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1. Introduction

The study of parametrized differential/difference Galois theories was initiated in [7,24]. 
In particular, in [24], a ΣΔΠ-Galois theory was developed for ΣΔΠ-linear systems and 
was applied to giving a group-theoretic proof of Hölder’s Theorem that the Gamma 
function is hypertrancendental. Here Σ is a set of automorphisms, Δ is a set of derivations 
and Π is a set of other derivations that endow a differential structure on parameters. 
Inspired by the work in [7,24], various Galois theories were developed for other kind of 
systems, for instance, σ-Galois theory for linear difference equations in [30], difference 
Galois theory for linear differential equations in [12] and so on. These theories provide 
powerful tools to study differential/difference algebraic properties of solutions defined by 
the corresponding linear systems. In particular, using these Galois theories, one is able 
to prove the hypertranscendence of functions arising in combinatorics, number theory 
etc, see [1,2,6,14,15,23,24,31] and references therein. These applications essentially rely 
on the fact that Galois groups measure differential/difference algebraic relations among 
solutions, i.e. the group is larger, the differential/difference algebraic relations are fewer. 
On the other hand, the problem of determining Galois groups is one of fundamental 
problems in Galois theories, which leads to many questions in other areas of mathematics. 
So far, except for linear differential/difference equations, there is no complete algorithm 
for computing the Galois groups of other kinds of equations. The readers are referred to 
[3,4,10,13,16,18,20,23,25] and references therein for methods to calculate Galois groups.

In this paper, we shall focus on σδ-linear systems, i.e. systems of linear difference-
differential equations with one single automorphism σ, one single derivative δ and without 
parameters. Moreover, we assume that σ and δ commute. Many higher transcendental 
functions such as Hermite polynomials, Bessel polynomials, Tchebychev polynomials etc 
satisfy σδ-linear systems (see Chapters 7 and 10 of [17]). For simplicity, we take the 
Tchebychev polynomials as an example to state the main results of this paper. Let C
be an algebraically closed field of characteristic zero and let C(m, t) be the σδ-field with 
σ(m) = m + 1 and δ = d/dt. Consider the Tchebychev polynomials

Tm(t) = m

2

[m2 ]∑
�=0

(−1)�(m− �− 1)!
�!(m− 2�)! (2t)m−2�.

Denote Y = (Tm(t), Tm+1(t))t. Then Y satisfies the following σδ-linear system:

σ(Y ) = A(m, t)Y, δ(Y ) = B(m, t)Y (1)

where

A(m, t) =
(

0 1
−1 2t

)
, B(m, t) =

(
(m−1)t
1−t2 −m−1

1−t2
m

2 − mt
2

)
.

1−t 1−t
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Identified with an algebraic subgroup of GLn(C), the σδ-Galois group G of (1) over 
C(m, t) is

G =
{(

ξ 0
0 ξ−1

)
| ξ ∈ C×

}
∪
{(

0 ξ
ξ−1 0

)
| ξ ∈ C×

}

(See Example 5.7). Consider σ(Y ) = A(m, t)Y as a family of linear difference equations 
with parameter t. Setting t to be a c1 ∈ C \ {±1} yields a linear difference equation 
σ(Y ) = A(m, c1)Y over C(m) whose σ-Galois group is

Gσ,c1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(
ξ 0
0 ξ−1

)
| ξq = 1

}
c1 +

√
c21 − 1 is a q-th root of unity

{(
ξ 0
0 ξ−1

)
| ξ ∈ C×

}
c1 +

√
c21 − 1 is not a root of unity

(see Example 6.7). Note that the condition c1 �= ±1 is necessary to guarantee that 
the matrix B(m, c1) is well-defined but the above equality for Gσ,c1 is still true even 
when c1 = ±1. Similarly, setting m to be a c2 ∈ C yields a linear differential equation 
δ(Y ) = B(c2, t)Y over C(t) whose δ-Galois group is

Gδ,c2 =

⎧⎪⎨
⎪⎩
G c2 /∈ Q{(

ξ 0
0 ξ−1

)
,

(
0 ξ

ξ−1 0

)
| ξq = 1

}
c2 = p

q ∈ Q

(see Example 6.8). One sees that both Gσ,c1 and Gδ,c2 are algebraic subgroups of G. 
Moreover setting U1 = {c1 ∈ C | c1 +

√
c21 − 1 is not a root of unity} and U2 = C, one 

sees that both U1 and U2 are Zariski dense and G = Gσ,c1Gδ,c2 for any (c1, c2) ∈ U1×U2. 
The goal of this paper is to show that these relations still hold true for general σδ-linear 
systems (see Theorems 6.3, 6.6 and 6.18, where we use stab(m) and stab(n) instead 
of Gσ,c1 and Gδ,c2 respectively). We hope these results will be helpful for computing 
the σδ-Galois groups of linear difference-differential equations. Notice that the relation 
between the δ-Galois group of δ(Y ) = B(m, t)Y over C(m)(t) and the δ-Galois group 
of δ(Y ) = B(c2, t)Y over C(t) has been well investigated in [22,26], and its difference 
analogue is presented in [19].

It is well-known that a finite number of elements in a δ-field (resp., σ-field) are linearly 
dependent over the field of constants if and only if their Wronskian (resp., Casoration) 
equals zero (see page 271 of [9] and page 9 of [35]). For a Δ-field, Kolchin (see page 86 of 
[27]) proved the following: a finite number of elements in a Δ-field are linearly dependent 
over the field of constants if and only if all Wronskian-like determinants vanish. For 
elements in a ΣΔ-ring, the above criteria are not valid in general (see Example 3.5). 
However, under certain assumptions one can still have similar criteria. For instance, in 
[29], a criterion for hyperexponential elements in a ΣΔ-ring is presented. In this paper, 
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we shall present a criterion for elements in a simple ΣΔ-ring, which generalizes Kolchin’s 
result.

The paper is organized as follows. In Section 2, we introduce some basic definitions 
about ΣΔ-linear systems. In Section 3, we present a criterion for testing linear depen-
dence of elements in a simple ΣΔ-ring. In Section 4, we present some properties of the 
specializations of ΣΔ-Picard-Vessiot rings. In Section 5, we focus on σδ-Picard-Vessiot 
rings. We provides a sufficient condition for a σδ-Picard-Vessiot ring to be a σ-Picard-
Vessiot ring. The main results of this paper are presented in Section 6.

We are grateful to Carlos Arreche and Michael Wibmer for their valuable comments.

2. ΣΔ-linear systems

In this section, we shall recall some basic concepts of ΣΔ-linear systems. The readers 
are referred to the references [24] for details. All fields in this paper are of characteristic 
zero.

A ΣΔ-ring is a ring R with a set of automorphisms Σ and a set of derivations Δ such 
that for any μ, τ ∈ Σ ∪ Δ, τ(μ(r)) = μ(τ(r)) for all r ∈ R. The notations of ΣΔ-field, 
ΣΔ-ideal, ΣΔ-homomorphism, etc. are defined similarly. The ΣΔ-constants RΣΔ of a 
ΣΔ-ring R is the set

RΣΔ = {r ∈ R | σ(r) = r ∀σ ∈ Σ, and δ(r) = 0 ∀δ ∈ Δ}.

A simple ΣΔ-ring is a ΣΔ-ring whose only ΣΔ-ideals are (0) and R. Given a ΣΔ-field 
k, a ΣΔ-linear system is a system of equations of the form

{
σi(Y ) = AiY, Ai ∈ GLn(k), ∀σi ∈ Σ
δi(Y ) = BiY, Bi ∈ gln(k), ∀ δi ∈ Δ

(2)

where the Ai, Bj satisfy the integrability condition:

σi(Aj)Ai = σj(Ai)Aj ,

σi(Bj)Ai = δj(Ai) + AiBj ,

δi(Bj) + BjBi = δj(Bi) + BiBj

for all σi, σj ∈ Σ and all δi, δj ∈ Δ. Assume that k is a ΣΔ-field.

Definition 2.1 (Definition 6.10 of [24] with Π = ∅). A ΣΔ-ring R is a ΣΔ-Picard-Vessiot 
ring over k for (2) if

1. R is a simple ΣΔ-ring, and
2. R = k[X , 1

det(X ) ] where X ∈ GLn(R) satisfies σi(X ) = AiX ∀σi ∈ Σ and δi(X ) =
BiX ∀δi ∈ Δ.



746 R. Feng, W. Lu / Journal of Algebra 622 (2023) 742–776
The invertible matrix X in Definition 2.1 is usually called a fundamental solution 
matrix of the corresponding ΣΔ-linear system. Suppose that X is a fundamental solution 
matrix of (2). Then the above integrability condition can be naturally derived from the 
equality τ(μ(X )) = μ(τ(X ) for any τ, μ ∈ Σ ∪ Δ.

Definition 2.2. Suppose that R is a ΣΔ-Picard-Vessiot ring over k for (2). The ΣΔ-Galois 
group of (2) over k (or R over k) is defined to be the set of ΣΔ-k-automorphisms of R
over k, denoted by ΣΔ-Gal(R/k).

A ΣΔ-Picard-Vessiot ring R over k for (2) alway exists. When kΣΔ is algebraically 
closed, R is unique up to ΣΔ-k-isomorphisms (see Proposition 6.16 of [24] for a proof), 
and ΣΔ-Gal(R/k) can be identified with an algebraic subgroup of GLn(kΣΔ) defined 
over kΣΔ (see Proposition 6.18 of [24] for a proof). The second assertion is still true 
if the condition that kΣΔ is algebraically closed is replaced with RΣΔ = kΣΔ. For the 
difference case, i.e. Σ = {σ} and Δ = ∅, this has already been proved in [8,36]. Using an 
argument similar to the proof of Theorem A.2 in [33], one will see that the general case 
is also true. Note that by Proposition 6.14 of [24] with Π = ∅, if kΣΔ is algebraically 
closed then RΣΔ = kΣΔ. We begin with the following lemma that is a generalization of 
Lemma 1.7 on page 6 of [34].

Lemma 2.3. The ΣΔ-constants RΣΔ of a simple ΣΔ-ring R is a field.

Proof. It is clear that RΣΔ is a ring and it is not the zero ring. It remains to show 
that every nonzero element of RΣΔ is invertible. Suppose that a ∈ RΣΔ \ {0}. One can 
verify that the set {ba | b ∈ R} is a nonzero ΣΔ-ideal. Since R is a simple ΣΔ-ring, 
{ba | b ∈ R} = R. Hence there is b ∈ R such that ba = 1, i.e. a is invertible. �
Lemma 2.4. Suppose that S ⊆ T are two ΣΔ-rings and S is ΣΔ-simple. Then S and 
TΣΔ are linearly disjoint over SΣΔ.

Proof. Use an argument similar to the proof of Lemma 1.1.6 of [36]. �
Given two n × n matrices (ai,j), (bi,j), we shall use (ai,j) ⊗ (bi,j) to stand for the 

matrix (
∑n

l=1 ai,l ⊗ bl,j). Suppose that R is a ΣΔ-Picard-Vessiot ring over k for (2) and 
RΣΔ = kΣΔ. Then R can be viewed as a subring of R⊗k R and R⊗k R can be endowed 
with a ΣΔ-structure naturally. Moreover, R ⊗k R is generated by (R ⊗k R)ΣΔ as an 
R-module. Due to Lemma 2.4, R and (R ⊗k R)ΣΔ are linearly disjoint over RΣΔ and 
then over kΣΔ. These imply that the R-homomorphism R⊗kΣΔ (R⊗k R)ΣΔ → R⊗k R

given by a ⊗ b 
→ (a ⊗ 1)b is isomorphic (see, for instance, Lemma 2.4 of [33] for a proof 
of the differential case). The inverse map ϕ of this isomorphism can be given explicitly 
as follows:



R. Feng, W. Lu / Journal of Algebra 622 (2023) 742–776 747
ϕ : R⊗k R R⊗kΣΔ (R⊗k R)ΣΔ

a⊗ b (a⊗ 1)b(X ⊗ Z)

(3)

where X is a fundamental solution matrix in GLn(R) and Z = X−1 ⊗ X . Using an 
argument similar to the proof of Theorem A.2 in [33], one has the following proposition.

Proposition 2.5. Suppose that R is a ΣΔ-Picard-Vessiot ring over k for (2) and RΣΔ =
kΣΔ. Then ΣΔ-Gal(R/k) can be identified with the set of kΣΔ-points of an affine alge-
braic group defined over kΣΔ with (R⊗k R)ΣΔ as its coordinate ring.

For the remainder of this paper, when we speak of the ΣΔ-Galois group of R over 
k, we usually refer to HomkΣΔ((R ⊗k R)ΣΔ, kΣΔ). Let K be the total ring of fractions 
of R. Then each τ ∈ ΣΔ-Gal(R/k) can be uniquely extended into an automorphism
of K over k. We still use τ to denote this extended automorphism and we have that 
ΣΔ-Gal(R/k) = ΣΔ-Gal(K/k).

3. Linear dependence of elements in a simple ΣΔ-ring

In this section, we shall give a criterion for testing linear dependence of elements in 
a simple ΣΔ-ring. This criterion will be used in the later sections and it may be of 
independent interest. The following notation will be used frequently.

Notation 3.1. Θ is the semigroup generated by Σ ∪ Δ.

