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ABSTRACT
We prove a differential analogue of Hilbert’s irreducibility theorem. Let L be a
linear differential operator with coefficients in C(X)(x) that is irreducible over
C(X)(x), where X is an irreducible affine algebraic variety over an algebraically
closed field C of characteristic zero. We show that the set of c ∈ X(C) such that
the specialized operator Lc of L remains irreducible over C(x) is Zariski dense
in X(C).
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1. Introduction

Linear differential operators, as typical non-commutative polynomials, share many algebraic properties
with usual polynomials. Concepts such as the Euclidean algorithm, irreducibility, Eisenstein’s criterion,
greatest common divisor, and least common multiple from the polynomial ring have counterparts
in the realm of linear differential operators. Readers can refer to [14] for an algebraic framework
for skew polynomials, including not only linear differential operators but also linear difference and
q-difference operators. Similar to the polynomial case, testing irreducibility and factorization are
fundamental tasks in the algorithmic aspect of linear differential operators. However, factorizing linear
differential operators is more complicated, as they may have infinitely many irreducible divisors, and
their factorization is not usually unique. To address the uniqueness of factorization, one has to introduce
the notion of similarity (see [14] for the definition and [9, 13] for methods of testing similarity).
Despite these complexities, various methods have been developed for the aforementioned tasks, see, for
example, [2, 3, 7, 12, 16, 17] for algorithms of factorization and see [1, 7, 11, 15] for methods of testing
irreducibility.

In this paper, our emphasis is not on the development of algorithms for testing irreducibility or
factorization. Instead, we concentrate on addressing the following problem: given an irreducible linear
differential operator with parameters, describe the set of values for which the specializations of the linear
differential operator at these values remain irreducible. This can be viewed as a differential analog of
Hilbert’s irreducibility theorem. Let f ∈ Q[x, y] be an irreducible polynomial, where x = x1, . . . , xm.
Hilbert’s irreducibility theorem asserts that there exist infinitely many c ∈ Qm such that f (c, y) remains
irreducible. Fields where Hilbert’s irreducibility theorem holds are referred to as Hilbertian fields. For
precise definition, readers can refer to Chapter 12 of [5]. By leveraging Hilbert’s irreducibility theorem,
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one can effectively reduce the inverse problem of classical Galois theory overQ to the problem overQ(t).
Notably, Hilbert demonstrated that both symmetric and alternating groups can be realized as the Galois
groups of polynomials over Q.

In the context of this paper, we present an irreducibility theorem for linear differential operators.
Precisely, assume that X is an irreducible affine algebraic variety over an algebraically closed field C
of characteristic zero, and C(X) stands for the field of all rational functions on X. Let C(X)(x) be the
differential field with usual derivative δ = d

dx , and let C(X)(x)[δ] be the ring of differential operators
with coefficients in C(X)(x), where δx = xδ+1. As usual,X(C) denotes the set of C-points ofX, which is
identified with HomC(C[X], C). For c ∈ X(C) and f ∈ C[X], the ring of regular functions on X, we shall
denote by f c the image of f under the homomorphism c. Furthermore, if f ∈ C[X][x] then f c represents
the polynomial obtained by applying c to the coefficients of f . Set

L = an(x)δn + an−1(x)δn−1 + · · · + a0(x) (1)

where ai(x) ∈ C(X)(x) and an(x) �= 0. The order ofL, denoted by ord(L), is defined as n. For c ∈ X(C),
Lc denotes the operator in C(x)[δ] obtained by applying c to the coefficients ofL. It is said thatLc is well-
defined if the denominators of all coefficients of L do not vanish under the application of c and ac

n �= 0.
The main result of this paper is the following theorem.

Theorem 1.1. Assume that L ∈ C(X)(x)[δ] and ord(L) > 0. Then there exists an ad-open subset U of
X(C) such that for each c ∈ U, Lc is well-defined, and L is reducible over C(X)(x) if and only if Lc is
reducible over C(x).

