A(c̃) = A(c). �

Remark 4.18. The coefficient bound N given in Lemma 4.17 only depends on the
matrix A and the given integer ν.

4.2. ν-Maximal σA-ideals under specialization. Let Iν be a ν-maximal σA-
ideal in k(X)(x)[X, 1/ det(X)] and I(m, Iν) as in (4.1). The aim of this subsection
is to prove that Iν is sent to a ν-maximal σA(c)-ideal by vc for all c in some basic
open subset of X. We shall first prove that for each m ≥ 0 there exists a basic open
subset U of X such that for any ν-maximal σA(c)-ideal Jc in k[X, 1/ det(X)] with
c ∈ U , the dimension of I(m,Jc) is equal to that of I(m, Iν). To this end, we need
the following definition.

Definition 4.19. The dimension of (1.1) is defined to be the dimension of the

vector space over k(X) spanned by the entries of a fundamental matrix of (1.1),
denoted by dim([A]).

Given a fundamental matrix F of (1.1), there is a linear difference operator

L ∈ k(X)(x)[σ] whose solution space is spanned by the entries of F . Moreover,
for such L one has that ord(L) = dim([A]). Such L can be constructed as follows.
Let vj be the jth column of F . Then L is an operator of minimal order that
annihilates all vj , i.e., all entries of vj for all j. Note that as F has n2 entries,
by definition, dim([A]) ≤ n2 and thus ord(L) ≤ n2. For each l = 1, · · · , n2,
σl(vj) = Alvj for all j = 1, · · · , n, where Al = σl−1(A) · · ·σ(A)A. Assume that

a0, · · · , as ∈ k(X)(x) with s ≤ n2. Then
∑s

l=0 alσ
l(vj) = 0 for all j = 1, · · · , n if
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and only if a0vj +
∑s

l=1 alAlvj = 0 for all j = 1, · · · , n. The latter equalities are
equivalent to

a0In +

s∑
l=1

alAl = 0

because F = (v1, · · · ,vn) is invertible. Let {e1, · · · , en} be the standard basis of

k(X)(x)n. Set

(4.9) MA =

⎛
⎜⎜⎜⎜⎜⎜⎝

et1 et2 · · · etn
A

[1]
1 A

[2]
1 · · · A

[n]
1

A
[1]
2 A

[2]
2 · · · A

[n]
2

...
...

...

A
[1]
n2 A

[2]
n2 · · · A

[n]
n2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where A
[j]
i denotes the jth row of Ai. Then MA is a (1 + n2) × n2 matrix

with entries in k(X)(x), and one sees that a0In +
∑s

l=1 alAl = 0 if and only if
(a0, · · · , as, 0, · · · , 0) is in the left kernel of MA. Let (b0, · · · , bs, 0, · · · , 0) be an
element of the left kernel of MA satisfying that bs �= 0 and s is as small as possible.
Then L can be chosen to be

∑s
i=0 biσ

i and s = ord(L) = dim([A]). The above
construction indicates the following lemma.

Lemma 4.20. There is a nonempty open subset U of X such that if c ∈ U , then

dim([A]) = dim([A(c)]).

Proof. We first show that dim([A]) = rank(MA), where MA is given as in (4.9).
Denote r = dim([A]). If rank(MA) < r. then the first r rows of MA are linearly
dependent over k(X)(x). This implies that the left kernel of MA contains a nonzero
element of the form (b0, · · · , br−1, 0, · · · , 0). The above construction then implies
that dim([A]) ≤ r − 1, a contradiction. So rank(MA) ≥ r. On the other hand,
assume that L =

∑r
i=0 biσ

i. Without loss of generality, we may assume that br = 1.
Then since L annihilates all entries of vj , one has that

(4.10) σr(vj) = −
r−1∑
i=0

biσ
i(vj)∀ j = 1, · · · , n,

where vj is the jth column of F . Applying σ to (4.10) successively yields that for
each l = 0, · · · , n2 − r,

Ar+lvj = σr+l(vj) =
r−1∑
i=0

cl,iσ
i(vj) =

r−1∑
i=0

cl,iAivj ∀ j = 1, · · · , n,

where cl,i ∈ k(X)(x). Hence Ar+l −
∑r−1

i=0 cl,iAi = 0, because F = (v1, · · · ,vn) is
invertible. Consequently, the (r+l)th row of MA is a linear combination of the first
r rows of MA. Hence rank(MA) ≤ r. This proves that rank(MA) = r. Similarly,
one has that

dim([A(c)]) = rank(vc(MA)) = rank(MA(c))

for all c ∈ Xh, where Xh is given as in Notation 4.1.
Now take a nonzero g ∈ k[X] such that rank(MA) = rank(vc(MA)) for any

c ∈ Xg. Then for c ∈ Xg ∩ Xh, one has that

dim([A]) = rank(MA) = rank(vc(MA)) = rank(MA(c)) = dim([A(c)]). �
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Now let us turn to the dimension of I(m, Iν). Let F = (fi,j) be a fundamental
matrix of σA(Y ) = AY such that

Iν =
〈{

p ∈ k(X)(x)[X]≤ν

∣∣∣ p(F) = 0
}〉

k(X)(x)
.

By Remark 4.7, the vector space spanned by the entries of Symν(F) is equal to the
one spanned by all

∏
f
si,j
i,j with 0 ≤

∑
si,j ≤ ν. Set

Lν
m(A) = diag

(
Symν(A),

(
x+ 1

x

)
Symν(A), · · · ,

(
x+ 1

x

)m

Symν(A)

)
and

F̃ = diag (Symν(F), xSymν(F), · · · , xmSymν(F)) .

Note that

σ(Symν(F)) = Symν(σ(F)) = Symν(AF) = Symν(A)Symν(F).

We have that F̃ is a fundamental matrix of σA(Y ) = Lν
m(A)Y , and the set of the

entries of F̃ and the set of all xi
∏

f
si,j
i,j with 0 ≤ i ≤ m and 0 ≤

∑
si,j ≤ ν span

the same vector space. Notice that

I(m, Iν) =
{
p ∈ k(X)[x]≤m[X]≤ν | p(F) = 0

}
.