Suppose that R is a simple ΣΔ-ring. Then we have an action of Θ on R. We define 
an action of Θ on the polynomial ring R[X1, . . . , Xm] by setting θ(f) =

∑�
i=1 θ(ai)mi

for θ ∈ Θ and f =
∑�

i=1 aimi, where ai ∈ R and mi is a monomial in the indeterminates 
X1, . . . , Xm. Let W be a subset of R[X1, . . . , Xm]. We say W is closed under the action 
of Θ if θ(f) ∈ W for all θ ∈ Θ, f ∈ W . A zero u in Rm of W is said to be nontrivial if 
u �= (0, 0, . . . , 0).

Lemma 3.2. Suppose that W ⊂ R[X1, . . . , Xm] is a set of linear homogeneous polynomials 
and W is closed under the action of Θ. Then W has a nontrivial zero in Rm if and only 
if for any f1, . . . , fm ∈ W , det(Mf1,...,fm) = 0, where Mf1,...,fm stands for the coefficient 
matrix of f1, . . . , fm.

Proof. We prove the sufficiency by induction on m. Suppose that m = 1. Then each 
f ∈ W must be of the form aX1 for some a ∈ R because f is linear and homogeneous in 
X1. Furthermore a = det(Mf ) = 0 by the assumption. Thus f = 0 and then W = {0}. In 
this case, 1 is a nontrivial zero. Suppose that m > 1. Let W̃ be the R-module generated 
by W . Then W ⊂ W̃ and so every zero of W̃ is also a zero of W . Hence it suffices to 
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show that W̃ has a nontrivial zero in Rm. Since W is closed under the action of Θ, so is 
W̃ . Set

W̃m = W̃ ∩R[X1, . . . , Xm−1].

Then W̃m is also an R-module that is closed under the action of Θ. Note that all ele-
ments of W̃m are linear and homogeneous in X1, . . . , Xm−1. Thus (0, . . . , 0, 1) ∈ Rm is a 
nontrivial zero of W̃m viewed as a set of polynomials in R[X1, . . . , Xm]. If W̃m = W̃ then 
(0, . . . , 0, 1) is a nontrivial zero of W̃ and also a nontrivial zero of W . So the assertion 
holds in this case. Suppose that W̃m �= W̃ . We claim that for any h1, . . . , hm−1 ∈ W̃m, 
det(Mh1,...,hm−1) = 0. Let f = a1X1 + · · ·+ amXm ∈ W̃ \ W̃m. Then am �= 0. Since R is 
ΣΔ-simple, there are b1, . . . , b� ∈ R and θ1, . . . , θ� ∈ Θ such that 

∑�
i=1 biθi(am) = 1. Set 

hm =
∑�

i=1 biθi(f). Then

hm = ã1X1 + ã2X2 + · · · + Xm ∈ W̃ (4)

where ã1, . . . , ̃am−1 ∈ R. Suppose that h1, . . . , hm−1 ∈ W̃m. One sees that

Mh1,...,hm
=

(
Mh1,...,hm−1 0

ã1 . . . ãm−1 1

)

and so det(Mh1,...,hm−1) = det(Mh1,...,hm
). Write hi =

∑s
j=1 cijfj with cij ∈ R, where 

i = 1, 2, . . . , m and fj ∈ W . Without loss of generality, we may assume that s ≥ m. Let 
D = (cij)1≤i≤m,1≤j≤s and T = Mf1,...,fs . Then Mh1,...,hm

= DT and by Cauchy-Binet 
formula,

det(Mh1,...,hm
) = det(DT )

=
∑

1≤l1<···<lm≤s

D

(
l1 . . . lm
1 . . . m

)
T

(
1 . . . m

l1 . . . lm

)
= 0

where D(·), T (·) denotes the m order minors of D and T respectively. The last equality 

holds because T

(
1 . . . m

l1 . . . lm

)
= det(Mfl1 ,...,flm

) = 0. Hence det(Mh1,...,hm−1) = 0. 

This proves our claim. By induction hypothesis, viewed as a set of polynomials in 
R[X1, . . . , Xm−1], W̃m has a nontrivial zero in Rm−1, say (c1, . . . , cm−1). Set cm =
− 
∑m−1

i=1 ãici, where ãi is given in (4). Then hm(c1, . . . , cm) = 0. For each g ∈ W̃ , 
one has that g − bghm ∈ W̃m where bg is the coefficient of Xm in g. This implies 
that g(c1, . . . , cm) − bghm(c1, . . . , cm) = 0. Consequently, g(c1, . . . , cm) = 0 and thus 
(c1, . . . , cm) is a nontrivial zero of W̃ and then also a nontrivial zero of W .

Assume that W has a nontrivial zero (a1, . . . , am) in Rm. Then there exists ai0 �= 0 for 
some 1 ≤ i0 ≤ m. Note that (g1, . . . , gm)t = Mg1,...,gm(X1, . . . , Xm)t for any g1, . . . , gm ∈
W . Multiplying both sides by the adjoin matrix M∗

g ,...,g of Mg1,...,gm yields that

1 m
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M∗
g1,...,gm(g1, . . . , gm)t = det(Mg1,...,gm)(X1, . . . , Xm)t.

Substituting ai for Xi in the above equality yields det(Mg1,...,gm)ai = 0, for all 
{g1, . . . , gm} ⊂ W and all i = 1, . . . , m. In particular

det(Mg1,...,gm)ai0 = 0,∀ g1, . . . , gm ∈ W. (5)

We shall show that det(Mg1,...,gm) = 0 for any g1, . . . , gm ∈ W . Suppose on the con-
trary that there exist f1, . . . , fm ∈ W such that d = det(Mf1,...,fm) �= 0. Under this 
assumption, we shall show that ai0 = 0. This will contradict with the fact that ai0 �= 0. 
We first claim that θ(d)ai0 = 0 for all θ ∈ Θ. For each σ ∈ Σ, since σ(fi) ∈ W and 
Mσ(f1),...,σ(fm) = σ(Mf1,...,fm), σ(d)ai0 = det(Mσ(f1),...,σ(fm))ai0 = 0 by (5). For each 
δ ∈ Δ, since δ(fi) ∈ W and

δ(d) =
m∑
i=1

det(Mf1,...,δ(fi),...,fm),

one has that δ(d)ai0 = 0. Repeating the above process yields that θ(d)ai0 = 0 for all 
θ ∈ Θ. This proves our claim. Next, we show that ai0 = 0. Since R is ΣΔ-simple 
and d �= 0, there are θ1, . . . , θs and u1, . . . , us ∈ R such that 

∑s
i=1 uiθi(d) = 1. So 

ai0 = (
∑s

i=1 uiθi(d))ai0 = 0 by the previous claim. Hence we obtain a contradiction as 
required. The contradiction implies that for any g1, . . . , gm ∈ W , det(Mg1,...,gm) = 0. �

Denote by Θ−1 the semigroup generated by {σ−1 | σ ∈ Σ} ∪Δ. Then we also have an 
action of Θ−1 on R. More generally, for each m > 0, we have an action of Θ−1 on Rm

by setting θ((a1, . . . , am)) = (θ(a1), . . . , θ(am)) for all θ ∈ Θ−1.

Lemma 3.3. Suppose that W ⊂ R[X1, . . . , Xm] is a set of linear homogeneous polynomials 
and W is closed under the action of Θ. Let U be the set of all zeroes of W in Rm. Then 
U is closed under the action of Θ−1, i.e. θ(U) ⊂ U for all θ ∈ Θ−1.

Proof. It suffices to show that θ(U) ⊂ U for each θ ∈ {σ−1 | σ ∈ Σ} ∪ Δ. Suppose 
b ∈ U and f ∈ W . Then f(b) = 0. Since W is closed under the action of Θ, for 
every σ ∈ Σ, δ ∈ Δ, one has that σ(f), δ(f) ∈ W and thus σ(f)(b) = 0 = δ(f)(b). 
Furthermore, one has that σ(f(σ−1(b))) = σ(f)(b) = 0. As σ is an automorphism, 
f(σ−1(b)) = 0. This implies that σ−1(b) ∈ U and then σ−1(U) ⊂ U . It remains to show 
that δ(U) ⊂ U for all δ ∈ Δ. Note that for each f ∈ W , f is linear and homogeneous. 
From this, one sees that 0 = δ(f(b)) = δ(f)(b) + f(δ(b)). As δ(f)(b) = 0, f(δ(b)) = 0. 
Therefore δ(b) ∈ U and then δ(U) ⊂ U . �
Proposition 3.4. Suppose that R is a simple ΣΔ-ring and a1, . . . , am ∈ R. Then 
a1, . . . , am are linearly dependent over RΣΔ if and only if for all θ1, . . . , θm ∈ Θ, one 
has that det((θi(aj))1≤i,j≤m) = 0.
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Proof. Suppose that c1a1 + · · · + cmam = 0 for some c1, . . . , cm ∈ RΣΔ, not all zero. 
Then for any θ1, . . . , θm ∈ Θ, c1θi(a1) + · · ·+cmθi(am) = 0 for all i = 1, . . . , m. In matrix 
form, (θi(aj))c = 0 where c = (c1, . . . , cm)t. Multiplying the adjoint matrix of (θi(aj)), 
we obtain det((θi(aj)))c = 0. Since not all ci are zero and RΣΔ is a field by Lemma 2.3, 
det((θi(aj))) = 0.

Conversely, suppose that for any θ1, . . . , θm ∈ Θ, det((θi(aj))) = 0. We shall show 
that a1, . . . , am are linearly dependent over RΣΔ by induction on m. If m = 1 then by 
taking θ1 = 1 one has that a1 = det((θ1(a1))) = 0 and thus the case m = 1 holds. 
Suppose that m > 1. Set W = {

∑m
i=1 θ(ai)Xi | ∀ θ ∈ Θ}. Then W is closed under the 

action of Θ. By Lemma 3.2, W has a nontrivial zero in Rm. Let U be the set of all 
zeroes of W in Rm. Then U �= {(0, . . . , 0)}. We shall show that U contains an element 
with 1 as some coordinate. Suppose (b1, . . . , bm) ∈ U \ {(0, . . . , 0)}. Then there exists 
bi0 that is not zero, where 1 ≤ i0 ≤ m. For convenience, we assume that i0 = m. The 
cases i0 �= m can be proved similarly. Since R is ΣΔ-simple, there are θ1, . . . , θs ∈ Θ and 
u1, . . . , us ∈ R such that 

∑s
i=1 uiθi(bm) = 1. For each i = 1, . . . , s, write

θi =
∏
σ∈Σ

σdi,σ

∏
δ∈Δ

δei,δ

where di,σ, ei,δ are nonnegative integers. Let τ =
∏

σ∈Σ σ−max{d1,σ,...,ds,σ}. Then τθi ∈
Θ−1 for all i = 1, . . . , s. Set b̃j =

∑s
i=1 τ(ui)τθi(bj) and b̃ = (b̃1, . . . , ̃bm). Then one sees 

that

b̃m =
s∑

i=1
τ(ui)τθi(bm) = τ

(
s∑

i=1
uiθi(bm)

)
= τ(1) = 1.

Since θ(U) ⊆ U for any θ ∈ Θ− due to Lemma 3.3, τθi((b1, . . . , bm)) ∈ U for all 
i = 1, . . . , s. Moreover, because W consists of linear homogeneous polynomials, U is 
an R-module and so b̃ =

∑s
i=1 τ(ui)τθi((b1, . . . , bm)) ∈ U . Thus b̃ is an element 

of U that has the required property. In particular, b̃ �= (0, . . . , 0). If b̃ ∈ (RΣΔ)m
then a1, . . . , am are linearly dependent over RΣΔ because 

∑m
i=1 aib̃i = 0. Otherwise 

there exists a σ ∈ Σ such that σ−1(b̃) − b̃ �= 0 or there exists a δ ∈ Δ such that 
δ(b̃) �= 0. Set (c1, . . . , cm) to be σ−1(b̃) − b̃ in the first case or to be δ(b̃) in the sec-
ond case. One then has that cm = 0 because b̃m = 1. Since (c1, . . . , cm) �= (0, . . . , 0), 
(c1, . . . , cm−1) �= (0, . . . , 0). Again, since U is an R-module and is closed under the ac-
tion of Θ−1, (c1, . . . , cm) ∈ U , namely that (c1, . . . , cm) is a zero of W . As cm = 0, 
(c1, . . . , cm−1) is a zero of Wm−1 = {

∑m−1
i=1 θ(ai)Xi | ∀θ ∈ Θ}. Moreover it is a non-

trivial zero. Due to Lemma 3.2, det(Mg1,...,gm−1) = 0 for any g1, . . . , gm−1 ∈ Wm−1, 
where Mg1,...,gm−1 is the coefficient matrix of g1, . . . , gm−1. In particular, for any 
θ1, . . . , θm−1 ∈ Θ, setting fθi =

∑m−1
j=1 θi(aj)Xj ∈ Wm−1, one sees that

det((θi(aj))1≤i,j≤m−1) = det(Mfθ ,...,fθ ) = 0.

1 m−1
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By induction hypothesis, one has that a1, . . . , am−1 are linearly dependent over RΣΔ and 
so are a1, . . . , am. �

The example below shows that the above proposition is not true if R is not ΣΔ-simple.