The concept of ad-open sets (see Definition 2.1) was initially introduced by Hrushovski in [8] and
further explored in [4]. In particular, it has been demonstrated in [4, 8] that every ad-open subset of
X(C) is Zariski dense in X(C). This concept plays important role in characterizing the set of c ∈ X(C)

for which the specialization of the Galois group of L under c precisely matches the Galois group of Lc.
The proof of Theorem 1.1 relies on several intermediate results from [4], particularly one asserting the
existence of a positive integer N and an ad-open subset U of X(C) such that the certificates δ(h)/h for
all exponential solutions h of Lc(y) = 0 have a degree not exceeding N for all c ∈ U. Here, the degree
of a rational function is defined as the maximum of the degrees of its numerator and denominator.
Theorem 1.1 and the denseness of ad-open sets imply the following corollary.

Corollary 1.2. Assume that L ∈ C(X)(x)[δ] is irreducible over C(X)(x). Then there exists an ad-open
subset U of X(C) such that for any c ∈ U, Lc is well-defined and Lc is irreducible over C(x)

It is worth noting that a weaker version of Corollary 1.2, which replaces ad-open sets with ad×Jac
open sets, can be directly deduced from Theorem 2.60 of [4]. This relies on the fact that a linear
differential operator is irreducible if and only if the (canonical) representation of its Galois group is
irreducible. Compared to [4], the proof presented in this paper is more elementary and avoids the
complexities of differential Galois theory. Before concluding this section, let us provide an example to
illustrate the above corollary.

Example 1.3. Consider the linear differential operator

L = δ2 + 1
x
δ + x2 − α2

x2

corresponding to Bessel’s differential equation, where α is a parameter. The above operator is irreducible
over C(α)(x). From [10], for c ∈ C, Lc = δ2 + 1

xδ + x2−c2

x2 is irreducible over C(x) if and only if c − 1
2

is not an integer. In particular, if c /∈ Q then Lc is irreducible over C(x), and obviously the set C \ Q is
Zariski dense in C.
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The paper is organized as follows. In Section 2, we shall recall some notation and several results in
[4], and deduce from these that there exists a uniform bound for the degrees of irreducible right-hand
divisors of L, and this degree bound is well-behaved under specializations. In Section 3, we shall prove
Theorem 1.1.

2. Degree bound for the coefficients of irreducible divisors

In this section, leveraging results from [4], we are going to deduce that there exists a positive integer N
and an ad-open subset U of X(C) such that for all c ∈ U, the coefficients of every irreducible right-hand
divisor of Lc are uniformly bounded by N. Let’s begin by recalling the notion of ad-open sets.

Definition 2.1. Let � be a finitely generated subgroup of (C[X], +). The set

B(�,X) = {c ∈ X(C) | c is injective on �}
is called a basic ad-open subset of X. An ad-open subset of X(C) is defined to be an intersection of finitely
many basic ad-open subsets of X(C). The complement of an ad-open subset is called an ad-closed subset.

Assume that U is a principal Zariski open subset of X(C) defined by a nonzero p ∈ C[X]. Let � be the
subgroup of (C[X], +) generated by p. Then U = B(�,X). Therefore, every non-empty Zariski open
subset of X(C) is ad-open. Additionally, note that every finite dimensional Q-vector subspace of C[X]
is ad-closed, for instance, Q is an ad-closed subset of C.

Let k be an algebraically closed field of characteristic zero, and considerL ∈ k(x)[δ] with ord(L) > 0.
Write

L = bnδ
n + bn−1δ

n−1 + · · · + b0, bi ∈ k(x), bn �= 0. (2)

Recall that for a nonzero f = p
q ∈ k(x), where p and q are relatively prime polynomials in k[x], the degree

of f is defined as deg(f ) = max{deg(p), deg(q)}. By convention, we set deg(0) = −∞. For convenience,
we introduce the following definition.

Definition 2.2. We call max
0≤i≤n−1

{
deg

(
bi
bn

)}
the degree of L, denoted by d(L).