This implies that

(4.11) dim(I(m, Iν)) = (m+ 1)

(
n2 + ν − 1

ν

)
− dim([Lν

m(A)]).

Corollary 4.21. Let m be a positive integer and let Iν be a ν-maximal σA-ideal.
Suppose that B is a k(X)-basis of I(m, Iν) and B ⊂ k[X][x,X]. Then there is a

nonempty open subset U of X such that for any c ∈ U , vc(B) is a basis of I(m, Ĩc)

where Ĩc is a ν-maximal σA(c)-ideal in k(x)[X, 1/ det(X)].

Proof. By Proposition 1.20 on page 15 of [26], Iν has a zero ξ in GLn(k(X)(x)).
Write B = {b1, · · · , bl}. Since B generates Iν that is a σA-ideal, there is a matrix

M with entries in k(X)(x)[X, 1/ det(X)] such that

σA((b1, · · · , bl)) = (b1, · · · , bl)M.

Let D̃ ⊂ k(X) be a finitely generated k[X]-algebra such that the entries of ξ and

the coefficients of the entries of M are all in the fraction field of D̃[x] and let Y be

the variety over k associated to D̃. There is a nonzero g ∈ D̃ such that for any
c̃ ∈ Yg, vc̃(ξ), vc̃(M) are well-defined and vc̃(ξ) is invertible. Then

σA(c̃)((vc̃(b1), · · · , vc̃(bl))) = vc̃ (σA((b1, · · · , bl))) = vc̃ ((b1, · · · , bl)M)

= (vc̃(b1), · · · , vc̃(bl))vc̃(M).

Hence for any c̃ ∈ Yg, 〈vc̃(B)〉k(x) is a σA(c̃)-ideal. Furthermore, vc̃(ξ) is a zero
of this ideal in GLn(k(x)). This implies that for such c̃, 1 /∈ 〈vc̃(B)〉k(x) and then

vc̃(B) is contained in some ν-maximal σA(c̃)-ideal, say Ĩc̃, because every polynomial
in vc̃(B) is of degree in X not greater than ν. Using the arguments similar to those
after Lemma 4.20, one has that

(4.12) dim(I(m, Ĩc̃)) = (m+ 1)

(
n2 + ν − 1

ν

)
− dim([Lν

m(A(c̃))]).
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Let Ũ be a nonempty open subset of Y satisfying that for any c̃ ∈ Ũ ,

(1) dim([Lν
m(A)]) = dim([vc̃(Lν

m(A))]) and vc̃(Lν
m(A)) = Lν

m(A(c̃)); and
(2) vc̃(B) is linearly independent over k and |B| = |vc̃(B)|.

Such Ũ exists due to Lemma 4.20. Combining equalities (4.11) and (4.12), one sees

that for any c̃ ∈ Yg ∩ Ũ ,

|vc̃(B)| = |B| = dim(I(m, Iν)) = dim(I(m, Ĩc̃)),

which implies that vc̃(B) is a basis of I(m, Ĩc̃). The corollary then follows from
Lemma 2.2 and the fact that vc̃(B) = vpY/X(c̃)(B). �

Proposition 4.22. Let Iν be a ν-maximal σA-ideal and let N be the integer ob-
tained in Lemma 4.17. Suppose that I(N, Iν) has a k(X)-basis B contained in
k[X][x,X]. Then there is a basic open subset U of X such that for any c ∈ U , vc(B)

is a k-basis of I(N, Ĩc) for some ν-maximal σA(c)-ideal Ĩc in k(x)[X, 1/ det(X)]. In

particular, vc(B) generates Ĩc.

Proof. By Lemma 4.17, there is a basic open subset U1 of X such that N is a
coefficient bound for not only ν-maximal σA-ideals but also ν-maximal σA(c)-ideals
for all c ∈ U1. By Corollary 4.21, there is a nonempty open subset U2 of X such
that for any c ∈ U2, one has that vc(B) is a basis of I(N, Ĩc) for some ν-maximal

σA(c)-ideal Ĩc. Set U = U1 ∩ U2. The proposition then follows from the fact that

I(N, Ĩc) generates Ĩc. �

5. Difference Galois groups under specialization

The aim of this section is to prove Theorem 1.2. To begin, let us recall some
notation and basic concepts in difference Galois theory. Let m be a maximal σA-
ideal of k(X)(x)[X, 1/ det(X)] and let

R = k(X)(x)[X, 1/ det(X)]/m.

Then R is the Picard-Vessiot ring of k(X)(x) for (1.1). The Galois group G of (1.1)

over k(X)(x) is defined to be the set of k(X)(x)-automorphisms ofR which commute
with σA. Set X̄ = X mod m. Then X̄ is a fundamental matrix of (1.1), which

induces a group homomorphism from G to GLn(k(X)) given by sending φ ∈ G to

X̄−1φ(X̄). The image of this homomorphism is an algebraic subgroup of GLn(k(X))
and this image can be obtained by computing the stabilizer of m. The stabilizer of
an ideal I in k(X)(x)[X, 1/ det(X)], denoted by stab(I), is defined to be the set of

elements g ∈ GLn(k(X)) satisfying that {p(Xg)|p ∈ I} = I, which is an algebraic

subgroup of GLn(k(X)). It is well known that the stabilizer of m is the image of
G under the homomorphism induced by a fundamental matrix that is a zero of m.
Throughout this section, Galois groups always mean the stabilizers of maximal σA-
ideals. The readers are referred to Chapter 1 of [26] for more details on difference
Galois theory.