Example 3.5. Let R = Q[y, z] where y, z are two indeterminates. Define σ : R → R as 
follows: σ(c) = c ∀ c ∈ Q, σ(y) = 2y, σ(z) = 2z. Then R is a σ-ring but not σ-simple. 
One can verify that Rσ = Q and for any i, j ≥ 0, σi(y)σj(z) − σi(z)σj(y) = 0. However, 
y, z are linearly independent over Q.

Corollary 3.6. Suppose that Σ ⊆ {σ}, R is a simple ΣΔ-ring and a1, . . . , am ∈ R. If 
a1, . . . , am are linearly independent over RΣΔ then there are θ1, . . . , θm with θ1 = 1 such 
that det((θi(aj))1≤i,j≤m) �= 0.

Proof. For any θ1, . . . , θm ∈ Θ, set

d(θ1, . . . , θm) = det((θi(aj))1≤i,j≤m).

We shall prove the corollary by contraposition. Suppose that d(1, θ2, . . . , θm) = 0 for any 
θ2, . . . , θm ∈ Θ. We need to show that a1, . . . , am are linearly dependent over RΣΔ. Due 
to Proposition 3.4, we only need to show that d(θ1, . . . , θm) = 0 for any θ1, . . . , θm ∈ Θ. 
To this end, note that for any δ ∈ Δ,

δ(d(θ1, θ2, . . . , θm)) =
m∑
i=1

d(θ1, θ2, . . . , δθi, . . . , θm).

The above equality with θ1 = 1 implies that d(δ, θ2, . . . , θm) = 0 for any θ2, . . . , θm ∈ Θ
and any δ ∈ Δ. Using the above equality repeatedly, we have that d(θ1, θ2, . . . , θm) = 0
for any θ2, . . . , θm ∈ Θ and any θ1 ∈ ΘΔ, the semigroup generated by Δ. If Σ = ∅ then we 
are done. Suppose Σ = {σ} and θ1, . . . , θm ∈ Θ. Then there is j ≥ 0 such that θi = σj θ̄i
where θ̄i ∈ Θ and at least one of them is in ΘΔ, say θ̄�. The previous discussion implies 
that d(θ̄1, . . . , θ̄m) = 0 as θ̄� ∈ ΘΔ. So d(θ1, . . . , θm) = σj(d(θ̄1, . . . , θ̄m)) = 0. �

The following proposition shows that in some special case det(θi(aj)) can be not only 
nonzero but also invertible in R.

Proposition 3.7. Suppose that Σ ⊆ {σ}, Δ ⊆ {δ}, Σ ∪ Δ �= ∅ and k is a ΣΔ-field with 
algebraically closed kΣΔ. Assume that R is a ΣΔ-Picard-Vessiot ring over k for some 
ΣΔ-linear system. Let V ⊂ R be a ΣΔ-Gal(R/k)-invariant kΣΔ-vector space of finite 
dimension and {a1, . . . , am} a basis of V . Then there exist θ1, . . . , θm ∈ Θ with θ1 = 1
such that det((θi(aj))1≤i,j≤m) is invertible in R.

Proof. By Corollary 3.6, there are θ1, . . . , θm ∈ Θ with θ1 = 1 such that d =
det((θi(aj))1≤i,j≤m) �= 0. For each g ∈ ΣΔ-Gal(R/k), one has that g((a1, . . . , am)) =
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(a1, . . . , am)Mg for some Mg ∈ GLn(kΣΔ), because V is ΣΔ-Gal(R/k)-invariant. Fur-
thermore, by the commutativity of g and θi, one sees that g(d) = cgd where cg = det(Mg). 
We shall show that d is invertible in R. We first claim that d is not a zero divisor of R. 
If Σ = ∅ then Δ = {δ} because Σ ∪ Δ �= ∅. In this case R is an integral domain and the 
claim holds. Suppose that Σ = {σ}. By Lemma 6.8 of [24] with Σ = {σ}, Δ ⊆ {δ} and 
Π = ∅, there exist idempotents e0, . . . , es−1 such that

1. R = Re0 ⊕ · · · ⊕Res−1,
2. each Rei is an integral domain and σsδ-simple.

Moreover, due to Corollary 1.17 of [34] and Lemma 6 of [21], there is an h ∈ ΣΔ-Gal(R/k)
such that h(ei) = ei+1 mod s for all 0 ≤ i ≤ s −1. Since d �= 0, dei �= 0 for all 0 ≤ i ≤ s −1. 
Otherwise, suppose that dei0 = 0 for some i0. Applying h to dei0 repeatedly yields that

dej+i0 mod s = 1
cjh

hj(dei0) = 0

for all j and thus d = d(e0 + · · · + es−1) = 0, a contradiction. Now suppose that ud = 0
where u ∈ R. Then udei = (uei)(dei) = 0 for all i. Since Rei is an integral domain and 
dei �= 0, uei = 0 for all i. Hence u = 0 and then d is not a zero divisor of R. This 
proves our claim. Next, we shall show that d is invertible in R. Let F be the total ring 
of fractions of R. Since d is not a zero divisor of R, d is invertible in F . Since g(θ(d)) =
θ(g(d)) = cgθ(d) for all θ ∈ Σ ∪ Δ and all g ∈ ΣΔ-Gal(R/k), g(θ(d)/d) = θ(d)/d. The 
Galois correspondence (see Lemma 6.19 of [24]) implies that θ(d) = rθd for all θ ∈ Σ ∪Δ, 
where rθ ∈ k. This means that the set {ud | u ∈ R} is a nonzero ΣΔ-ideal. Because R is 
ΣΔ-simple, 1 ∈ {ud | u ∈ R}, i.e. there exists an u ∈ R such that ud = 1. Therefore d is 
invertible in R. �

As a corollary, we have the following result that has already appeared in Corollary 
1.15 of [34] for the difference case.

Corollary 3.8. Suppose that Σ ⊆ {σ}, Δ ⊆ {δ}, Σ ∪ Δ �= ∅ and k is a ΣΔ-field with 
algebraically closed kΣΔ. Assume that R is a ΣΔ-Picard-Vessiot ring over k for some 
ΣΔ-linear system. Then R has no nontrivial ΣΔ-Gal(R/k)-invariant ideal.

Proof. Suppose that I is a ΣΔ-Gal(R/k)-invariant ideal and I �= (0). We shall show that 
I = R. Let a ∈ I \ {0} and let {a1, . . . , am} be a basis of the kΣΔ-vector space spanned 
by {g(a) | g ∈ ΣΔ-Gal(R/k)}. Since I is ΣΔ-Gal(R/k)-invariant, {a1, . . . , am} ⊂ I. By 
Proposition 3.7, there are θ1, . . . , θm ∈ Θ with θ1 = 1 such that d = det((θi(aj))1≤i,j≤m)
is invertible in R. Expanding d by the first row, one sees that d ∈ I. This implies that 
I = R. �
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4. Specializations of ΣΔ-Picard-Vessiot rings

Throughout this section, k is a ΣΔ-field with algebraically closed field of constants 
C = kΣΔ, R is a ΣΔ-Picard-Vessiot ring for (2) over k and G = HomC((R⊗k R)ΣΔ, C). 
As shown in Proposition 2.5, we may identify the ΣΔ-Galois group ΣΔ-Gal(R/k) with G. 
We shall fix a fundamental solution matrix X of (2) in GLn(R), and set Z = X−1 ⊗k X . 
Then C[G] = (R⊗k R)ΣΔ = C[Z, 1/ det(Z)].

We shall investigate the specializations of R. These specializations play an important 
role to connect G to the Galois groups of the specializations of the linear difference 
equation and the differential equation in (7) respectively. To construct the specializations 
of R, we need to introduce a simple-ΣΔ subring of R. We assume that

• D is simple ΣΔ-ring such that k is the field of fractions of D,
• R = D[X , 1/ det(X )].

Note that D in the above assumptions always exists, for instance, we may simply set 
D = k. Due to [36], one has that DΣΔ = kΣΔ = C. We shall use R to construct the 
Picard-Vessiot rings corresponding to the specializations of the equations in (7). Let us 
start with a lemma that has already appeared in the literature (see for example [24], 
Lemma 1.11 of [34], Lemma 1.23 of [35] and Proposition 1.4.15 of [36]) for special cases. 
Remark that if J is an ideal of the ring TΣΔ of the constants of a ΣΔ-ring T then the 
algebraic ideal generated by J in T is a ΣΔ-ideal. Here speaking of algebraic ideals of 
T , we mean that T is not viewed as a ΣΔ-ring but just a ring. We shall denote by (J)
the algebraic ideal of T generated by J .

Lemma 4.1. Suppose that S ⊆ T are two ΣΔ-rings and S is ΣΔ-simple. Assume further 
that T is generated by TΣΔ as an S-module. Then the map J 
→ (J) is a bijective 
correspondence from the set of ideals of TΣΔ to the set of ΣΔ-ideals of T , where J is an 
ideal of TΣΔ.

Proof. Suppose that I is a ΣΔ-ideal of T . We first show that I is generated by I∩TΣΔ as 
an algebraic ideal. This will imply that the map is surjective. Since T is generated by TΣΔ

as an S-module, any f ∈ I can be written as f =
∑s

i=1 aibi where ai ∈ S, bi ∈ TΣΔ and 
a1, . . . , as are linearly independent over SΣΔ. By Proposition 3.4, there are θ1, . . . , θs ∈ Θ
such that d = det((θi(aj))) �= 0. We have that (θ1(f), . . . , θs(f))t = (θi(aj))(b1, . . . , bs)t. 
Multiplying both sides of the previous linear equations by the adjoint matrix of (θi(aj))
yields that dbi ∈ I for any i = 1, . . . , s. Hence Γi = {a ∈ S | abi ∈ I} is a nonzero 
ideal. As bi is a constant, Γi is a nonzero ΣΔ-ideal. Since S is ΣΔ-simple, 1 ∈ Γi, i.e.
bi ∈ I ∩ TΣΔ. Consequently, f belongs to the ideal generated by I ∩ TΣΔ. It remains 
to show that the map is injective. Suppose that J is an ideal of TΣΔ. We shall show 
that J = (J) ∩ TΣΔ. From this, one sees that the map is injective. It is obvious that 
J ⊂ (J) ∩ TΣΔ. Let f ∈ (J) ∩ TΣΔ. Write f =

∑s
i=1 aibi where ai ∈ T, bi ∈ J and 
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b1, . . . , bs are linearly independent over SΣΔ. Since f ∈ TΣΔ, δ(f) =
∑s

i=1 δ(ai)bi = 0
for all δ ∈ Δ and σ(f) −f =

∑s
i=1(σ(ai) −ai)bi = 0 for all σ ∈ Σ. Because TΣΔ and S are 

linearly disjoint over SΣΔ due to Lemma 2.4, one has that σ(ai) − ai = 0 and δ(ai) = 0
for all σ ∈ Σ, δ ∈ Δ and all i ∈ {1, . . . , s}. Therefore ai ∈ TΣΔ for all i ∈ {1, . . . , s}. This 
implies that f ∈ J and thus J = (J) ∩ TΣΔ. �

Suppose that F is a field extension of C and c ∈ HomC(D, F ). Then F can be viewed 
as a D-algebra and one can consider F ⊗D R, where the tensor product is formed using 
c. We have already known that R⊗k R is isomorphic to R⊗C C[G] via the map ϕ given 
in (3). In what follows, we shall show that (F ⊗D R) ⊗F (F ⊗D R) is isomorphic to 
(F ⊗D R) ⊗C C[G], namely that F ⊗D R is a G-torsor over F . To prove this, we will 
first show that R is a simple ΣΔ-ring and then show that R ⊗DR can be embedded into 
R⊗k R (see Lemma 4.3). This embedding map together with ϕ induces an isomorphism 
from (F ⊗D R) ⊗F (F ⊗D R) to (F ⊗D R) ⊗C C[G].

Lemma 4.2. The ring R is ΣΔ-simple.

Proof. Suppose that I is a nonzero ΣΔ-ideal of R. It suffices to show that 1 ∈ I. 
Let a ∈ I \ {0}. Since R is ΣΔ-simple, there are b1, . . . , bs ∈ R and θ1, . . . , θs ∈ Θ
such that 

∑s
i=1 biθi(a) = 1. Let p ∈ D be nonzero such that pbi ∈ R for all i. Then 

p =
∑s

i=1 pbiθi(a) ∈ I ∩D. Hence I ∩D is a nonzero ΣΔ-ideal of D and so 1 ∈ I ∩D

because D is ΣΔ-simple. Consequently, 1 ∈ I. �
Since D is a ΣΔ-ring, like R ⊗k R, R ⊗D R can be endowed with a ΣΔ-structure 

and the natural homomorphism i : R ⊗D R → R ⊗k R given by a ⊗D b 
→ a ⊗k b is a 
ΣΔ-homomorphism. Furthermore, we have the following lemma.

Lemma 4.3. The natural homomorphism i is injective.