Suppose that L1 ∈ k(x)[δ] is an irreducible right-hand divisor of L, meaning that L = L2L1 for
some L2 ∈ k(x)[δ] and L1 can not be factored further. Our goal is to establish a bound for d(L1) and
investigate its behavior under specializations. It is worth noting that a degree bound in terms of the
order and bit-size of L has been provided in [6, 7]. To investigate the behavior of this bound under
specializations, we now present an alternative degree bound for irreducible right-hand divisors.

Definition 2.3. A positive integer N is called an exponential bound for L if deg(a) ≤ N for any a ∈ k(x)

such that δ − a is a right-hand divisor of L. We shall use N(L) to denote an exponential bound for L.

Note that δ − a is a right-hand divisor of L if and only if L has an exponential solution h with
a = δ(h)/h. Therefore, if N is an exponential bound of L then for any exponential solution h of L,
the certificate δ(h)/h is of degree not greater than N. The following result, proved in [4], demonstrates
that there is an exponential bound that remains consistent under specializations

Proposition 2.4 (Proposition 5.10 of [4]). There exists an ad-open subset U of X(C) and an integer N
such that N is an exponential bound for L and Lc for all c ∈ U.

In the remainder of this section, we shall establish a bound for the degrees of all irreducible right-
hand divisors of L in terms of an exponential bound for some exterior system of L. To do so, we first
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recall some notation from [4]. Let L be as in (2), and let AL denote the companion matrix of L, i.e.

AL =

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

. . . . . .
0 1

− b0
bn

− b1
bn

. . . . . . − bn−1
bn

⎞
⎟⎟⎟⎟⎟⎠ .

Let Ti be a transformation matrix that transforms the matrix equation δ(Y) = (∧iAL)Y into the scalar
equation L[i](y) = 0, where δ(Y) = (∧iAL)Y denotes the ith exterior system of δ(Y) = ALY , see [7]
for the construction. Set

b(L) = max
1≤i≤n

{
2
(

n
i

)
deg(Ti) +

(
n
i

) ((
n
i

)
− 1

)
N(L[i])

}
. (3)

Proposition 2.5. Suppose that L1 is an irreducible right-hand divisor of L and ord(L1) < ord(L). Then
d(L1) ≤ n3b(L).

Proof. Note that βL1 is also an irreducible right-hand divisor of L for any nonzero β ∈ k(x) and
d(βL1) = d(L1). Therefore, after multiplying a suitable element in k(x), we may assume that L1 is
monic. Set ν = ord(L1). Let R be the Picard-Vessiot ring over k(x) for L(y) = 0, and u ∈ R be a
nonzero solution of L1(y) = 0. As in [4], set

LinRel(u, k(x)) =
{

f ∈ k(x)[z1, . . . , zn]
∣∣∣∣ f is linear homogeneous, and

f (u, δ(u), . . . , δn−1(u)) = 0

}
.

Then LinRel(u, k(x)) is a vector space over k(x) of finite dimension. Denote s = dimk(x)(LinRel(u, k(x))).
Then s = n−ν. To see this, writeL1 = δν+βν−1δ

ν−1+· · ·+β0, where βi ∈ k(x). SinceL1 is irreducible,
u, δ(u), . . . , δν−1(u) are linearly independent over k(x) and δν(u) = −(β0u + · · · + βν−1δ

ν−1(u)). By
applying δ to the equality δν(u) = −(β0u + · · · + βν−1δν−1(u)) iteratively, one sees that δi(u) can be
written as the k(x)-linear combination of u, δ(u), . . . , δν−1(u), for all i ≥ ν. Hence s = n − ν. Due to
Lemma 5.11 of [4], the vector space LinRel(u, k(x)) has a k(x)-basis consisting of elements of the form
α1z1 + · · · + αnzn with αi ∈ k(x) and

deg(αi) ≤ 2
(

n
s

)
deg(Ts) +

(
n
s

) ((
n
s

)
− 1

)
N(L[s]) ≤ b(L), (4)

where L[s] is the scalar linear differential operator corresponding to the matrix equation δ(Y) =
(∧sAL)Y and Ts is the corresponding transformation as described above.