5.1. A criterion for difference Galois groups. Proto-Galois groups play an
essential role in the computation of difference Galois groups as well as differential
Galois groups. In this subsection, we shall give a necessary and sufficient condition
for a proto-Galois group to be a difference Galois group. One will see that the
condition given below can be verified algorithmically. Let us first recall what proto-
Galois groups are.
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Definition 5.1. Let G,H be two algebraic subgroups of GLn(k(X)). H is said to
be a proto-group of G if it satisfies the following condition:

Ht ≤ G◦ ≤ G ≤ H,

where Ht denotes the algebraic subgroup of H generated by unipotent elements.
In the case when G is the Galois group of σA(Y ) = AY over k(X)(x), H is called

a proto-Galois group of σA(Y ) = AY over k(X)(x).

Remark 5.2. (1) Since Ht is connected, Ht ⊂ H◦. So if H is a proto-group of
G, then H◦ is a proto-group of G ∩H◦.

(2) Suppose that H is a proto-group of G and g ∈ GLn(k(X)). Then H is a
proto-group of gGg−1 if and only if gGg−1 ⊂ H. To see this, it suffices
to prove the “if” part. Note that if h ∈ GLn(k(X)) is unipotent, then so
is ghg−1. Thus gHtg−1 ⊂ Ht, because gHtg−1 ⊂ gGg−1 ⊂ H. As both
gHtg−1 and Ht are connected and have the same dimension, gHtg−1 = Ht.
This implies that Ht = gHtg−1 ⊂ gGg−1 ⊂ H.

(3) Suppose that H is a proto-Galois group of σA(Y ) = AY over k(X)(x) and

A ∈ H(k(X)(x)). Let H̃ be an algebraic subgroup of H. We claim that if

σ(h−1)Ah ∈ H̃(k(X)(x)) for some h ∈ GLn(k(X)(x)), then H is a proto-

group of H̃ . Let G be the Galois group of σA(Y ) = AY over k(X)(x)
satisfying that H is a proto-group of G. Proposition 1.21 of [26] implies

that there is g ∈ GLn(k(X)) such that gGg−1 ⊂ H̃ . By (2), H is a proto-

group of gGg−1 and then it is a proto-group of H̃ by the definition. This
proves the claim.

Let H be an algebraic subgroup of GLn(k(X)) such that A ∈ H(k(X)(x)). It was

proved in Proposition 1.21 of [26] that H is the Galois group of (1.1) over k(X)(x) if

and only if for any g ∈ H(k(X)(x)) and any proper algebraic subgroup H̃ of H one

has that σ(g−1)Ag /∈ H̃(k(X)(x)). We shall refine this criterion when H is a proto-

Galois group of (1.1) over k(X)(x). As an analogue of finite algebraic extensions in
a differential case, we need to consider the power of σ. Let i be a positive integer.
Obviously, every σ-ring (resp., field) is also a σi-ring (resp., field) and an easy
calculation yields that σi

A(X) = AiX, where Ai stands for σ
i−1(A) · · ·σ(A)A.

Definition 5.3. Let s ≥ 0. The rational functions a1, · · · , am ∈ k(X)(x) \ {0}
are said to be multiplicatively σs-independent if for any di ∈ Z and any f ∈
k(X)(x) \ {0},

∏m
i=1 a

di
i = σs(f)/f implies that d1 = · · · = dm = 0.

Lemma 5.4. Let H be a connected algebraic subgroup of GLn(k(X)) and B ∈
H(k(X)(x)). Suppose that H is a proto-Galois group of σB(Y ) = BY over k(X)(x).

Then H is the Galois group of σB(Y ) = BY over k(X)(x) if and only if {χ(B)|χ ∈
X} is multiplicatively σ-independent, where X is a basis of χ(H).

Proof. Suppose that H is the Galois group and there are integers dχ, χ ∈ X, not all
zero, such that ∏

χ∈X

χdχ(B) =
σ(f)

f

for some f ∈ k(X)(x) \ {0}. Set χ =
∏

χ∈X
χdχ . Then χ is a nontrivial character.

Let I be the ideal in k(X)(x)[X, 1/ det(X)] generated by all vanishing polynomials
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ofH. Since B ∈ H(k(X)(x)) andH is the Galois group, I is a maximal σB-ideal (see
Lemma 1.10 and its proof on page 8 of [26]). Furthermore as H is connected, I is

a prime ideal. Let X̄ = X mod I and E = k(X)(x)(X̄). Then X̄ is a fundamental
matrix of σB(Y ) = BY and it belongs to H(E). An easy calculation yields that
σB(χ(X̄))/χ(X̄) = σ(f)/f and then σB

(
χ(X̄)f−1

)
= χ(X̄)f−1. In other words,

χ(X̄)f−1 is a constant of E. Since E is the total Picard-Vessiot ring of σB(Y ) = BY

and k(X) is algebraically closed, the field of constants of E is equal to k(X). Hence

χ(X̄) = cf for some c ∈ k(X). This implies that χ(X) − cf ∈ I. As elements

of H(k(X)(x)) are zeros of I, putting X = In in χ(X) − cf yields that cf = 1,
and then putting X = B in χ(X) − 1 yields that χ(B) = 1, i.e., B ∈ ker(χ).
Proposition 1.21 on page 15 of [26] implies that ker(χ) contains H as a subgroup.
Hence ker(χ) = H, i.e., χ is trivial. This contradicts the fact that χ is nontrivial.

Conversely, suppose that H is not the Galois group. Due to Proposition 1.21
of [26] again, there is g ∈ H(k(X)(x)) and a proper algebraic subgroup H̃ of H

such that σ(g−1)Bg ∈ H̃(k(X)(x)). By Remark 5.2, H is a proto-group of H̃. By

Proposition 2.6 of [9], H̃ ⊂ ker(χ) for some nontrivial character χ ofH. This implies
that χ(σ(g−1)Bg) = 1, i.e., χ(B) = σ(χ(g))/χ(g). Consequently, χ(B), χ ∈ X are
multiplicatively σ-dependent. �

Recall that the above lemma still holds if we replace σ, B, and σB with σs, Bs,
and σs

B , respectively, for some positive integer s. Now let us consider the general
case.

Proposition 5.5. Let H be an algebraic subgroup of GLn(k(X)) such that A ∈
H(k(X)(x)). Suppose that H is a proto-Galois group of σA(Y ) = AY over k(X)(x).