Proof. Since R is ΣΔ-simple due to Lemma 4.2, the map R → R ⊗D R, a 
→ a ⊗ 1
is injective and thus R can be viewed as a ΣΔ-subring of R ⊗D R. We have that 
(R ⊗D R)ΣΔ = C[Z, 1/ det(Z)] and R ⊗D R is generated by C[Z, 1/ det(Z)] as a R-
module. By Lemma 4.1, in order to show that ker(i) = {0}, it suffices to show that ker(i) ∩
C[Z, 1/ det(Z)] = {0}. Suppose that a ∈ ker(i) ∩C[Z, 1/ det(Z)]. Write a =

∑m
i=1 ai⊗D

bi. Without loss of generality, we may assume that {b1, . . . , bs} is a k-basis of the vector 
space spanned by b1, . . . , bm. Let d ∈ D be nonzero such that dbs+j =

∑s
i=1 cijbi for some 

cij ∈ D where j = 1, . . . , m − s. Then we have that da =
∑s

i=1(dai +
∑m−s

j=1 cijaj) ⊗D bi. 
We still have that i(da) = 0, i.e. 

∑s
i=1(dai +

∑m−s
j=1 cijaj) ⊗k bi = 0. This implies that 

dai+
∑m−s

j=1 cijaj = 0 for all i = 1, . . . , s, because b1, . . . , bs are linearly independent over 
k. Hence da = 0. Since a ∈ C[Z, 1/ det(Z)] ⊆ (R ⊗DR)ΣΔ, the set J = {b ∈ R | ba = 0}
is a ΣΔ-ideal, and it is a nonzero ideal because it contains d. As R is ΣΔ-simple, 1 ∈ J . 
In other words, a = 0 and thus ker(i) ∩ C[Z, 1/ det(Z)] = {0}. �
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Proposition 4.4. Suppose that T = F ⊗D R is not the zero ring. Then

ϕT : T ⊗F T −→ T ⊗F F [G] = T ⊗C C[G]

(a1 ⊗D b1) ⊗F (a2 ⊗D b2) 
−→ (a1a2 ⊗D b1 ⊗C 1)b2(1 ⊗D X ⊗C Z)

is T -isomorphic.

Proof. Let ϕ : R⊗k R → R⊗C C[G] be the isomorphism given in (3) with kΣΔ = C and 
C[G] = (R⊗k R)ΣΔ. Consider the composition of ϕ and i:

ϕ ◦ i : R⊗D R −→ R⊗k k[G] = R⊗C C[G]

a⊗D b 
−→ (a⊗C 1)b(X ⊗C Z),

where i is given in Lemma 4.3. It is easy to verify that the image of ϕ ◦ i is included 
in R ⊗C C[G]. Suppose that a ⊗C b ∈ R ⊗C C[G] where a ∈ R and b ∈ C[G]. Set 
w = (a ⊗D 1)b(X−1 ⊗D X ). Then w ∈ R ⊗D R and

ϕ ◦ i(w) = (a⊗C 1)b((X−1 ⊗C 1)(X−1 ⊗C Z)) = (a⊗C 1)b(1 ⊗C Z)

= (a⊗C 1)(1 ⊗C b(Z)) = a⊗C b.

Therefore the image of ϕ ◦ i is R ⊗C C[G] and ϕ ◦ i induces an isomorphism from R ⊗DR
to R ⊗CC[G]. For the sake of notation, we shall still use ϕ ◦ i to denote this isomorphism. 
Suppose that F ⊗D R is not the zero ring. Then we have the following isomorphism

1 ⊗ ϕ ◦ i : F ⊗D R⊗D R −→F ⊗D R⊗C C[G]

α⊗D a⊗D b 
−→(α⊗D a⊗C 1)(1 ⊗D b(X ⊗C Z))

= (α⊗D a⊗C 1)b(1 ⊗D X ⊗C Z).

On the other hand, from page 624 of [28], one has the following natural isomorphism:

π : (F ⊗D R) ⊗F (F ⊗D R) −→ F ⊗D R⊗D R
(a1 ⊗D b1) ⊗F (a2 ⊗D b2) 
−→ a1a2 ⊗D b1 ⊗D b2.

One can verify that ϕT = (1 ⊗ ϕ ◦ i) ◦ π. Hence ϕT is an isomorphism. Finally, since

ϕT ((a1 ⊗D b1)⊗F (a2 ⊗D b2)) = (a1a2 ⊗D b1 ⊗C 1)b2(1 ⊗D X ⊗C Z)

= (a1 ⊗D b1 ⊗C 1)(a2 ⊗D 1 ⊗C 1)b2(1 ⊗D X ⊗C Z)

= (a1 ⊗D b1 ⊗C 1)ϕT ((1 ⊗D 1) ⊗F (a2 ⊗D b2)),

ϕT is T -isomorphic. �
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The following lemma implies that if D is finitely generated over C then the set of 
c ∈ HomC(D, F ) such that F ⊗D R is not the zero ring is a nonempty Zariski open 
subset of HomC(D, F ). The proof follows from that of Lemma 2.15 of [22].

Lemma 4.5. Suppose that F is a field extension of C. There is a nonzero a ∈ D such 
that for any c ∈ HomC(D, F ) with c(a) �= 0, F ⊗D R is not the zero ring.

Proof. Consider c as a homomorphism from D to F̄ , the algebraic closure of F . By 
Corollary 3 in Section 3.1, Chapter V of [5], there exists a nonzero a ∈ D such that 
if c(a) �= 0 then there exists a homomorphism h from R to F̄ such that c = h|D. Now 
suppose that c(a) �= 0 and h is the extension of c to R. Then we have the homomorphism 
F ⊗D R → F̄ given by b1 ⊗ b2 
→ b1h(b2). Since F̄ is not the zero ring, so is F ⊗D R. �
Remark 4.6. Lemma 4.5 does not provide an explicit a ∈ D. We may find the required 
homomorphisms c as follows. Write R = k[X, 1/ det(X)]/q where q is a maximal ΣΔ-
ideal. Let q̃ = q ∩D[X, 1/ det(X)]. Then R ∼= D[X, 1/ det(X)]/q̃ and

F ⊗D R ∼= F [X, 1/ det(X)]/〈q̃c〉

where q̃c = {P c | ∀ P ∈ q̃} and 〈q̃c〉 denotes the ideal in F [X, 1/ det(X)] generated by 
q̃c. Therefore F ⊗D R is not the zero ring if and only if 〈q̃c〉 �= 〈1〉.

Remark that T = F ⊗D R inherits the structure of F , i.e. if we endow F with a 
differential or difference structure then T will become a differential or difference ring 
respectively. Precisely, assume that F is a Σ̃Δ̃-field where Σ̃ ⊆ Σ and Δ̃ ⊆ Δ. Then T
can be endowed with a Σ̃Δ̃-structure by setting σ(a ⊗D b) = σ(a) ⊗D σ(b) for all σ ∈ Σ̃
and δ(a ⊗D b) = δ(a) ⊗D b + a ⊗D δ(b) for all δ ∈ Δ̃. Furthermore, the map ϕT given 
in Proposition 4.4 is T -Σ̃Δ̃-isomorphic in this case. In the following, we assume that 
Σ̃ ⊆ Σ, Δ̃ ⊆ Δ and F is a Σ̃Δ̃-field with algebraically closed field of constants C = F Σ̃Δ̃. 
Let c : D → F be a C-Σ̃Δ̃-homomorphism such that T is not the zero ring. Then T is a 
Σ̃Δ̃-ring. Let m be a maximal Σ̃Δ̃-ideal of T . Then T/m is a simple Σ̃Δ̃-ring. Due to 
Proposition 4.4, for every g ∈ G = HomC(C[G], C), the map

ρg : T T ⊗k T T ⊗C C[G] T

a(X̃ ) 1 ⊗k a(X̃ ) a(X̃ ⊗C Z) a(X̃ g(Z))

(6)

is an F -automorphism, where X̃ = 1 ⊗D X . Let I be a Σ̃Δ̃-ideal of T . Denote

stab(m, I) = {g ∈ G | ρg(I) ⊆ m}.

If I = m then we abbreviate stab(m, I) as stab(m). It is clear that stab(m) is a subgroup 
of G.
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Proposition 4.7. Let the notation be as above.

1. Suppose I is a Σ̃Δ̃-ideal of T . Then there is an ideal Φm,I of C[G] such that the 
following map is T/m-Σ̃Δ̃-isomorphic:

ϕ̄T : T/m ⊗ T/I T/m ⊗ C[G]/Φm,I

a(X̄m) ⊗ b(X̄I) (a(X̄m) ⊗ 1)b(X̄m ⊗ Z̄)

where X̄m = 1 ⊗X mod m, X̄I = 1 ⊗X mod I and Z̄ = Z mod Φm,I .
2. stab(m, I) = {g ∈ G | g(P ) = 0 ∀ P ∈ Φm,I}. Consequently, stab(m) is an algebraic 

subgroup of G.

Proof. 1. Let ϕT be the isomorphism given in Proposition 4.4. Since ϕT (m ⊗ T ) =
m ⊗ C[G], ϕT induces the T/m-Σ̃Δ̃-isomorphism ϕ̃T : T/m ⊗ T → T/m ⊗ C[G] which 
sends a(X̄m) ⊗b(X ) to (a(X̄m) ⊗1)b(X̄m⊗Z). Therefore, it suffices to show that there is an 
ideal Φm,I of C[G] such that ϕ̃T (T/m⊗I) = T/m⊗Φm,I . By Proposition 6.14 of [24] with 
Π = ∅, one has that (T/m)Σ̃Δ̃ = F Σ̃Δ̃ = C. Hence (T/m⊗C[G])Σ̃Δ̃ = 1 ⊗C[G] = C[G]. 
Note that T/m can be viewed as a subring of T/m ⊗ C[G] and moreover T/m ⊗ C[G]
is generated by (T/m ⊗ C[G])Σ̃Δ̃ as a T/m-module. Set

Φm,I = ϕ̃T (T/m ⊗ I) ∩ C[G].

By Lemma 4.1, the Σ̃Δ̃-ideal ϕ̃T (T/m⊗I) is generated by Φm,I . It is clear that the ideal 
in T/m⊗C[G] generated by Φm,I is T/m⊗Φm,I . Hence we have that ϕ̃T (T/m⊗ I) =
T/m ⊗ Φm,I as desired.

2. Set H = {g ∈ G | g(P ) = 0 ∀ P ∈ Φm,I}. Let {ai | i ∈ I1} be a C-basis of m
and let {ai | i ∈ I1 ∪ I2} be a C-basis of T . Suppose that g ∈ H and b ∈ I. From the 
statement 1, one sees that ϕT (m ⊗ T + T ⊗ I) = m ⊗ C[G] + T ⊗ Φm,I . Hence we may 
write

ϕT (1 ⊗ b) = b(X̃ ⊗ Z) =
∑

i∈I1∪I2

ai ⊗ βi

where βi ∈ C[G] and moreover βi ∈ Φm,I if i ∈ I2. Using (6), one sees that

ρg(b) = b(X̃ g(Z)) =
∑

i∈I1∪I2

aiβi(g(Z)) =
∑

i∈I1∪I2

aig(βi) =
∑
i∈I1

aig(βi) ∈ m.

Thus ρg(I) ⊆ m. In other words, g ∈ stab(m, I). On the other hand, suppose g ∈
stab(m, I). Let β ∈ Φm,I . Then there is b ∈ m ⊗ T + T ⊗ I such that ϕT (b) = 1 ⊗ β. 
Write b = b̃ +

∑
i∈I2

ai ⊗ bi where b̃ ∈ m ⊗ T and bi ∈ I. Since ϕT (b̃) ∈ m ⊗ C[G], one 
sees that
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ϕT

(∑
i∈I2

ai ⊗ bi

)
= ϕT (b− b̃) = 1 ⊗ β +

∑
i∈I1

ai ⊗ βi

for some βi ∈ C[G]. Using (6) again, one has that
∑
i∈I2

aiρg(bi) = g(β) +
∑
i∈I1

aig(βi).

As ρg(bi) ∈ m, g(β) +
∑

i∈I1
aig(βi) ∈ m. Hence g(β) = 0. In other words, g ∈ H. Thus 

stab(m, I) = H. �
As a corollary, we have the following result.

Corollary 4.8. Suppose that m′ is another maximal Σ̃Δ̃-ideal of T . Then there exists 
g ∈ G such that ρg(m′) = m. In this case stab(m) is conjugate to stab(m′) by g.

5. A condition for a σδ-Picard-Vessiot ring to be σ-Picard-Vessiot

In the remainder of this paper, we will focus on ΣΔ-rings with at most one single 
automorphism σ and at most one single derivative δ. When Σ and Δ are specified, we 
shall use the prefixes σ-, δ-, σδ- and the superscripts (·)σ, (·)δ, (·)σδ instead of ΣΔ- or 
(·)ΣΔ.

Throughout this section, let k0 be a δ-field with algebraically closed field of constants 
C = kδ0 and let k0(x) is the σδ-field with σ(x) = x +1. We consider the following σδ-linear 
system over k0(x):

σ(Y ) = AY, δ(Y ) = BY (7)

where A ∈ GLn(k0(x)), B ∈ gln(k0(x)) and A, B satisfy the integrability condition: 
σ(B)A = δ(A) + AB.

Notation 5.1. Throughout this section, we further assume

• R is a σδ-Picard-Vessiot ring over k0(x) for (7).
• X is a fixed fundamental solution matrix in GLn(R).
• K is a δ-Picard-Vessiot extension field of k0 for δ(Y ) = B(c)Y for some c ∈ C, where 

B(c) denotes replacing x with c in B.
• R̂ is a σδ-Picard-Vessiot ring over K(x) for (7) containing R.
• K, K̂ are the total rings of fractions of R, R̂ respectively.
• R̆ is the composite of R and Kσ(x) inside K.