Let {pi := αi,1z1 + · · · + αi,nzn | 1 ≤ i ≤ s} be a k(x)-basis of LinRel(u, k(x)) with the degree bound
for αi,j as stated in (4). One has that q := β0z1 +· · ·+βν−1zν + zν+1 ∈ LinRel(u, k(x)). Therefore there
exist uniquely c1, . . . , cs ∈ k(x) such that q = ∑s

i=1 cipi. Consider the system of linear equations

(x1, x2, . . . , xs)

⎛
⎜⎜⎜⎝

α1,ν+1 α1,ν+2 . . . α1,n
α2,ν+1 α2,ν+2 . . . α2,n

...
...

...
αs,ν+1 αs,ν+2 . . . αs,n

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
B

= (1, 0, . . . , 0). (5)

From q = ∑s
i=1 cipi, it is evident that (c1, . . . , cs) is a solution of (5). Suppose that (c̃1, . . . , c̃s) with

c̃i ∈ k(x) is another solution of (5) then 0 �= ∑s
i=1(ci − c̃i)pi ∈ LinRel(u, k(x)) is of the form γ1z1 +

· · · + γν−1zν−1. This implies that u, δ(u), . . . , δν−1(u) are linearly dependent over k(x), leading to a
contradiction. Consequently, (c1, . . . , cs) is the unique solution of (5) and thus the coefficient matrix B
is invertible.
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Let’s estimate a bound for the deg(ci). Set D to be the least common multiple of all denominators of αi,j,
and write αi,j = α̃i,j

D with α̃i,j ∈ k[x]. Then neither deg(D) nor deg(α̃i,j) is greater than s2 maxi,j{deg(αi,j)}.
Write det(B) = M/Ds, where M ∈ k[x] and deg(M) ≤ s3 maxi,j{deg(αi,j)}. By Cramer’s rule, one has
that ci = det(Ei)

det(B)
, where Ei is the matrix obtained by replacing the ith row of B with (1, 0, . . . , 0). One

sees that det(Ei) = c̃i
Ds−1 , where c̃i ∈ k[x] and

deg(c̃i) ≤ (s − 1) max
i,j

{deg(α̃i,j)} ≤ (s − 1)s2 max
i,j

{deg(αi,j)}.

Since each

βi =
s∑

j=1
cjαj,i+1 =

s∑
j=1

Dc̃j

M
α̃j,i+1

D
=

∑s
j=1 c̃jα̃j,i+1

M

and s < n, it follows that

deg(βi) ≤ n3 max
i,j

{deg(αi,j)} ≤ n3b(L).

Consequently, d(L1) ≤ n3b(L).

By employing a reasoning analogous to that presented in the proof of Proposition 5.12 of [4], we
demonstrate that the degree bound stated in Proposition 2.5 behaves consistently under specializations.

Proposition 2.6. Suppose that L ∈ C(X)(x)[δ] and n = ord(L). Then there exists an ad-open subset
U of X(C) such that for any c ∈ U and any irreducible right-hand divisor P of Lc with ord(P) < n,
d(P) ≤ n3b(L).

Proof. Let AL, Ti be as discussed before Proposition 2.5. Let U1 be a non-empty Zariski open subset of
X(C) such that for any c ∈ U1, the following conditions hold:

(1) (AL)c ∈ GLn(C(x));
(2) (AL)c is the companion matrix of Lc, i.e. (AL)c = ALc ;
(3) For all 1 ≤ i ≤ n, Tc

i is invertible and is the transformation matrix that transforms δ(Y) = (∧iALc)Y
into (Lc)[i](y) = 0;

(4) For all 1 ≤ i ≤ n, (Lc)[i] = (L[i])c

For each 1 ≤ i ≤ n, due to Proposition 2.4, there exists an exponential bound N(L[i]) for L[i] and
an ad-open subset Vi of X(C) such that for all c ∈ Vi, N(L[i]) is an exponential bound for (L[i])c. Set
U = U1 ∩ V1 ∩ · · · ∩ Vn. For each c ∈ U, applying Proposition 2.5 to Lc with k = C yields that
d(P) ≤ n3b(Lc) for any irreducible right-hand divisor P of Lc, where

b(Lc) = max
1≤i≤n

{
2
(

n
i

)
deg(Tc

i ) +
(

n
i

) ((
n
i

)
− 1

)
N((Lc)[i])

}
.