Then H is the Galois group of σA(Y ) = AY over k(X)(x) if and only if

(a) Am /∈ H◦(k(X)(x)) for all positive m with m|� and m �= �, and
(b) {χ (A�) |χ ∈ X} is multiplicatively σ�-independent,

where � = [H : H◦] and X is a basis of χ(H◦).

Proof. Assume that H is the Galois group of σA(Y ) = AY over k(X)(x). Let

I be a maximal σA-ideal in k(X)(x)[X, 1/ det(X)] such that H = stab(I), the
stabilizer of I. For each positive integer m, note that I is a proper σm

A -ideal in

k(X)(x)[X, 1/ det(X)], so there is a maximal σm
A -ideal, say Ĩm, containing I. By

Lemma 4.1 of [9], Ĩm ∩ σA(Ĩm) ∩ · · · ∩ σm−1
A (Ĩm) is a maximal σA-ideal. It is clear

that each σi
A(Ĩm) contains I as so does Ĩm. Thus

I = Ĩm ∩ σA(Ĩm) ∩ · · · ∩ σm−1
A (Ĩm)

because I is a maximal σA-ideal. Denote Hm = stab(Ĩm). Then Hm is the Galois

group of σm
A (Y ) = AmY over k(X)(x). Due to Lemma 4.1 of [9] agian, Hm is a

subgroup of finite index in H and furthermore [H : Hm] ≤ m. This implies that Hm

contains H◦ by Proposition on page 53 of [13]. Now if Am ∈ H◦(k(X)(x)) for some
positive m with m|� and m �= �, then by Proposition 1.21 of [26], Hm is a subgroup
of H◦. This implies that Hm = H◦ and thus [H : Hm] = �, a contradiction with

[H : Hm] ≤ m < �. Therefore Am /∈ H◦(k(X)(x)) for all positive m with m|� and

m �= �, i.e., (a) holds. In addition, note that σi(A) ∈ H(k(X)(x)) for all i ≥ 0.

From this, one sees that A� = σ�−1(A) · · ·A ∈ H◦(k(X)(x)). By Proposition 1.21
of [26] again, H� is a subgroup of H◦. However, H� contains H◦. This implies
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that H� = H◦ and H◦ is the Galois group of σ�
A(Y ) = A�Y over k(X)(x). Then

Lemma 5.4 with σB = σ�
A implies (b). This proves the necessary part.

It remains to show that (a) and (b) are sufficient. Suppose to the contrary thatH
is not the Galois group under the assumption that (a) and (b) hold. By Proposition

1.21 on page 15 of [26], there are g ∈ H(k(X)(x)) and a proper algebraic subgroup

H̃ of H such that σ(g−1)Ag ∈ H̃(k(X)(x)). Write g = hξ with h ∈ H◦(k(X)(x))

and ξ ∈ H(k(X)). Then for i > 0

(5.1) σi(g−1)Aig =

i−1∏
j=0

σi−1−j
(
σ(g−1)Ag

)
= ξ−1σi(h−1)Aihξ.

We claim that the condition (b) implies that H̃◦ = H◦. To see this, suppose that

H◦ �= H̃◦. Setting i = � in (5.1), one has that

σ�(g−1)A�g ∈ H̃(k(X)(x)) ∩H◦(k(X)(x)).

Notice that H is a proto-group of H̃ as shown in Remark 5.2. Thus H◦ is a proto-
group of H̃∩H◦. Furthermore, since H̃◦ �= H◦, H̃∩H◦ is a proper subgroup of H◦.
Due to Proposition 2.6 of [9], there is a nontrivial character χ ∈ χ(H◦) such that

H̃ ∩H◦ ⊂ ker(χ), and so χ
(
ξ−1σ�(h−1)A�hξ

)
= 1. Set χ̃ = χ(ξ−1Xξ). Then χ̃ is

still a nontrivial character of H◦ and χ̃(A�) = σ�(χ̃(h))/χ̃(h). Write χ̃ =
∏

χ∈X
χdχ

where dχ ∈ Z and not all of them are zero. Then one sees that {χ(A�)|χ ∈ X}
is not multiplicatively σ�-independent, which contradicts the condition (b). Hence

H◦ = H̃◦. This proves the claim. Now let m = [H̃ : H̃◦]. Then m|� and setting
i = m in (5.1) yields that

σm(g−1)Amg = ξ−1σm(h−1)Amhξ ∈ H̃◦(k(X)(x)) = H◦(k(X)(x)).

So Am ∈ σm(h)ξH◦(k(X)(x))ξ−1h−1. As ξH◦ξ−1 = H◦ and h ∈ H◦(k(X)(x)),

Am ∈ H◦(k(X)(x)). The assumption (a) then implies that m = �, i.e., H̃ = H.

This contradicts the assumption that H̃ is a proper subgroup of H. Therefore H
is the Galois group. �

Remark 5.6. Let H and A be as in Proposition 5.5.

(1) If H is connected, i.e., � = [H : H◦] = 1, then the condition (a) always
holds and the proposition reduces to Lemma 5.4.

(2) Assume that H̃ is the Galois group of σA(Y ) = AY over k(X)(x). From
the proof of the sufficient part of the proposition, one sees that (b) implies

H◦ = H̃◦. We claim that the converse is also true. Suppose that H◦ = H̃◦.
Since H̃ is a subgroup of H by Proposition 1.21 of [26], [H : H̃ ]|�. Denote

m1 = [H : H̃ ] and m2 = [H̃ : H̃◦] = �/m1. By Lemma 1.26 and Corollary

1.17 of [26], H̃◦ is the Galois group of σm2

A (Y ) = Am2
Y over k(X)(x). Note

that σ�
A = (σm2

A )m1 and A� = (Am2
)m1

. Applying Lemma 4.1 of [9] to

σm2

A (Y ) = Am2
Y yields that [H̃◦ : H̃�] ≤ m1, where H̃� is the Galois group

of σ�
A(Y ) = A�Y over k(X)(x). Hence H̃� = H̃◦ = H◦. Lemma 5.4 with

σB = σ�
A then implies (b). This proves our claim.