Note that R̂ always exists. For instance, let m be a maximal σδ-ideal of K(x) ⊗k0(x)R. 
Then (K(x) ⊗k0(x) R)/m is a σδ-Picard-Vessiot ring over K(x) for (7). Since R is σδ-
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simple, the σδ-homomorphism R → (K(x) ⊗k0(x) R)/m, a 
→ 1 ⊗ a is injective and thus 
we may consider R as a subring of R̂.

If R is a simple σ-ring then it will be a σ-Picard-Vessiot ring for σ(Y ) = AY . However 
R is generally not σ-simple. In this section, we shall show that R̆ is a simple σ-ring and 
thus it is a σ-Picard-Vessiot ring for σ(Y ) = AY over Kσ(x). We start with the following 
lemma.

Lemma 5.2. Kσ is a δ-field.

Proof. We first show that any nonzero element of Kσ is not a zero divisor of K. Suppose 
that a ∈ Kσ \ {0} and a is a zero divisor of K, i.e. there is a nonzero b ∈ K such that 
ab = 0. Write a = p1/q1, b = p2/q2 where pi, qi ∈ R and neither of q1, q2 is a zero divisor. 
Then p1 is a zero divisor. Lemma 19 of [21] implies that there is a positive integer s such 
that 

∏s
i=1 σ

i(p1) = 0. This implies that 
∏s

i=1 σ
i(a) = 0. Since σ(a) = a, as+1 = 0. In 

other words, ps1 = 0. Since R is reduced, p1 = 0 and thus a = 0, a contradiction. Now 
for each a ∈ Kσ \ {0}, since a is not a zero divisor of K, there is b ∈ K such that ab = 1. 
It is clear that σ(b) = b, i.e. b ∈ Kσ. So Kσ is a field. �

It was shown in [34] as well as [37] that every σ-Picard-Vessiot ring over F (x) can be 
embedded into the ring of sequences SeqF , where F is a field. We shall first show that 
the σδ-Picard-Vessiot ring R can be embedded into the ring of sequences SeqK .

In the following, we fix a c ∈ C such that for each i ∈ Z, A(c + i), B(c + i) are 
well-defined and det(A(c + i)) �= 0. Let K be a δ-Picard-Vessiot extension field of k0 for 
δ(Y ) = B(c)Y .

Remark 5.3. For each i ∈ Z, K is also a δ-Picard-Vessiot extension field of k0 for δ(Y ) =
B(c + i)Y . Since σ(B)A = δ(A) + AB, one has that

B(c + 1)A(c) = δ(A(c)) + A(c)B(c).

By induction, one can verify that for each s > 0,

B(c + s)
s∏

i=1
A(c + s− i) = δ

(
s∏

i=1
A(c + s− i)

)
+
(

s∏
i=1

A(c + s− i)
)
B(c).

Similarly, since BA−1 = δ(A−1) + A−1σ(B), one has that for each s < 0,

B(c + s)
1∏

i=s

A−1(c + i) = δ

( 1∏
i=s

A−1(c + i)
)

+
( 1∏

i=s

A−1(c + i)
)
B(c).

As det(
∏s

i=1 A(c + s − i)) �= 0 and det(
∏1

i=s A
−1(c + i)) �= 0, the above two equalities 

imply that the systems δ(Y ) = B(c)Y and δ(Y ) = B(c + s)Y are equivalent over k0. 
Hence they have the same δ-Picard-Vessiot extension fields.
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The ring of sequences SeqK is defined to be the set

SeqK = {(c0, c1, . . . ) | ci ∈ K}/ ∼

where (b0, b1, . . . ) ∼ (c0, c1, . . . ) if there is a nonnegative integer d such that bi = ci for 
all i ≥ d. We may endow SeqK with a σδ-ring structure by setting

δ((c0, c1, . . . )) = (δ(c0), δ(c1), . . . ), σ((c0, c1, . . . )) = (c1, c2, . . . ).

By sending a ∈ K into (a, a, . . . ), we can embed K into SeqK and moreover this embed-
ding map is a δ-homomorphism. Furthermore, we can embed K(x) into SeqK by sending 
f(x) ∈ K(x) to

(0, . . . , 0, f(c + νf ), f(c + νf + 1), . . . )

where νf is a nonnegative integer such that f(x) is well-defined at x = c +i for all i ≥ νf . 
One can verify that this embedding map is a σδ-homomorphism. Under this embedding 
map, we may consider K(x) as a subring of SeqK .

Proposition 5.4. R can be embedded over k0(x) into SeqK .

Proof. It suffices to show that R̂ can be K(x)-embedded into SeqK . To this end, we 
only need to show that there is a σδ-Picard-Vessiot ring over K(x) for (7) inside SeqK , 
because all σδ-Picard-Vessiot rings over K(x) for (7) are isomorphic. By Proposition 2.4 
of [37], there is a σ-Picard-Vessiot ring over K(x) for σ(Y ) = AY inside SeqK . Precisely, 
set W = (W0, W1, . . . ) with

W0 = In,Ws = A(c + s− 1)Ws−1,∀s ≥ 1.

Then K(x)[W, 1
det(W ) ] is a σ-Picard-Vessiot ring over K(x) for σ(Y ) = AY . Let U ∈

GLn(K) be a fundamental matrix of δ(Y ) = B(c)Y . We then have that σ(WU) =
σ(W )U = AWU . Moreover, for each s ≥ 0,

δ(WsU) = δ(Ws)U + Wsδ(U)

= (δ(Ws)W−1
s + WsB(c)W−1

s )WsU = B(c + s)WsU.

The last equality holds because of Remark 5.3. Hence δ(WU) = BWU . In other 
words, WU is a fundamental solution matrix of (7). Note that K(x)[W, 1

det(W ) ] =
K(x)[WU, 1

det(WU) ]. Thus K(x)[WU, 1
det(WU) ] is a σδ-ring and moreover since it is σ-

simple, it is σδ-simple. Consequently, K(x)[WU, 1
det(WU) ] is a σδ-Picard-Vessiot ring over 

K(x) for (7). �
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Remark 5.5. The proof of Proposition 5.4 relies on Proposition 2.4 of [37], where the base 
σ-field is supposed to be of the form F (x) with F being a field of characteristic zero. This 
is why we only take the σδ-field k0(x) for consideration in the last two sections. Note 
that it was also proved in Proposition 4.1 of [34] that inside SeqF̄ there always exists 
a σ-Picard-Vessiot ring for a σ-system over a σ-field k satisfying that F̄ ⊆ k ⊂ SeqF̄

and k̄ also lies in SeqF̄ , where the bar denotes the algebraic closure of a field. Since k0
might not be algebraically closed, Proposition 4.1 of [34] can not be applied directly in 
our situation.

Example 5.6. We shall construct a σδ-Picard-Vessiot ring over C(m, t) for (1). Consider 
the following linear differential equation

δ(Y ) =
(
− t

1−t2
1

1−t2

0 0

)
Y.

We have that

U =
(
t +

√
t2 − 1 t−

√
t2 − 1

1 1

)

is a fundamental solution matrix and thus K = C(t, 
√
t2 − 1) is a δ-Picard-Vessiot ex-

tension of C(t) for the above equation. Set A =
(

0 1
−1 2t

)
and

W =
(
U,AU,A2U,A3U, . . .

)
.

Then C(m, t)[W, 1/ det(W )] is a σδ-Picard-Vessiot ring over C(m, t) for (1). We claim 
that C(m, t)[W, 1/ det(W )] is an integral domain. An easy calculation yields that d =
U−1AU = diag(t −

√
t2 − 1, t +

√
t2 − 1). Therefore

W = Udm =
(

(t−
√
t2 − 1)m−1 (t +

√
t2 − 1)m−1

(t−
√
t2 − 1)m (t +

√
t2 − 1)m

)
.

Let η = (t +
√
t2 − 1)m−1. Then C(m, t)[W, 1/ det(W )] = K(m)[η, 1η ]. Due to Corollary 

2.4 of [29], η is transcendental over K(m). This implies that K(m)[η, 1η ] is an integral 
domain.

Example 5.7. Let us compute the corresponding σδ-Galois group of the system (1). In 
this example as well as the examples in the remainder of this paper, we always embed 
the Galois group into GL2(C). Consider the C(m, t)-σδ-homomorphism

ϕ : C(m, t)[X, 1/ det(X)] −→ C(m, t)[W, 1/ det(W )]

f(X) 
−→ f(W )
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where W is given as in Example 5.6. Let us calculate ker(ϕ). Set I = 〈f1, f2, f3〉, where

f1 = X11X12 − 1, f2 = X21X22 − 1, f3 = (X11X22)2 − 2tX11X22 + 1. (8)

We claim that ker(ϕ) = I. It is easy to verify that I ⊂ ker(ϕ). Suppose that f ∈
ker(ϕ) ∩ C(m, t)[X]. There are positive integers d1, d2 such that

f ≡ Xd1
11X

d2
22f ≡

s∑
i=0

(ai,1(X11X22) + ai,0)Xi
11 mod I,

where ai,1, ai,0 ∈ C(m, t). Since f ∈ ker(ϕ), 
∑s

i=0(ai,1(X11X22) + ai,0)Xi
11 ∈ ker(ϕ). In 

other words,

s∑
i=0

(ai,1(t +
√

t2 − 1) + ai,0)ηi = 0

where η = (t +
√
t2 − 1)m−1. As η is transcendental over K, ai,1(t +

√
t2 − 1) + ai,0 = 0

for all i. So ai,1 = ai,0 = 0 for all i. Consequently, f ∈ I and then I = ker(ϕ). From this, 
we have

G = {g ∈ GL2(C) | ρg(P ) = P (Xg) ∈ I,∀ P ∈ I}
= {(gij) ∈ GL2(C) | g11g12 = 0, g21g22 = 0, g11g22 + g12g21 = 1}.

From the proof of Proposition 5.4, one can easily see that

Corollary 5.8. R̂ is a σ-Picard-Vessiot ring over K(x) for σ(Y ) = AY and R̂σ = K.

Proof. For the first assertion, it suffices to show that R̂ is σ-simple. The proof 
of Proposition 5.4 implies that R̂ is σδ-isomorphic to K(x)[WU, 1/ det(WU)] =
K(x)[W, 1/ det(W )]. Since K(x)[W, 1/ det(W )] as a σ-Picard-Vessiot ring for δ(Y ) = AY

is σ-simple, R̂ is σ-simple. The second assertion follows from the fact that (SeqK)σ =
K. �

The following example implies that not all σδ-Picard-Vessiot rings are σ-simple.

Example 5.9. Consider the σδ-system

σ(y) = y, δ(y) = 2ty.

Then C(x, t)[y, 1/y] is a σδ-Picard-Vessiot ring over C(x, t) for this system. While 
C(x, t)[y, 1/y] is not a σ-Picard-Vessiot ring over C(x, t) for σ(y) = y, because the σ-ideal 
generated by y + 1 is nontrivial. However, set K = C(t, et2) which is a δ-Picard-Vessiot 
extension field of C(t) for δ(y) = 2ty. Then K(x) is a σδ-Picard-Vessiot ring over K(x)
for the above σδ-system and it is also a σ-Picard-Vessiot ring over K(x) for σ(y) = y.
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In what follows, we shall show that not only R̂ but also R̆ are σ-simple.

Lemma 5.10. K ∩K(x) = Kσ(x).

Proof. It suffices to show that K ∩ K(x) ⊂ Kσ(x). Suppose f = p/q ∈ K ∩ K(x)
where p, q ∈ K[x], gcd(p, q) = 1 and q is monic. Write q = xd +

∑d−1
i=0 aix

i and p =∑s
j=0 aj+dx

i, where ai ∈ K. Then we only need to show that ai ∈ Kσ. First of all, we 
have that 1, x, . . . , xs, fxd−1, . . . , f are linearly independent over K. Otherwise, there 
are α0, . . . , αs, β0, . . . , βd−1 ∈ K, not all zero, such that 

∑s
i=0 αix

i − f
∑d−1

j=0 βjx
j = 0. 

Replacing f with p/q yields that q(
∑s

i=0 αix
i) = p(

∑d−1
j=0 βjx

j) = 0. Since gcd(p, q) = 1, 
q divides 

∑d−1
j=0 βjx

j . So 
∑d−1

j=0 βjx
j = 0 and then 

∑s
i=0 αix

i = 0. In other words, all 
αi and βj are zero, a contradiction. Secondly, let M be the matrix formed by (x +
l)s, . . . , 1, σl(fx)d−1, . . . , σl(f) with l = 0, 1, . . . , s +d. Then det(M) �= 0. Applying σl to ∑s

i=0 ad+ix
i −

∑d−1
j=0 aj(fxj) = xdf, l = 0, . . . , s + d yields that

M(as+d, . . . , a0)t = (xdf, . . . , σs+d(xdf))t.

Multiplying the adjoint matrix of M on both sides, we have that det(M)ai ∈ K for all 
i. Note that both K and K(x) are in K̂. As det(M) is invertible in K(x), it is invertible 
in K̂ and so it is not a zero divisor in K. This implies that ai ∈ K and then ai ∈ Kσ as 
desired. �
Proposition 5.11. Let the notation be as in Notation 5.1. Then R̆ is a σ-Picard-Vessiot 
ring over Kσ(x) for σ(Y ) = AY and R̆σ = Kσ.