For each 1 ≤ i ≤ n, deg(Tc
i ) ≤ deg(Ti) and N(L[i]) is an exponential bound for (Lc)[i] for all c ∈ U

because (Lc)[i] = (L[i])c by the choice of c. Therefore, b(Lc) ≤ b(L) for all c ∈ U. This concludes the
proposition.

3. Proof of Theorem 1.1

In this section, we shall prove our main result. Let’s start with a lemma. Let T = (T1, . . . , Tm) be a
vector with indeterminate entries. Since we need to deal with ideals over different commutative rings,
we shall use 〈·〉R to denote the ideal in R[T, y] generated by a subset of polynomials in R[T, y], where R
is a commutative ring and y is a new indeterminate.
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Lemma 3.1. Let r0(T), . . . , rs−1(T), q(T) be polynomials in C[X][T] with q(T) �= 0. Then there exists a
non-empty Zariski open subset U of X(C) such that for each c ∈ U, the following conditions hold:

(a) qc(T) �= 0;
(b) The system

r0(T) = · · · = rs−1(T) = 0, q(T) �= 0 (6)

has a solution in C(X)
m if and only if the specialized system

rc
0(T) = · · · = rc

s−1(T) = 0, qc(T) �= 0 (7)

has a solution in Cm.

Proof. Let y be a new indeterminate. Then the system (6) has a solution in C(X)
m if and only if the

system

r0(T) = · · · = rs−1(T) = yq(T) − 1 = 0 (8)

has a solution in C(X)
m+1. A similar statement holds for the specialized systems. Fix a term order < on

T ∪{y}. Let G be the reduced Gröbner basis of the ideal 〈r0(T), . . . , rs−1(T), yq(T)−1〉C(X) with respect
to <. Let h ∈ C[X] be a nonzero element such that

G ∪ {r0(T), . . . , rs−1(T), yq(T) − 1} ⊂ C[X]h[T, y],
and G and {r0(T), . . . , rs−1(T), yq(T) − 1} generate the same ideal in C[X]h[T, y]. Set Ĩ =
〈r0(T), . . . , rs−1(T), yq(T) − 1〉C[X]h . We claim that Gc is the reduced Gröbner basis of 〈Ĩc〉C for all
c ∈ X(C) with hc �= 0. Assume that c ∈ X(C) with hc �= 0 and g1, g2 ∈ G. Let S(g1, g2) denote the
S-polynomial of g1, g2. Since G is a Gröbner basis of 〈G〉C(X), the remainder of the division of S(g1, g2)
by G is zero. As all elements of G are monic and G ⊂ C[X]h[T, y], it follows that S(gc

1, gc
2) = S(g1, g2)

c.
Moreover, applying c to the division process, we see that the remainder of the division of S(gc

1, gc
2) by Gc

is also zero. Thus, Gc is a Gröbner basis of 〈Gc〉C. Furthermore, it is straightfoward to verify that Gc is
indeed the reduced Gröbner basis. The claim then follows from the fact that 〈Gc〉C = 〈Ĩc〉C.

Let U be a non-empty Zariski open subset of X(C) such that hc �= 0 and qc(T) �= 0 for all c ∈ U.
Suppose that c ∈ U. The system (8) has a solution in C(X)

m+1 if and only if G �= {1}. On the other hand,
since all elements of G are monic, G �= {1} if and only if Gc �= {1}, which is equivalent to the system
rc

0(T), . . . , rc
s−1(T), qc(T)y − 1 (and thus the system (7)) having a solution in Cm+1.