5.2. Proof of Theorem 1.2. Before we prove the following proposition, let us
first recall some results in [9]. Note that the reference [9] used some different
notation, for instance ν-maximal σA-ideals are denoted by IF ,ν and the stabilizer
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of IF ,ν is denoted by HF ,ν . By Proposition 3.10 of [9], the stabilizer of a ν-
maximal σA-ideal with sufficiently large ν is a proto-Galois group of σA(Y ) = AY

over k(X)(x). Precisely, let ν be an integer greater than the integer d̃ given in
Proposition 2.5 of [9], and let Iν be a ν-maximal σA-ideal. Suppose that I is a
maximal σA-ideal containing Iν . Let G = stab(I) and H = stab(Iν) where stab()

denotes the stabilizer. Then G is the Galois group of σA(Y ) = AY over k(X)(x).

Proposition 3.7 of [9] implies that Zero(Iν) and Zero(I) are trivial k(X)(x)-torsors

for H(k(X)(x)) and G(k(X)(x)), respectively, where Zero() denotes the set of zeros

in GLn(k(X)(x)). Let g ∈ Zero(I) ∩GLn(k(X)(x)). Then

Zero(Iν) = gH(k(X)(x)) ⊃ Zero(I) = gG(k(X)(x)).

Thus G ⊂ H and, moreover, H is a proto-group of G.

Proposition 5.7. Let G be the Galois group of σA(Y ) = AY over k(X)(x). Assume
that A ∈ G(k(X)(x)) and G is defined over k[X]. Then there is a basic open subset
U of X such that Gc is a proto-Galois group of σA(c)(Y ) = A(c)Y over k(x) for
any c ∈ U , where Gc is defined as in Section 3.

Proof. Let d be an integer greater than the integer d̃ given in Proposition 2.5 of [9].
Let S ⊂ k[X][X] be a finite set generating the vanishing ideal of G, and let I be

the ideal in k(X)(x)[X, 1/ det(X)] generated by S. Since A ∈ G(k(X)(x)) and G is
the Galois group, I is a maximal σA-ideal (see Lemma 1.10 and its proof on page
8 of [26]). Suppose that m is a positive integer such that all polynomials in S are
of total degree in X not greater than m. Set

ν = max {m, d} .
Then I is a ν-maximal σA-ideal. Due to Lemma 4.17, there is a coefficient bound
of I, say N , and a basic open subset U1 of X such that for every c ∈ U1, N is
also a coefficient bound of ν-maximal σA(c)-ideals in k(x)[X, 1/ det(X)]. Let B be

a basis of I(N, I) where I(N, I) is defined as in (4.1). Let D̃ ⊂ k(X) be a finitely

generated k[X]-algebra such that B ⊂ D̃[x,X] and let Y be the variety over k

associated to D̃. Because S and B generate the same ideal I, using an argument
similar to that in Remark 3.1, one can prove that there is a nonempty open subset
Ũ1 of Y such that for each c̃ ∈ Ũ1, vc̃(S) and vc̃(B) generate the same ideal in

k(x)[X, 1/ det(X)]. By Proposition 4.22, there is a basic open subset Ũ2 of Y such

that for any c̃ ∈ Ũ2, vc̃(B) is a k-basis of I(N, Ĩc̃) for some ν-maximal σA(c̃)-ideal Ĩc̃
in k(x)[X, 1/ det(X)]. In particular, vc̃(B) generates Ĩc̃. Then for any c̃ ∈ Ũ1 ∩ Ũ2,

vc̃(B) and vc̃(S) generate the same ideal Ĩc̃. By Lemma 2.3, there is a basic open

subset U2 of X that is contained in pY/X(Ũ1 ∩ Ũ2). Due to Proposition 3.2, there
is a basic open subset U3 of X such that for any c ∈ U3, vc(S) defines an algebraic
subgroup Gc of GLn(k). Now set U = U1 ∩ U2 ∩ U3 and suppose c ∈ U . Let

c̃ ∈ Ũ1 ∩ Ũ2 ∩ p−1
Y/X(c). Then Gc(k(x)) is the variety in GLn(k(x)) defined by Ĩc̃

that is generated by vc(S)(= vc̃(S)). Let H = stab(Ĩc̃). Since Ĩc̃ is ν-maximal,

due to Proposition 3.7 of [9], Gc(k(x)) is a trivial k(x)-torsor for H(k(x)). As
In ∈ Gc and both Gc and H are defined over k, we have that Gc = H, i.e., Gc

is the stabilizer of Ĩc̃. Proposition 3.10 of [9] and the choice of ν then imply that
Gc is a proto-Galois group of σA(c̃)(Y ) = A(c̃)Y over k(x). The proposition then
follows from the fact that A(c̃) = A(c). �
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Suppose that a = (a1, · · · , am) with ai ∈ k(X)(x) \ {0} and � ≥ 0. Denote

Z(a, �) =

{
d = (d1, · · · , dm) ∈ Zm

∣∣∣∣∃ f ∈ k(X)(x) \ {0} s.t. ad =
σ�(f)

f

}
,

where ad = ad1
1 · · · adm

m . Then Z(a, �) is a finitely generated Z-module. We say ai
is �-standard if for any α, β in the set of zeros and poles of ai, α − β ∈ �Z implies
that α = β. One has that if ai /∈ k(X), then σ�(ai)/ai is not �-standard. To see

this, write ai = λ
∏s

j=1(x − cj)
dj where λ, c1, · · · , cs ∈ k(X), λ �= 0, cj1 �= cj2 if

j1 �= j2, and all dj are nonzero integers. Then

σ�(ai)

ai
=

s∏
j=1

(x− (cj − �))dj

(x− cj)dj
.