Proof. Note that R̆ = Kσ(x)[X , 1/ det(X )]. It suffices to show that R̆ is σ-simple. We 
first prove that R̆ is σδ-simple. Suppose that I is a σδ-ideal of R̆ and I �= (0). Then 
I ∩R �= (0) and it is a σδ-ideal of R. Since R is σδ-simple, 1 ∈ I ∩R ⊂ I and thus I = R̆.

Now suppose a ∈ R̆ \ {0}. We shall show that the σ-ideal of R̆ generated by a is 
trivial. Let {a1 = a, . . . , am} be a basis of K-vector space spanned by {g(a) | ∀ g ∈
σδ-Gal(R̂/K(x))}. Note that R̆ is invariant under the action of σδ-Gal(R̂/K(x)). All ai
can be chosen to be in R̆. By Corollary 5.8, R̂ is σ-simple and R̂σ = K. By Propo-
sition 3.4 with Σ = {σ} and Δ = ∅, there are s1, . . . , sm with s1 = 0 such that 
d = det((σsi(aj))1≤i,j≤m) �= 0. For each g ∈ σδ-Gal(R̂/K(x)), one has that g(d) = cgd

with cg ∈ K. In other words, the ideal (d) of R̂ generated by d is a σδ-Gal(R̂/K(x))-ideal. 
Since R̂ is a σδ-Picard-Vessiot ring over K(x) for (7), Corollary 3.8 implies that d is in-
vertible in R̂. Now one has that both σ(d)d−1 and δ(d)d−1 are invariant under the action 
of σδ-Gal(R̂/K(x)). The Galois correspondence implies that σ(d)d−1, δ(d)d−1 ∈ K(x). 
Set b1 = σ(d)d−1, b2 = δ(d)d−1. Since d is not a zero divisor in R̂ and d ∈ R̆, d is not a 
zero divisor in R̆. Therefore b1, b2 ∈ K because K is also the total ring of fractions of R̆. 
This implies that b1, b2 ∈ K∩K(x). By Lemma 5.10, K∩K(x) = Kσ(x). Thus the ideal 
(d) of R̆ generated by d is a σδ-ideal. As R̆ is σδ-simple, d is invertible in R̆. Expanding 
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d by the first column, one sees that d belongs to the σ-ideal of R̆ generated by a and so 
this ideal is trivial. The second assertion is obvious. �

Since R̆σ = Kσ = (Kσ(x))σ, by Proposition 2.5 or [8], σ-Gal(R̆/Kσ(x)) can be identi-
fied with HomKσ((R̆⊗Kσ(x) R̆)σ, Kσ). As usual, for H = HomC(D, C) and a C-algebra S, 
denote by H(S) the set of S-points of H, i.e. H(S) = HomC(D, S) = HomS(S⊗C D, S).

Lemma 5.12. Let H = HomC((R̆⊗Kσ(x)R̆)σδ, C). Then σ-Gal(R̆/Kσ(x)) can be identified 
with H(Kσ).

Proof. By Proposition 5.11, one has that R̆σ = Kσ. Since R̆ is σ-simple, one sees that 
(R̆ ⊗Kσ(x) R̆)σ = Kσ[Z, 1/ det(Z)], where Z = X−1 ⊗Kσ(x) X . As the total ring of 
fractions of a σδ-simple ring, it is easy to see that K is σδ-simple. So Kσ is δ-simple. 
By Lemma 2.4 with S = Kσ, T = Kσ[Z, 1/ det(Z)] and Σ = ∅, Δ = {δ}, Kσ and 
C[Z, 1/ det(Z)] are linearly disjoint over (Kσ)δ = C. Hence the natural homomorphism 
Kσ ⊗C C[Z, 1/ det(Z)] → Kσ[Z, 1/ det(Z)], a ⊗ b 
→ ab is isomorphic. Since (R̆ ⊗Kσ(x)
R̆)σδ = C[Z, 1/ det(Z)], one sees that

H(Kσ) = HomC((R̆⊗Kσ(x) R̆)σδ,Kσ) = HomC(C[Z, 1/ det(Z)],Kσ)

= HomKσ(Kσ ⊗C C[Z, 1/ det(Z)],Kσ)

= HomKσ(Kσ[Z, 1/ det(Z)],Kσ) = HomKσ((R̆⊗Kσ(x) R̆)σ,Kσ).

The lemma then follows from Proposition 2.5. �
6. Main results

In this section, we shall present the main results of this paper. We assume that

• D is a simple δ-domain that is finitely generated over C = Dδ. For example, D = C[t],
• k0 is the field of fractions of D (thus kδ0 = Dδ = C),
• R is a σδ-Picard-Vessiot ring over k0(x) for (7),
• X is a fundamental solution matrix of (7) in GLn(R),
• h ∈ D[x] \ {0} satisfies that all entries of A and B are in D[x, 1/h],
• D = D[x][{ 1

σi(h) | ∀ i ∈ Z}],
• R = D[X , 1/ det(X )].

It is clear that D is a σδ-ring. Furthermore, we shall show that D is actually a simple 
σδ-ring and so the results presented in Section 4 can be applied.

Lemma 6.1. D is a simple σδ-ring.

Proof. Let I be a nonzero σδ-ideal of D. Then D ∩ I is a δ-ideal. We shall show that 
it is a nonzero ideal. As I is nonzero, let f be a nonzero element of I. One may write 
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f = p/q for some p, q ∈ D[x]. Such p, q exist because D[x] and D have the same field 
of fractions. Since q ∈ D[x] ⊂ D, one has that p = qf ∈ I ∩ D[x]. Let s be a positive 
integer such that p and σs(p) viewed as polynomials in x have no common roots. Then 
there are a, b ∈ D[x] such that ap + bσs(p) ∈ (D ∩ I) \ {0}. Therefore D ∩ I is a nonzero 
δ-ideal. Since D is δ-simple, 1 ∈ D ∩ I and thus I = D. �
6.1. Galois groups of the specializations

In this subsection, we shall show that the Galois groups of the specializations of 
the linear difference equation and the linear differential equation in (7) are algebraic 
subgroups of G.

Let c1 ∈ HomC(D, C). Then c1 lifts to a unique element in HomC[x](D, C(x)) whose 
restrict on D is equal to c1. As before, we still use c1 to denote its lifting. Suppose that 
c1(h) �= 0. As c1 is a σ-homomorphism, C(x) ⊗D R is a σ-ring if it is not the zero ring. 
Suppose that C(x) ⊗DR is not the zero ring. Let m be a maximal σ-ideal of C(x) ⊗DR. 
Further assume that det(Ac1) �= 0, where (·)c1 denotes the application of c1 to the entries 
of the corresponding matrix. Then (C(x) ⊗D R)/m is a σ-Picard-Vessiot ring over C(x)
for the following system

σ(Y ) = Ac1Y.

Notation 6.2. Set Sσ,c1 = (C(x) ⊗D R)/m.

Due to Proposition 4.7 with F = C(x), Σ̃ = {σ} and Δ̃ = ∅, one has that

stab(m) = {g ∈ G | g(P ) = 0 ∀P ∈ Φm,m} = HomC(C[G]/Φm,m, C),

where Φm,m is given as in Proposition 4.7. As stab(m) is an algebraic subgroup of G by 
Proposition 4.7, C[G]/Φm,m is a Hopf algebra. Using Proposition 2.5, we immediately 
have the following theorem.

Theorem 6.3. Let c1 ∈ HomC(D, C) be such that c1(h) �= 0, det(Ac1) �= 0 and C(x) ⊗DR
is not the zero ring. Suppose that m is a maximal σ-ideal of C(x) ⊗D R. Then stab(m)
is the σ-Galois group of Sσ,c1 over C(x).

Proof. Due to Proposition 4.7 with F = C(x), Σ̃ = {σ}, Δ̃ = ∅ and I = m, one sees that 
(Sσ,c1 ⊗C(x) Sσ,c1)σ is isomorphic to C[G]/Φm,m. Furthermore, one can verify that they 
are isomorphic as Hopf algebras. By Proposition 2.5, σ-Gal(Sσ,c1/C(x)) can be identified 
with HomC(Sσ,c1 ⊗C(x)Sσ,c1)σ, C) and thus with HomC(C[G]/Φm,m, C) = stab(m). �
Remark 6.4. Note that different choices of maximal σ-ideals m may lead to different 
algebraic groups stab(m) of G. Corollary 4.8 implies that these stab(m) are conjugate 
by elements of G.
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Similarly, let c2 ∈ HomC(C[x], C) be such that h(c2(x) + i) �= 0 for all i ∈ Z. We have 
that c2 lifts to a unique c̃2 ∈ HomD(D, k0) such that c̃2|C[x] = c2. Again, for the sake of 
notation, we still use c2 to denote c̃2. Since c2(a) = a for any a ∈ D, one sees that c2
is a δ-homomorphism. Then k0 ⊗D R is a δ-ring if it is not the zero ring. Suppose that 
k0 ⊗D R is not the zero ring. Let n be a maximal δ-ideal of k0 ⊗D R. Then (k0 ⊗D R)/n
is a δ-Picard-Vessiot ring over k0 for the following system

δ(Y ) = Bc2Y.

Notation 6.5. Set Sδ,c2 = (k0 ⊗D R)/n.

Theorem 6.6. Let c2 ∈ HomC(C[x], C) be such that h(c2(x) + i) �= 0 for any i ∈ Z and 
k0 ⊗D R is not the zero ring. Suppose that n is a maximal δ-ideal of k0 ⊗D R. Then 
stab(n) is the δ-Galois group of Sδ,c2 over k0.

Following Example 5.7, let us compute stab(m) and stab(n) in the following two 
examples respectively. Note that in Section 6.1 of [32], there is a simpler method to 
compute the σ-Galois group of σ(Y ) = A(m, c1)Y over C(m), i.e. stab(m). Here, to be 
consistent with the general case, we shall first compute m and then stab(m).

Example 6.7. From Example 5.7, we have that

R = C(m, t)[X, 1/ det(X)]/I

where I = 〈f1, f2, f2〉 with fi is given in (8). Set D = C[t], h = t2 −1, D = C[m, t, 1
h
] and 

R = D[X , 1/ det(X )] where X = X mod I. Then one has that

X11X12 = 1, X21X22 = 1, (X11X22)2 − 2tX11X22 + 1 = 0. (9)

Suppose that c ∈ C = HomC(C[t], t) such that hc = c2 − 1 �= 0 and set α = c +
√
c2 − 1. 

Then α2 �= 1. As P =
(

1 1
α−1 α

)
is a zero of Ic in GL2(C), 〈Ic〉 �= C(m)[X, 1/ det(X)]. 

So T = C(m) ⊗D R is not the zero ring. In the following, we separate two cases to 
compute a maximal σ-ideal m and stab(m). For the sake of notation, we still use Xij to 
denote 1 ⊗D Xij .

Case 1: α is not a root of unity. Let m = (X11X22 − α). Since

σ(X11X22 − α) = −X12X21 + 2c− α = 1
αX11X22

(X11X22 − α).

Thus m is a σ-ideal. Furthermore, m �= T , as P is also a zero of X11X22 − α. Suppose 
that f ∈ T \ m and m̃ is the σ-ideal generated by m and f . Using the relations (9), 
there are positive integers ν1, ν2 such that



R. Feng, W. Lu / Journal of Algebra 622 (2023) 742–776 767
X ν2
22X ν1

11 f = b(X11X22 − α) + f̃(X11)

for some b ∈ T, f̃ ∈ C(m)[X11]. Since f /∈ m, f̃ ∈ m̃ \ {0}. Let g̃ ∈ m̃ \ {0} be of 
the form g̃ = X s

11 +
∑s−1

i=0 aiX i
11, where ai ∈ C(m) and s is minimal. Then σ(g̃) =

X s
21 +

∑s−1
i=0 σ(ai)X i

21 ∈ m̃. Using the relations (9) again, one sees that

(X11X22)sσ(g̃) = p(X11X21 − α) + X s
11 +

s−1∑
i=0

σ(ai)αs−iX i
11

for some p ∈ T and thus 
∑s−1

i=0 (ai − αs−iσ(ai))X i
11 ∈ m̃. Since s is minimal, we see that 

ai − αs−iσ(ai) = 0 for all i = 0, . . . , s − 1. If ai = 0 for all i then X11 ∈ m̃ and thus 
m̃ = T , because X11 is invertible. Now suppose that there is some ai that is not zero. 
Then from σ(ai) = αs−iai, αs−i = 1, a contradiction. Hence m̃ = T and so m is a 
maximal σ-ideal.

Now suppose g = (gij) ∈ G. Then

ρg(X11X22 − α) =
{

g11
X11

(X11X22 − α) g11g22 = 1
−αg12

X22
(X11X22 − α−1) g12g21 = 1

.

Since α2 �= 1, X11X22 − α−1 /∈ m. So the condition ρg(m) ⊂ m implies that g11g22 = 1. 
In other words,

stab(m) =
{(

ξ 0
0 ξ−1

)
| ξ ∈ C×

}
.