Let k be an algebraically closed field of characteristic zero. Suppose that P ,Q ∈ k(x)[δ] and Q �= 0.
The Euclidean algorithm (see [14]) implies that there exist T ,R ∈ k(x)[δ] such that P = T Q+R with
R = 0 or ord(R) < ord(Q). The operator R is called a remainder of P with respect to Q, denoted by
rem(P ,Q). Furthermore, Q is a right-hand divisor of P if and only if rem(P ,Q) = 0. The connection
between the coefficients of the remainderR and the coefficients ofP is described in the following lemma.
Let T be a vector with indeterminate entries. By setting δ(t) = 0 for any entry t of T, k(T)(x) becomes
a differential field extension of k(x).

Lemma 3.2. Suppose that L ∈ k[T, x][δ] and P ∈ k(T)(x)[δ]. Assume further that

P = δs + ps−1
q

δs−1 + · · · + p0
q

where pi, q ∈ k[T][x]. Then there exist Q,R ∈ k(T, x)[δ] of the following form:
rμ
qm δμ + · · · + r0

qm , μ ≥ 0, m ≥ 0, ri ∈ k[T][x] (9)

such that L = QP + R and ord(R) < s.
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Proof. We will prove the lemma by induction on n = ord(L). If n < s then set Q = 0,R = L, and the
lemma is obvious. Now, assume that n ≥ s and the assertion holds for operators with orders less than n.
A straightforward calculation yields that

aδn−sP = aδn + bn−1
qn−s+1 δn−1 + · · · + b0

qn−s+1

where a is the leading coefficient of L and bi ∈ k[T][x]. Hence qn−s+1(L− aδn−sP) ∈ k[T, x][δ] and its
order is less than n. By the induction hypothesis, there exist Q̃, R̃ of the form (9) such that

qn−s+1(L − aδn−sP) = Q̃P + R̃

and ord(R̃) < s. Then

L =
(

aδn−s + Q̃
qn−s+1

)
P + R̃

qn−s+1 .

So aδn−s + Q̃
qn−s+1 and R̃

qn−s+1 are the operators as required.

Set ν = n4b(L), and set

T = (t0,0, t1,0, . . . , ts,ν)

to be a vector with indeterminate entries ti,j. Let k = C(X)(T). By setting δ(ti,j) = 0 for all i, j, k(x)

becomes a differential extension field of C(X)(x). Set q = ∑ν
j=0 ts,jxj and

P(T) = δs +
(∑ν

j=0 ts−1,jxj

q

)
δs−1 + · · · +

(∑ν
j=0 t0,jxj

q

)
. (10)

Proposition 3.3. Suppose that L ∈ C(X)(x)[δ] is an operator with ord(L) > 1, and 0 < s < ord(L).
Let P(T) be as in (10). Then there exists a non-empty Zariski open subset Vs of X(C) such that for each
c ∈ Vs, the following hold:

(a) Lc is well-defined;
(b) L has a right-hand divisor of the form P(d), where d ∈ C(X)

(s+1)(ν+1) and q(d) �= 0, if and only if
Lc has a right-hand divisor of the form P(d̄), where d̄ ∈ C(s+1)(ν+1) and q(d̄) �= 0.

Proof. Let a be an element in C[X][x] such that aL ∈ C[X][x][δ]. Due to Lemma 3.2, there exist Q̃, R̃
of the form (9) such that aL = Q̃P + R̃ and ord(R̃) < s. Therefore, we have

L =
(

pn−s
aqm1

δn−s + · · · + p0
aqm1

)
P + rs−1

aqm2
δs−1 + · · · + r0

aqm2
, (11)

where pi, rj ∈ C(X)[T][x]. By substituting T with d ∈ C(X)
(s+1)(ν+1) such that q(d) �= 0 in (11), we

obtain

L =
(

pn−s(d)

aq(d)m1
δn−s + · · · + p0(d)

aq(d)m1

)
P(d) + rs−1(d)

aq(d)m2
δs−1 + · · · + r0(d)

aq(d)m2
.

Let W be the set of the coefficients of rs−1, . . . , r0, viewed as polynomials in x. Then W ⊂ C(X)[T]. For
each 0 ≤ j ≤ ν, define

Sj = {f (T) = 0, ∀f ∈ W, ts,j �= 0}.