Set m1 = min{l|∃ ci s.t. c1 = ci − l�} and m2 = max{l|∃ ci s.t. c1 = ci − l�}. Then
both x − (c1 + (m1 − 1)�) and x − (c1 + m2�) cannot be cancelled in σ�(ai)/ai.
That is to say, both c1+(m1− 1)� and c1+m2� are in the set of zeros and poles of
σ�(ai)/ai. As the difference of c1+(m1−1)� and c1+m2� is equal to (m1−m2−1)�,
that is, a nonzero element in �Z, σ�(ai)/ai is not �-standard.

Lemma 5.8. Suppose that a = (a1, · · · , am) with ai ∈ k(X)(x) \ {0} and � ≥ 0.
Then there is a basic open subset U of X such that for any c ∈ U , a1(c), · · · , am(c)
are well-defined and Z(a, �) = Z(vc(a), �).

Proof. Let W be the set of zeros and poles of a1, · · · , am in k(X), and let α ⊂ W

be the representative of W in the quotient group k(X)/�Z. Suppose β ∈ W . Then
β = α+ �d for some α ∈ α and d ∈ Z. If d = 0, set g = 1, otherwise set

g =

{∏d
l=1(x− α− �l)−1, d > 0,∏−d−1
l=0 (x− α+ �l), d < 0.

Then x−β = σ�(g)(x−α)/g. Under the multiplication with σ�(g)/g, we can replace
x− β by x− α for all ai. Hence for every i = 1, · · · ,m, we can write

ai = ξi
σ�(fi)

fi

∏
α∈α

(x− α)ei,α ,

where ξi ∈ k(X) \ {0}, ei,α ∈ Z, and fi ∈ k(X)(x) \ {0} whose numerator and
denominator are both monic. Set āi =

∏
α∈α(x − α)ei,α for all i = 1, · · · ,m. One

sees easily that ad = σ�(f)/f if and only if ξd = 1 and ād = σ�(f̃)/f̃ , where

ξ = (ξ1, · · · , ξm) and ā = (ā1, · · · , ām). Since ād is �-standard, if ād = σ�(f̃)/f̃ ,

then f̃ ∈ k(X). Therefore ad = σ�(f)/f if and only if ξd = 1 and ād = 1. Namely,

Z(a, �) = Z(ξ, 0) ∩ Z(ā, 0).

Let Γ1 be the subgroup of Gm(k(X)) generated by ξ1, · · · , ξm. Let D̃ ⊂ k(X) be a

finitely generated k[X]-algebra such that Γ1,W ⊂ D̃, and let Y be the variety over

k associated to D̃. Let Γ2 be the subgroup of Ga(D̃) generated by {1} ∪ α. Now
assume that c̃ ∈ B(Y,Γ1) ∩ B(Y,Γ2). Then

ai(c̃) = ξi(c̃)
σ�(fi(c̃))

fi(c̃)

∏
α∈α

(x− α(c̃))ei,α ,
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and, moreover, α(c̃) − α′(c̃) /∈ �Z if α �= α′. A similar argument as above implies
that vc̃(a)

d = σ�(f ′)/f ′ if and only if vc̃(ξ)
d = 1 and vc̃(ā)

d = 1. In other words,

Z(vc̃(a), �) = Z(vc̃(ξ), 0) ∩ Z(vc̃(ā), 0).

Since c̃ ∈ B(Y,Γ1), Z(vc̃(ξ), 0) =Z(ξ, 0). Moreover, one has Z(vc̃(ā), 0) =Z(ā, 0)
for both of them are equal to{

(d1, · · · , dm) ∈ Zm

∣∣∣∣∣
m∑
i=1

diei,α = 0, ∀ α ∈ α

}
.

Consequently, Z(a, �) = Z(vc̃(a), �). Lemma 2.3 then completes the proof. �

Corollary 5.9. Let a = (a1, · · · , am), � be as in Lemma 5.8. Then there is a
basic open subset U of X such that for any c ∈ U , a1, · · · , am are multiplicatively
σ�-independent if and only if so are a1(c), · · · , am(c).

Proof. Note that a1, · · · , am are multiplicatively σ�-independent if and only if
Z(a, �) = {(0, · · · , 0)}. The corollary then follows from Lemma 5.8. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Theorem 2.7 of [12], there is g ∈ GLn(k(X)(x)) such that

σ(g−1)Ag ∈ G(k(X)(x)). Denote Ã = σ(g−1)Ag. It is well known that σÃ(Y ) =

ÃY and σA(Y ) = AY have the same Galois group. Let D′ ⊂ k(X) be a finitely
generated k[X]-algebra with F ′ as a field of fractions such that g ∈ GLn(F

′(x))
and let X′ be the variety over k associated to D′. Then there is c′ ∈ D′ such that
for any c′ ∈ X′

c′ , both g(c′) and A(c′) are well-defined and invertible. For such c′,

σA(c′)(Y ) = A(c′)Y and σÃ(c′)(Y ) = Ã(c′)Y have the same Galois group. Recall

that Ã ∈ G(k(X′)(x)). Suppose that the theorem holds for σÃ(Y ) = ÃY and V ′ is
the corresponding basic open subset of X′. Then for c′ ∈ V ′∩X′

c′ , Gc′ is the Galois
group of σA(c′)(Y ) = A(c′)Y over k(x). By Lemma 2.3, there is a basic open subset
V of X contained in pX′/X(V

′ ∩ X′
c′). From the fact that A(c′) = A(pX′/X(c

′)) and
Gc′ = Gp

X′/X(c
′), one has that Gc is the Galois group of σA(c)(Y ) = A(c)Y over

k(x) for all c ∈ V . Consequently, one only needs to prove the theorem for the case
with A ∈ G(k(X)(x)).