Case 2: α is a q-th root of unity. Set m = (X11X22 − α, X q
11 − 1). Then m is a 

nontrivial σ-ideal, as P is a common zero of X11X22 −α and X q
11 − 1. Replacing m with 

(X11X22 − α, X q
11 − 1) in Case 1, we have that ai − αs−iσ(ai) = 0 for all i = 0, . . . , s − 1

and s < q. If all ai = 0 then X11 ∈ m̃ and so T = m̃. Otherwise there is some ai that is 
not zero. Then from σ(ai) − αs−iai = 0, αs−i = 1, a contradiction with the fact that α
is a q-th root of unity. Hence m is a maximal σ-ideal. Now suppose g = (gij) ∈ G such 
that ρg(m) ⊂ m. Then g11g22 = 1 by the argument as in Case 1. So g12 = 0 and then 
ρg(X q

11 − 1) = gq11X
q
11 − 1 ∈ m. This implies that gq11 = 1. Consequently, one has that

stab(m) =
{(

ξ 0
0 ξ−1

)
| ξq = 1

}
.

Example 6.8. Let D, h, R be as in Example 6.7. Let c ∈ C = HomC(C[m], C). As f c
i = fi

for all i = 1, 2, 3, 〈f1, f2, f3〉 �= 〈1〉. By Remark 4.6, T = C(t) ⊗D R is not the zero ring. 
Let n be a maximal δ-ideal of T . Denote (X̄ij) = 1 ⊗ X mod n. Suppose n �= (0). Let 
f ∈ n \ {0}. Using the relations (9), there are positive integers ν1, ν2 such that

X̄ ν1
11 X̄ ν2

22 f̄ =
s∑

(ai,1X̄11X̄22 + ai,0)X̄ i
11 = 0,
i=0
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where ai,0, ai,1 ∈ C(t). As X̄11X̄22 is algebraic over C(t), X̄11 is algebraic over C(t). An 
easy calculation yields that

δ(X̄11) = c− 1
1 − t2

(tX̄11 − X̄21) = c− 1
1 − t2

(
t− 1

X̄11X̄22

)
X̄11.

On the other hand, one has that

δ(X̄11X̄22) = −1
1 − t2

(
t− 1

X̄11X̄22

)
X̄11X̄22.

Therefore

δ(X̄11)
X̄11

= (1 − c)δ(X̄11X̄22)
X̄11X̄22

.

Since X̄11X̄22 is algebraic over C(t), using the Puiseux series expansion of X̄11X̄22 at 
some pole, one sees that X̄11 is algebraic over C(t) if and only if c ∈ Q. This implies that 
n = (0) if and only if c /∈ Q. Now suppose c = p/q with p, q ∈ Z, gcd(p, q) = 1 and q > 0. 
Then X̄ q

11 = β(X̄11X̄22)q−p for some nonzero β ∈ C. Hence n = (X q
11 − β(X11X22)q−p). 

In fact, zq − β(X11X22)q−p is the minimal polynomial of X̄11 over C(t, X11X22). As 
X12X11 = 1 and X21X22 = 1, one also has that n = (X q

12 − β(X12X21)p−q). Therefore, 
for any (gij) ∈ G,

ρg(X q
11 − β(X11X22)q−p) =

{
gq11X

q
11 − β(X11X22)q−p g12 = g21 = 0

gq21X
q
12 − β(X12X21)q−p g11 = g22 = 0

and the condition ρg(X q
11 − β(X11X22)p−q) ∈ n implies that either gq11 = 1 or gq21 = 1. 

These imply that

stab(n) =

⎧⎪⎨
⎪⎩
G c /∈ Q{(

ξ 0
0 ξ−1

)
,

(
0 ξ

ξ−1 0

)
| ξq = 1

}
c = p

q ∈ Q.

6.2. G is the product of two suitable algebraic subgroups

In this subsection, we shall show that for suitable c1 and c2 we have that G is the 
product of stab(m) and stab(n), where m is any maximal σ-ideal of Sσ,c1 , and n is any 
maximal δ-ideal of Sδ,c2 .

Throughout this subsection, let R̆ and K be as in Notation 5.1. Proposition 5.11
implies that R̆ is a σ-Picard Vessiot ring over Kσ(x) for σ(Y ) = AY . Remark that for 
each τ ∈ σδ-Gal(K/k0(x)) and a ∈ Kσ one has that τ(a) ∈ Kσ. Therefore Kσ(x) is 
invariant under the action of σδ-Gal(K/k0(x)). From this, σδ-Gal(K/Kσ(x)) is a normal 
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subgroup of σδ-Gal(K/k0(x)). Using the normality of σδ-Gal(K/Kσ(x)), we shall show 
that Kσ(x) is the field of fractions of Rσδ-Gal(K/Kσ(x)). To this end, we need the following 
lemma which was shown in the proof of Proposition 6.3.5 on page 157 of [11]. Suppose 
H is an algebraic subgroup of GLn(C). Then C[H] can be endowed with an H-module 
structure by setting h(a) = a(Zh) for any a ∈ C[H] and any h ∈ H.

Lemma 6.9. Let H be an affine algebraic group over C. Let N be a normal algebraic 
subgroup of H and χ a character of N . Then there is a nonzero a ∈ C[H] such that 
h(a) = χ(h)a for any h ∈ N .

Proof. See the proof of Proposition 6.3.5 on page 157 of [11]. �
Lemma 6.10. Let P, Q ∈ Kσ[x] be such that gcd(P, Q) = 1 and Q is monic. Suppose that 
P/Q ∈ R. Then there is a nonzero r ∈ Kσ[x] such that rQ ∈ D[x] and all coefficients of 
rP are in Rσ.

Proof. We first show that there is a nonzero r ∈ Kσ[x] such that rQ ∈ D[x]. Suppose 
Q =

∏�
i=1 Qi where Qi is monic and irreducible over Kσ[x]. Let si be the largest integer 

such that Qi(x + si) divides Q. Since P/Q ∈ R, the set {σi(P/Q) | ∀i ≥ 0} generates a 
k0(x)-vector space of finite dimension. Hence there are a0, . . . , am ∈ D[x] with am �= 0
such that 

∑m
i=0 aiσ

i(P/Q) = 0. Multiplying both sides by 
∏m

i=0 σ
i(Q) yields that

(
m−1∏
i=0

σi(Q)
)
σm(P )am = σm(Q)N, N ∈ Kσ[x].

If Qi(x +si+m) divides σj(Q) for some 0 ≤ j ≤ m −1 then Qi(x +si+m −j) divides Q. 
This contradicts with the choice of si. Hence Qi(x +si+m) does not divide 

∏m−1
j=0 σj(Q). 

It is clear that Qi(x + si +m) does not divide σm(P ) too. While Qi(x + si +m) divides 
σm(Q). This implies that Qi(x + si + m) divides am. Write am = Qi(x + si + m)ri(x +
m + si) for some ri ∈ Kσ[x]. Then riQi = am(x − si −m) ∈ D[x]. Set r =

∏�
i=1 ri. Then 

rQ =
∏�

i=1 am(x − si −m) ∈ D[x].
It is clear that rP ∈ R. Write rP =

∑�
i=0 pix

i. Applying σi, i = 0, . . . , � to both 
sides yields that M(p0, . . . , p�)t = (rP, . . . , σ�(rP )). Here M is the Vandermonde matrix 
formed by x, x + 1, . . . , x + �, whose inverse has entries in R. Therefore (p0, . . . , p�)t =
M−1(rP, . . . , σ�(rP ))t ∈ R�+1. Consequently, pi ∈ R for all i. Since pi ∈ Kσ, pi ∈
Rσ. �
Proposition 6.11. Let H = σδ-Gal(K/Kσ(x)). Then

1. Kσ(x) is the field of fractions of RH ,
2. Kσ is the field of fractions of Rσ.
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Proof. 1. Suppose f ∈ Kσ(x). Set U = {a ∈ R | af ∈ R}. We shall show that U ∩
RH �= {0}. Let a ∈ U \ {0}. Then {h(a) | h ∈ H} generates a C-vector space of 
finite dimension. Suppose that {a1, . . . , am} is a basis of this vector space. Since R is 
invariant under the action of H, this vector space is a subspace of R. Moreover, as 
R is σδ-simple, by Proposition 3.4, there are θ1, . . . , θm ∈ Θ with θ1 = 1 such that 
d = det((θi(aj))1≤i,j≤m) �= 0. Since ai ∈ U and θ1 = 1, d ∈ U . For each h ∈ H, 
h(d) = χ(h)d where χ is a character of H. We need to find an element ã ∈ R such 
that h(ã) = χ−1(h)ã for any h ∈ H. Once we have such ã, ãd ∈ RH ∩ U and thus 
ãdf ∈ RH . Corollary 3.8 implies that neither ã nor d is a zero divisor of R̆ and thus none 
of them is a zero divisor of R. This implies that ãd ∈ RH is not a zero divisor and so 
f = r/ãd for some r ∈ RH . We first find a nonzero β ∈ R such that h(β) = χ−1(h)β. 
By Lemma 6.9, there is a nonzero b ∈ C[G] such that h(b) = χ−1(h)b for any h ∈ H. 
Define an action of G on R ⊗k0(x) R and R ⊗C C[G] by g(r1 ⊗ r2) = r1 ⊗ g(r2) and 
g(r1 ⊗ r2) = r1 ⊗ g(r2) respectively. Then both R ⊗k0(x) R and R ⊗C C[G] become 
G-modules and it is easy to see that the isomorphism ϕ : R ⊗k0(x) R → R ⊗C C[G]
given by ϕ(r1 ⊗ r2) = (r1 ⊗ 1)r2(X ⊗ Z) is a G-module isomorphism. Write ϕ−1(b) =
b(X−1 ⊗X ) =

∑s
i=1 αi⊗βi where {αi} ⊂ R is linearly independent over k0(x) and none 

of βi is zero. Suppose h ∈ H. Then h(ϕ−1(b)) =
∑s

i=1 αi⊗h(βi). On the other hand, one 
has that h(ϕ−1(b)) = ϕ−1(h(b)) = ϕ−1(χ−1(h)b) =

∑s
i=1 αi ⊗ χ−1(h)βi. Therefore for 

each i = 1, . . . , s, h(βi) = χ−1(h)βi for any h ∈ H. Thus we can take β to be any βi. Let 
q ∈ D[x] \ {0} be such that pβ ∈ R. It is easy to verify that h(pβ) = ph(β) = χ−1(h)pβ. 
So pβ satisfies the requirement.

2. Suppose that f ∈ Kσ. The previous result implies that f = a/b with a, b ∈ RH ⊂
Kσ(x). Write a = P1/Q1, b = P2/Q2 where Pi, Qi ∈ Kσ[x], gcd(Pi, Qi) = 1 and Qi

is monic. Due to Lemma 6.10, there are nonzero ri ∈ Kσ[x] such that all coefficients 
of riPi, riQi are in R. From fP2Q1 = P1Q2, one sees that fr2P2r1Q1 = r1P1r2Q2

and thus lc(r2P2r1Q1)f = lc(r1P1r2Q2), where lc(·) denotes the leading coefficient of a 
polynomial. As lc(riPi), lc(riQi) ∈ R ∩Kσ = Rσ, f is in the field of fractions of Rσ. �
Proposition 6.12. Let n be as in Theorem 6.6 and Sδ,c2 = (k0 ⊗D R)/n. The D-δ-
homomorphism φ : Rσ → Sδ,c2 given by a(X ) 
→ ac2(X̄ ) is injective, where X̄ = 1 ⊗ X
mod n. Furthermore, φ(Rσ) is invariant under the action of δ-Gal(Sδ,c2/k0).

Proof. Note that φ(a) = ac2(X̄ ) = 1 ⊗ a for any a ∈ Rσ. To prove the injectivity of φ, it 
suffices to show that 1 ⊗ a /∈ n if a �= 0. Suppose that a ∈ Rσ \ {0}. Since σ(a) = a and 
R is σδ-simple, there are b1, . . . , bs ∈ R such that 1 =

∑s
i=1 biδ

i(a). This implies that 
1 ⊗ 1 =

∑s
i=1 1 ⊗ biδ

i(a) =
∑s

i=1 δ
i(1 ⊗ a)(1 ⊗ bi). In other words, the δ-ideal generated 

by 1 ⊗ a equals k0 ⊗D R. Hence 1 ⊗ a /∈ n.
Suppose that τ ∈ δ-Gal(Sδ,c2/k0) and a ∈ Rσ. Using the identification given in Propo-

sition 2.5 with R = Sδ,c2 , there is γ̄ ∈ HomC(C[G]/Φn,n, C) such that γ̄(Z̄) = X̄−1τ(X̄ ), 
where Z̄ = Z mod Φn,n. Let γ be the unique element in HomC(C[G], C) such that 
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γ(Z) = γ̄(Z̄). Then τ(φ(a)) = ac2(X̄ γ̄(Z̄)) = ac2(X̄γ(Z)). Since γ ∈ HomC(C[G], C)
and Rσ is invariant under the action of σδ-Gal(R/k), a(Xγ(Z)) ∈ Rσ. This implies that

τ(φ(a)) = ac2(X̄γ(Z)) = φ(a(Xγ(Z))) ∈ φ(Rσ).