Then L has a right-hand divisor of the form P(d), where d ∈ C(X)
(s+1)(ν+1) and q(d) �= 0, if and only

if d is a solution of some Sj.
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By multiplying a by a suitable element in C[X], we can assume that pi, rj ∈ C[X][T][x]. Each element
of X(C) can be lifted to a C-homomorphism from C[X][T] to C[T] by assigning c(ti,j) = ti,j for all i, j.
For the sake of simplicity, we still use c to denote the lifted homomorphism. Note that c(δ(f )) = δ(c(f ))
for any f ∈ C[X][x], and qc = q,Pc = P . For c ∈ X(C) such that ac �= 0, one has that

Lc =
( pc

n−s
acqm1

δn−s + · · · + pc
0

acqm1

)
P + rc

s−1
acqm2

δs−1 + · · · + rc
0

acqm2
.

Observe that Wc is the set of coefficients of rc
s−1, . . . , rc

0, viewed as polynomials in x. Using a similar
argument as before, we see that for each c ∈ X(C) such that ac �= 0, Lc has a right-hand divisor of the
form P(d̄), where d̄ ∈ C(s+1)(ν+1) and q(d̄) �= 0, if and only if d̄ is a solution of some Sc

j .
Set U = {c ∈ X(C) | ac �= 0, lc(aL)c �= 0}, where lc(aL) is the leading coefficient of aL. Then for

each c ∈ U, Lc is well-defined. Let Vs,j be a non-empty open subset of X(C) such that for each c ∈ Vs,j,
Sj has a solution in C(X)

(s+1)(ν+1) if and only if Sc
j has a solution in C(s+1)(ν+1). Such Vs,j exists due to

Lemma 3.1. Set Vs = U ∩ Vs,0 ∩ · · · ∩ Vs,ν . Then Vs satisfies the requirement.

We are now ready to prove our main result.

Proof of Theorem 1.1. Let W be an ad-open subset ofX(C) such that for all c ∈ W, and for all irreducible
right-hand divisors P̄ of Lc with ord(P̄) < ord(Lc), we have d(P̄) ≤ n3b(L). Such W exists due
to Proposition 2.6. For 1 ≤ s ≤ n − 1, let Vs be the non-empty Zariski open subset obtained in
Proposition 3.3. Set U = W ∩ V1 ∩ · · · ∩ Vn−1. We claim that U is the subset we are seeking.

Suppose that c ∈ U. Assume that L is reducible over C(X)(x). Then L has an irreducible right-hand
divisor P of order s for some 1 ≤ s ≤ n − 1. Without loss of generality, we may assume that P is monic.
By Proposition 2.5, d(P) ≤ n3b(L). By taking a common denominator of the coefficients of P, each
coefficient of P can be rewritten as the quotient of two polynomials in x with degrees not greater than
ν = n4b(L). In other words, we may write

P = δs +
(∑ν

j=0 ds−1,jxj∑ν
j=0 ds,jxj

)
δs−1 + · · · +

(∑ν
j=0 d0,jxj∑ν
j=0 ds,jxj

)

where di,j ∈ C(X) and not all ds,0, . . . , ds,ν are zero. Set d = (d0,0, d1,0, . . . , ds,ν). Then P = P(d),
meaning L has a right-hand divisor of the form P(d). Since c ∈ Vs, by Proposition 3.3, Lc has a right-
hand divisor of order s. So Lc is reducible. Conversely, assume that Lc is reducible. Then Lc has an
irreducible right-hand divisor P̄ of order s for some 1 ≤ s ≤ n−1. Since c ∈ W, we have d(P̄) ≤ n3b(L).
By a similar argument as before, Lc has a right-hand divisor of the form P(d̄), where d̄ ∈ C(s+1)(ν+1)

and q(d̄) �= 0. Since c ∈ Vs, Proposition 3.3 implies that L has a right-hand divisor of order s. Thus L is
reducible. This completes the proof.
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