Let X ⊂ k(X)[X, 1/ det(X)] be a basis of χ(G◦), and let T be a finite set in

k(X)[X, 1/ det(X)] generating the vanishing ideal of G◦. Let D̃ ⊂ k(X) be a finitely

generated k[X]-algebra such that T,X ⊂ D̃[X, 1/ det(X)] and let Y be the variety

over k associated to D̃. Set � = [G : G◦]. SinceG is the Galois group of σA(Y ) = AY

over k(X)(x) and A ∈ G(k(X)(x)), Proposition 5.5 implies that Am /∈ G◦(k(X)(x))
for all positive m with m|� and m �= �, and {χ(A�)|χ ∈ X} is multiplicatively σ�-
independent. Thus, for all such m, there is qm ∈ T such that qm(Am) �= 0. By

Propositions 5.7, 3.2, and 3.5, there is a basic open subset Ũ1 of Y such that for
any c̃ ∈ Ũ1, one has that,

(a) Gc̃ is a proto-Galois group of σA(c̃)(Y ) = A(c̃)Y over k(x), and
(b) [Gc̃ : G◦

c̃] = [G : G◦] = �, and
(c) vc̃(X) is a basis of χ(G◦

c̃).

By Corollary 5.9, there is a basic open subset Ũ2 of Y such that for any c̃ ∈ Ũ2,
{vc̃(χ(A�))|χ ∈ X} is multiplicatively σ�-independent. Let c be a nonzero element
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in D̃ such that for any c̃ ∈ Yc, vc̃(qm(Am)) �= 0 for all positive m with m|� and
m �= �. Set

Ũ = Ũ1 ∩ Ũ2 ∩ Yc

and assume that c̃ ∈ U . Since vc̃(χ(A�)) = vc̃(χ)(A(c̃)�), {vc̃(χ)(A(c̃)�)|χ ∈ X} is
multiplicatively σ�-independent, that is to say, {χ̄(A(c̃)�)|χ̄ ∈ vc̃(X)} is multiplica-
tively σ�-independent. On the other hand, for all positive m with m|� and m �= �,
since vc̃(qm)(A(c̃)m) = vc̃(qm(Am)) �= 0, A(c̃)m /∈ G◦

c̃(k(x)). By Proposition 5.5,
Gc̃ is the Galois group of σA(c̃)(Y ) = A(c̃)Y over k(x). The theorem then follows
from Lemma 2.3 and the fact that A(c̃) = A(pY/X(c̃)) and Gc̃ = GpY/X(c̃). �

Example 5.10. Consider the linear difference equation σA(Y ) = AY with

A =

⎛
⎝x t1x 0
x x 0
0 0 t2

⎞
⎠ ,

where t1, t2 are parameters. Set k = Q̄ and X = k2. Then k(X) = k(t1, t2) and
A ∈ GLn(k(X)(x)). Let S = {X11 − X22, X12 − t1X21, X13, X23, X31, X32}, and
denote by H the variety in GL3(k(X)) defined by S, i.e.,

H =

⎧⎨
⎩
⎛
⎝a t1b 0
b a 0
0 0 c

⎞
⎠
∣∣∣∣∣∣ a, b, c ∈ k(X), c(a2 − t1b

2) �= 0

⎫⎬
⎭ .

One can verify that H is connected and a basis of χ(H) can be represented by

X = {χ1 = X11 −
√
t1X21, χ2 = X11 +

√
t1X21, χ3 = X33}.

Furthermore, one can verify that A ∈ H(k(X)(x)) and H is the Galois group of

σA(Y ) = AY over k(X)(x). We shall find a basic open subset U of X such that
Hc is the Galois group of σA(c) = A(c)Y over k(x) for all c ∈ U . For the sake
of simplicity, at some steps, we do not follow the proofs of preceding lemmas or
propositions to get the corresponding basic open sets.

First of all, A(c) is invertible only if c ∈ X(t1−1)t2 . Moreover, if c ∈ X(t1−1)t2 , Hc

is a connected algebraic subgroup of GL3(k). It is easy to see that if c ∈ Xt1(t1−1)t2 ,

then A(c) ∈ Hc(k(x)) and Ht
c = {1}. Thus for such c, Hc is a proto-Galois group

of σA(c)(Y ) = A(c)Y over k(x).

Second, since χi is defined over k(
√
t1, t2), we need to extend k[X] to k[t1, t2,

√
t1]

whose associated variety we denote by Y. Because Ht = {1} and Ht
c̃ = {1} for any

c̃ ∈ Yt1(t1−1)t2 , the proof of Proposition 3.5 implies that if vc̃(X) is multiplicatively
independent, then it is a basis of χ(Hc̃). In the proof of Proposition 3.5, take
g = (gi,j) with g1,1 = g2,2 = 5/2, g1,2 = t1g2,1 =

√
t1/2, g3,3 = 5 and other entries

being zero. Then one has that χ1(g) = 2, χ2(g) = 3, χ3(g) = 5. From this, one sees
that if c̃ ∈ Yt1(t1−1)t2 , then vc̃(X) is multiplicatively independent and thus it is a
basis of χ(Hc̃).

Third, denote a = (χ1(A), χ2(A), χ3(A)) where

χ1(A) = x(1−
√
t1), χ2(A) = x(1 +

√
t1), χ3(A) = t2.

Take ξ = (1 −
√
t1, 1 +

√
t1, t2) and ā = (x, x, 1). It is easy to see that Z(ξ, 0) =

{(0, 0, 0)}. Let Γ̃ be the subgroup of Gm(k(Y)) generated by 1 −
√
t1, 1 +

√
t1, t2.

Then for any c̃ ∈ B(Y, Γ̃), Z(vc̃(ξ), 0) = {(0, 0, 0)} and therefore

Z(vc̃(a), 1) = Z(vc̃(ξ), 0) ∩ Z(vc̃(ā), 0) = {(0, 0, 0)},
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i.e., {vc̃(χi(A))|i = 1, 2, 3} is multiplicatively σ-independent. Let Ũ = Yt1(t1−1)t2 ∩
B(Y, Γ̃). Then for any c̃ ∈ Ũ , since Hc̃ is connected, Lemma 5.4 implies that Hc̃ is
the Galois group of σA(c̃)(Y ) = A(c̃)Y over k(x).