Thus φ(Rσ) is invariant under the action of δ-Gal(Sδ,c2/k0). �
Let Fδ,c2 be the field of fractions of Sδ,c2 . Then the δ-homomorphism φ given in 

Proposition 6.12 can be extended into an embedding of Kσ into Fδ,c2 and φ(Kσ) is 
invariant under the action of δ-Gal(Fδ,c2/k0) that is an algebraic subgroup of G. By the 
Galois correspondence (see for example Proposition 1.34 on page 25 of [35]), φ(Kσ) is a 
δ-Picard-Vessiot field for some δ-linear system over k0 and the following canonical map

π : δ-Gal(Fδ,c2/k0) −→ δ-Gal(φ(Kσ)/k0)

g 
−→ g|φ(Kσ),

is surjective and has kernel δ-Gal(Fδ,c2/φ(Kσ)).

Proposition 6.13. Let σδ-Gal(K/Kσ(x)) be identified with an algebraic subgroup H of G
and H ′ = stab(n), where n is as in Theorem 6.6. Then G = HH ′.

Proof. Recall that for g ∈ G = HomC(C[G], C) the corresponding automorphism of R
over k is τg ∈ σδ-Gal(R/k) such that g(Z) = X−1τg(X ). Furthermore if g ∈ stab(n) =
HomC(C[G]/Φn,n, C) ⊂ HomC(C[G], C) then the corresponding automorphism of Sδ,c2

over k0 is γg ∈ δ-Gal(Sδ,c2/k0) such that γg(X̄ ) = X̄ g(Z) where X̄ = 1 ⊗X mod n. Now 
suppose g ∈ G. Then τg ∈ σδ-Gal(K/k) and τg|Kσ ∈ δ-Gal(Kσ/k0). Let φ be given as in 
Proposition 6.12. Then φ can be viewed as a k0-δ-isomorphism from Kσ to φ(Kσ) and 
thus φ ◦τg|Kσ ◦φ−1 ∈ δ-Gal(φ(Kσ)/k0). Let h ∈ stab(n) be such that γh = φ ◦τg|Kσ ◦φ−1, 
i.e. φ ◦ τg|Kσ ◦ φ−1 ◦ γ−1

h = id. We claim that τgh−1(f) = f for all f ∈ Kσ(x). It suffices 
to show that τgh−1(f) = f for all f ∈ Kσ. Suppose f ∈ Kσ. Due to Proposition 6.11, we 
may write f = a/b with a, b ∈ Rσ and b �= 0. We then have that

φ
(
τgh−1

(a
b

))
= φ

(
a(X g(Z)h(Z)−1)
b(X g(Z)h(Z)−1)

)
= ac(X̄ g(Z)h(Z)−1)

bc(X̄ g(Z)h(Z)−1)

= φ ◦ τg|Kσ ◦ φ−1 ◦ γ−1
h

(
ac(X̄ )
bc(X̄ )

)
= ac(X̄ )

bc(X̄ )
= φ

(a
b

)
.

Since φ is injective, τgh−1(f) = f . This proves our claim. Hence one has that τgh−1 ∈
σδ-Gal(K/Kσ(x)) and then gh−1 ∈ H under the identification. Therefore g ∈ HH ′. It is 
clear that HH ′ ⊂ G. So G = HH ′. �
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Example 6.14. In Examples 5.7 and 6.8, we have already known that

G = {(gij) ∈ GL2(C) | g11g12 = 0, g21g22 = 0, g11g22 + g12g21 = 1}

=
{(

g11 0
0 g22

)
| g11g22 = 1

}
∪
{(

0 g12
g21 0

)
| g12g21 = 1

}

and

H ′ =

⎧⎪⎨
⎪⎩
G c /∈ Q{(

ξ 0
0 ξ−1

)
,

(
0 ξ

ξ−1 0

)
| ξq = 1

}
c = p

q ∈ Q.

Now let us compute H = σδ-Gal(K/Kσ(x)). We first compute Kσ. It is clear that Kσ ⊆
K = C(t, 

√
t2 − 1). On the other hand, (X11X22)2 − 2tX11X22 +1 = 0 and X11X22 ∈ Rσ. 

As [C(t, X11X22) : C(t)] = 2, one has that Rσ = Kσ = K = C(t)(X11X22). Next, 
we compute σδ-Gal(K/K(m)). Note that for any g = (gij) ∈ σδ-Gal(K/C(m, t)), g ∈
σδ-Gal(K/K(m)) if and only if g(X11X22) = X11X22. An easy calculation yields that 
if g12g21 = 1 then ρg(X11X22) = X12X21. Since (X11X22)2 �= 1, using the relations (9), 
X11X22 �= X12X21. Hence one has that g ∈ σδ-Gal(K/K(x)) if and only if g11g22 = 1 and 
g12g21 = 0. Hence

H = {(gij) ∈ G | g11g22 = 1} =
{(

g11 0
0 g22

)
| g11g22 = 1

}
.

It is easy to see that G = HH ′.

In the remainder of this subsection, we shall prove that H = stab(m) for any maximal 
σ-ideal m of Sσ,c1 with suitable c1. Since Kσ is a δ-Picard-Vessiot field for some δ-linear 
system over k0, there is η ∈ GLm(Kσ) for some m such that Kσ = k0(η) and moreover 
k0[η, 1/ det(η)] is a δ-Picard-Vessiot ring over k0 for the corresponding δ-linear system. 
In particular, k0[η, 1/ det(η)] is δ-simple.

Notation 6.15. We assume that

• D̃ = D[η, 1/ det(η)];
• D̃ = D̃[x][{ 1

σi(h) | ∀i ∈ Z}];
• R̃ = D̃[X , 1/ det(X )].

We see that D̃ is finitely generated over C, because D is. Using an argument similar to 
the proof of Lemma 6.1, one sees that D̃ is δ-simple and D̃ is σδ-simple. Let c̃1 : D̃ → C

be a C-homomorphism that uniquely lifts to a C[x]-homomorphism from D̃ to C(x). As 
before, we consider T̃ = C(x) ⊗D̃ R̃. Then if T̃ is not the zero ring then it is a σ-ring. 
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Moreover, by Proposition 4.4 with D = D̃, T = T̃ and G = H = HomC((R̆ ⊗Kσ(x)
R̆)σδ, C), one has the following T̃ -isomorphism:

T̃ ⊗C(x) T̃ −→ T̃ ⊗C C[H] (10)

a⊗ b 
−→ (a⊗ 1)b(X̃ ⊗ Z)

where X̃ = 1 ⊗D̃ X .

Lemma 6.16. Let H be as in Proposition 6.13. There is a Zariski dense subset U1 of 
HomC(D̃, C) such that for any c1 ∈ U1 if C(x) ⊗D̃ R̃ is not the zero ring then it is 
σ-simple and H is the σ-Galois group of C(x) ⊗D̃ R̃ over C(x).

Proof. Due to Proposition 2.4 of [8], T̄ = Kσ(x) ⊗Kσ(x) R̆ is a σ-Picard-Vessiot ring 
over Kσ(x) for σ(Y ) = AY . By Lemma 5.12, H(Kσ) is the σ-Galois group of σ(Y ) =
AY over Kσ(x). By Corollary 2.5 of [8] or using an argument similar to the proof of 
Proposition 5.11, one sees that H(Kσ) is the σ-Galois group of σ(Y ) = AY over Kσ(x). 
Embedding H into GLn(C), we consider H as an algebraic subgroup of GLn(C) for the 
moment. Let S ⊂ C[Z, 1/ det(Z)] be a finite set that generates the vanishing ideal of H. 
Then S also generates the vanishing ideal of H(Kσ). Due to Theorem 1.2 of [19] with 
X = HomC(D̃, C), there is a Zariski dense subset U1 of HomC(D̃, C) such that for any 
c1 ∈ U1, the variety in GLn(C) defined by Sc1 is the σ-Galois group of σ(Y ) = Ac1Y

over C(x). Since S = Sc1 , H is the σ-Galois group of σ(Y ) = Ac1Y over C(x) for any 
c1 ∈ U1.

Suppose c1 ∈ U1 and T̃ = C(x) ⊗D̃ R̃ is not the zero ring. We shall show that T̃ is 
σ-simple and then it is a σ-Picard-Vessiot ring over C(x) for σ(Y ) = Ac1Y . Let m̃ be a 
maximal σ-ideal of T̃ . Due to Theorem 6.3 with m = m̃ and G = H, stab(m̃) = {h ∈ H |
ρh(m̃) ⊂ m̃} is the σ-Galois group of T̃ /m̃ over C(x). In other words, stab(m̃) is also 
the σ-Galois group of σ(Y ) = Ac1Y over C(x). Hence there is a g ∈ HomC(C[GLn], C)
such that stab(m̃) = gHg−1. Since stab(m̃) ⊂ H, one has that gHg−1 ⊂ H and thus 
H ⊃ gHg−1 ⊃ g2Hg−2 ⊃ . . . . The Noetherian property of H then implies that H =
gHg−1 = stab(m̃). This could happen only if m̃ = (0) by (10). So T̃ is σ-simple. �
Proposition 6.17. Let H be as in Proposition 6.13. Then there is a Zariski dense subset U1
of HomC(D, C) such that H = stab(m), where m is any maximal σ-ideal of C(x) ⊗D R.

Proof. Note that D ⊂ D̃, D ⊂ D̃ and R ⊂ R̃. By Lemma 6.16, there is a Zariski dense 
subset Ũ1 of HomC(D̃, C) such that for any c̃1 ∈ Ũ1 if T̃ = C(x) ⊗D̃ R̃ is not the zero 
ring then T̃ is a σ-Picard-Vessiot ring over C(x) for σ(Y ) = Ac̃1Y and H is the σ-Galois 
group of T̃ over C(x). By Lemma 4.5, there is a nonzero element in D̃, say a, such that 
for any c̃ ∈ HomC[x](D̃, C(x)) if c̃(a) �= 0 then C(x) ⊗D̃ R̃ is not the zero ring. Write 
a = a1/a2 with ai ∈ D̃[x]. Let

U1 = {c̃1|D | c̃1 ∈ Ũ1 and c̃1(lc(a1a2h)) �= 0}
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where lc(·) denotes the leading coefficient of a polynomial in x. We shall prove that U1
has the desired property. It is clear that U1 is a Zariski dense subset of HomC(D, C). 
Suppose c1 ∈ U1 and c̃1 ∈ Ũ1 such that c1 = c̃1|D. Then T̃ = C(x) ⊗D̃ R̃ is not the 
zero ring. We have the natural homomorphisms ψ : T → T̃ , 1 ⊗D X 
→ 1 ⊗D̃ X . Thus 
T is not the zero ring too. Set m = ker(ψ). Then m is a maximal σ-ideal. Suppose 
h ∈ H ⊂ HomC(C[G], C). Then h induces a σ-C(x)-automorphism of T defined as 
a ⊗D b(X ) 
→ a ⊗D b(Xh(Z)) and also induces a σ-C(x)-automorphism of T̃ defined 
as a ⊗D̃ b(X ) 
→ a ⊗D̃ b(Xh(Z)). Suppose 

∑
ai ⊗D bi ∈ m, i.e.

∑
ai ⊗D̃ bi = 0. Then ∑

ai ⊗D̃ bi(Xh(Z)) = 0 by Lemma 6.16. This implies that 
∑

ai ⊗D bi(Xh(Z)) ∈ m. 
Hence h ∈ stab(m) and thus H ⊂ stab(m). As both H and stab(m) are the σ-Galois 
group of σ(Y ) = Ac1Y over C(x), H = stab(m) by an argument similar to that in 
Lemma 6.16. Finally, suppose that m′ is another maximal σ-ideal of T . Then there is a 
g ∈ G such that stab(m′) = gstab(m)g−1 by Corollary 4.8. Since H is a normal subgroup 
of G, stab(m′) = gHg−1 = H. �
Theorem 6.18. There is a Zariski dense subset U1 of HomC(D, C) and a Zariski dense 
subset U2 of HomC(C[x], C) such that for any c1 ∈ U1 and any c2 ∈ U2, G =
stab(m)stab(n), where m, n are given as in Theorem 6.3 and Theorem 6.6 respectively.

Proof. Let b be a nonzero element in D such that for any c ∈ HomC(D, k0) with c(b) �= 0, 
k0 ⊗D R is not the zero ring. Write b = b1/b2 where b1, b2 ∈ D[x] and b2 �= 0 and set

U2 = {c2 ∈ HomC(C[x], C) | b1(c2(x))b2(c2(x))h(c2(x) + i) �= 0 ∀i ∈ Z}.

We claim that U2 is Zariski dense. Otherwise assume that U2 = {u1, . . . , u�}. Let 
u�+1, . . . , uν be all zeroes of b1b2 in C and v1, . . . , vs are all zeroes of h in C. Then

C = {ui | 1 ≤ i ≤ ν} ∪ ∪s
i=1{vi + Z} ⊆ Z +

ν∑
i=1

Zui +
s∑

i=1
Zvi ⊆ C.

This implies that C is a finitely generated Z-module. However this is impossible, since 
Q ⊂ C is not finitely generated as a Z-module. Due to Proposition 6.17, let U1 be a 
Zariski dense subset of HomC(D, C) such that for any c1 ∈ U1, H = stab(m). The 
theorem then follows from Proposition 6.13. �
Example 6.19. Let U1 = {c ∈ C | c +

√
c2 − 1 is not a root of unit} and U2 = C. From 

Examples 6.7, 6.8 and 6.14, one has that G = stab(m)stab(n) for any c1 ∈ U1 and any 
c2 ∈ U2.
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