Finally, by (2.1), B(X, Γ̃) = pY/X(B(Y, Γ̃)) and so pY/X(Ũ) contains B(X, Γ̃) ∩
Xt1(t1−1)t2 . The latter set is what we need.

Example 5.11. Consider
σt(y) = ty

over C(x, t) where t is a parameter. This equation has a solution tx.

(1) t is endowed with the usual derivation ∂t. The differential Galois group
is Gm(C) and Proposition 2.9 of [11] implies that tx satisfies a first order
linear differential equation over C(x, t) with respect to ∂t. Actually, one
easily sees that tx is a solution of ∂t(y) = (x/t)y.

(2) t is endowed with the shift operator τ (t) = t+1. Example 3.8 of [19] implies
that tx does not satisfy any nonzero difference equation over C(x, t) with
respect to τ .

(3) t is a usual parameter. The usual Galois group is Gm(C(t)) and it implies
that tx is transcendental over C(x, t). One sees that cx is algebraic over
C(x) if and only if c is a root of unity. In particular, when c = 1, the Galois
group of the specialized equation is {1}.

The above example provides one a glance at the difference between parameter-
ized difference Galois theories and difference Galois theory with usual parameters.
Recall that for higher order linear difference equations, the phenomenon appearing
in (3) of Example 5.11 can also happen, i.e., the Galois group of the specialized
equation is extremely small under some specialization even though the original one
is as large as the whole general linear group.

6. An application

In this section, we apply Theorem 1.2 to the inverse problem in difference Galois
theory. The notation will be as before, for instance k denotes an algebraically closed
field of characteristic zero, σB with B ∈ GLn(k(x)) denotes the k-automorphism
of k(x)[X, 1/ det(X)] induced by σB(X) = BX, and σ(x) = x + 1, vc denotes the
map from k[X] to k given by vc(f) = f(c) for f ∈ k[X] and stab(I) stands for
the stabilizer of an ideal I. The inverse problem asks which algebraic subgroups of
GLn(k) occur as the Galois groups of σB(Y ) = BY over k(x) with B ∈ GLn(k(x)).
In Chapter 3 of [26], van der Put and Singer raised the following conjecture.

Conjecture 6.1. An algebraic subgroup G of GLn(k) is the Galois group of σB(Y )
= BY over k(x) for some B ∈ GLn(k(x)) if and only if G/G◦ is cyclic.

It was shown in Proposition 1.20 of [26] that G/G◦ is necessary to be cyclic if G
is the Galois group of σB(Y ) = BY over k(x). Therefore, to prove Conjecture 6.1,
it suffices to prove the sufficient part, which we restate as the following conjecture.

Conjecture 6.2. If G is an algebraic subgroup of GLn(k) satisfying that G/G◦

is cyclic, then G is the Galois group of σB(Y ) = BY over k(x) for some B ∈
GLn(k(x)).

When k = C, for connected algebraic groups and cyclic extensions of tori, ana-
lytic proofs of Conjecture 6.2 were presented in Corollary 8.6 and Lemma 8.12 of
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[26], respectively. In Chapter 3 of the same book, an algebraic proof of Conjec-
ture 6.2 was also given when k is any algebraically closed field of characteristic zero
and G is connected. For the general case, Conjecture 6.2 remains open.

Using a similar argument as that in the proof of Theorem 4.4 of [25], we can
prove the following theorem.

Theorem 6.3. If Conjecture 6.2 holds for k = C, then it holds for any algebraically
closed field k of characteristic zero.

Proof. Let G be an algebraic subgroup of GLn(k) with G/G◦ cyclic. Suppose that
the vanishing ideal of G is generated by a finite set S ⊂ k[X, 1/ det(X)]. Assume
that the cardinality of k is at most the cardinality of C. Then we can assume
that k ⊂ C, and thus G(C) is an algebraic subgroup of GLn(C) with G(C)/G◦(C)
cyclic. The assumption implies that G(C) is the Galois group of σB(Y ) = BY over
C(x) for some B ∈ GLn(C(x)). Without loss of generality, we may assume that
B ∈ G(C(x)). Let D ⊂ C be a finitely generated k-algebra such that the entries of
B are all in the field of fractions of D[x], and let X be the variety over k associated

to D. We claim that G(k(X)) is the Galois group of σB(Y ) = BY over k(X)(x).

Otherwise, by Proposition 1.21 of [26], there is T ∈ G(k(X)(x)) and a proper k(X)-

subgroup H of G(k(X)) such that σ(T )BT−1 ∈ H(k(X)(x)). Since k(X) ⊂ C, H(C)
is a proper subgroup of G(C) and T ∈ G(C(x)). By Proposition 1.21 of [26] again,
G(C) is not the Galois group of σB(Y ) = BY over C(x), a contradiction. This
proves our claim. Due to Theorem 1.2, there is c ∈ X such that Gc, the variety in
GLn(k) defined by vc(S), is the Galois group of σB(c)(Y ) = B(c)Y over k(x). On
the other hand, since S ⊂ k[X, 1/ det(X)], S = vc(S) and then G = Gc. Thus G is
the Galois group of σB(c)(Y ) = B(c)Y over k(x).

Now assume that the cardinality of k is larger than the cardinality of C. Then
we can assume that C ⊂ k and G is defined over C. By the assumption again, G(C)
is the Galois group of σB(Y ) = BY over C(x) for some B ∈ GLn(C(x)). Let I be

a maximal σB-ideal of C(x)[X, 1/ det(X)] such that G(C) = stab(I) and let Ĩ be

the ideal in k(x)[X, 1/ det(X)] generated by I. Due to Proposition 2.4 of [3], Ĩ is a

maximal σB-ideal. One can verify that stab(Ĩ) = G. So G is the Galois group of
σB(Y ) = BY over k(x). �

The above theorem together with Corollary 8.6 and Lemma 8.12 of [26] implies
the following corollary.

Corollary 6.4. Conjecture 6.2 holds when G is a connected affine algebraic group
or a cyclic extension of a torus.
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