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a b s t r a c t

In this paper, we generalize the results of Feng and Gao [Feng, R.,
Gao, X.S., 2006. A polynomial time algorithm to find rational
general solutions of first order autonomous ODEs. J. Symbolic
Comput., 41(7), 735–762] to the case of difference equations. We
construct two classes of ordinary difference equations (O∆Es)
whose solutions are exactly the univariate polynomial and rational
functions respectively. On the basis of these O∆Es and the
difference characteristic setmethod, we give a criterion for an O∆E
with any order and nonconstant coefficients to have a rational
type general solution. For the first-order autonomous (constant
coefficient) O∆E, we give a polynomial time algorithm for finding
the polynomial solutions and an algorithm for finding the rational
solutions for a given degree.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Difference equations are a very important class of equations for describing special functions and
number sequences. Finding closed form solutions for difference equations is one of the main research
topics for difference equations. Most existing results on symbolic solutions are limited to the linear
case. Algorithms for computing the rational or hypergeometric solutions for linear O∆Es have been
proposed in Abramov (1989, 1995, 1998), Abramov et al. (1998, 1995), Böing and Koepf (1999), Gosper
(1978), Koepf (1995), Paule (1995), Paule and Riese (1997), Paule and Schorn (1995), Petkovs̆ek (1992)
and van Hoeij (1998, 1999). In Karr (1981, 1985), Karr introduced ΠΣ-fields and used them to find
closed form formulas for finite sums or disproving the existence of such formulas. In Bronstein (2000),
Bronstein extended the notion of monomial extensions of differential fields to difference fields and
described an algorithm for finding the solutions of parameterized linear difference equations in a

I Partially supported by a National Key Basic Research Project of China 2004CB318000.
E-mail addresses: ryfeng@amss.ac.cn (R. Feng), xgao@mmrc.iss.ac.cn (X.-S. Gao), huangzhenyu@mmrc.iss.ac.cn (Z. Huang).

1 Tel.: +86 10 62541831; fax: +86 10 62630706.

0747-7171/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2008.03.001

http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:ryfeng@amss.ac.cn
mailto:xgao@mmrc.iss.ac.cn
mailto:huangzhenyu@mmrc.iss.ac.cn
http://dx.doi.org/10.1016/j.jsc.2008.03.001


R. Feng et al. / Journal of Symbolic Computation 43 (2008) 746–763 747

Table 1
Running time for O∆Es with form (7)

tdeg Term Time (s) Solution tdeg Term Time(s) Solution

F1 11 78 0.375 Yes G1 8 30 1.875 No
F2 12 91 1.093 Yes G2 9 36 5.655 No
F3 13 105 3.204 Yes G3 10 40 13.702 No
F4 14 120 5.047 Yes G4 11 44 22.297 No
F5 15 136 9.094 Yes G5 12 56 55.329 No
F6 16 153 13.985 Yes G6 13 58 70.641 No
F7 17 171 23.282 Yes G7 14 69 156.031 No
F8 18 190 40.875 Yes G8 15 76 297.282 No

subclass of monomial extensions. In Kauers and Schneider (2006), Kauers and Schneider extended
Karr’s algorithm to a general summation framework and presented a new algorithm for indefinite
nested summation. In Schneider (2005), the author developed the algorithms to find all solutions of
parameterized linear difference equations within ΠΣ-field. Hendriks and Singer gave a procedure for
determining the Liouvillian solutions of linear O∆Es (Hendriks and Singer, 1999). Wolfram gave a
formula for the general solution of a linear O∆E with constant coefficients (Wolfram, 2000). On the
other hand, difference algebra founded by Cohn provides a general algebraic setting in which to study
the structure of the solutions of O∆Es (Cohn, 1965).

In this paper, rational solutions of non-linear O∆Es are considered. We consider rational general
solutions of the O∆Es with any order and nonconstant coefficients. For two non-negative integers
n and m, we construct two classes of O∆Es Pn and Rn,m in one variable y with rational numbers as
coefficients. Pn is a linear equation whose solutions are exactly the univariate polynomial functions
with degree less than or equal to n. Rn,m is a nonlinear equation whose solutions are exactly the
univariate rational functions with degree (n,m). Here, a rational function with degree (n,m) means
that its numerator is of degree ≤ n and its denominator is of degree ≤ m. As a consequence, we give a
difference equation description for univariate polynomial and rational functions. On the basis of Rn,m,
we give an equivalent condition for an O∆E to have a rational type general solution.

For a first-order autonomous O∆E F(y, y1) = 0, where y1 is the shift of y, we give a polynomial
time algorithm for finding its polynomial solutions. This is mainly due to a detailed analysis for the
structural shape of the O∆E which has polynomial solutions. We try to generalize the method of
finding polynomial solutions to the method of finding rational solutions. It is unfortunate that the
difference version of Theorem 3.7 in Feng and Gao (2006) is not always true (see Example 4.1), which
means that we cannot bound the degree of rational solutions through the parametrization and the
algorithm based on parametrization does not work here. However, for a given degree (n, n), or for
short n, we can give a polynomial time algorithm for deciding whether F(y, y1) = 0 has a rational
solution with degree not greater than n and find one if it has. This algorithm is based on the algorithm
for finding a Laurent series solution of F(y, y1) = 0 and Padé approximation.

The above results can be considered as a difference analogue of the results in Feng and Gao (2006).
But, the techniques used here are different from those for the differential case due to the difference
between differential and difference operators. One of the major differences between the difference
case and the differential case is that the degree of the rational solutions is not always equal to the
degree of F(y, y1) = 0 with respect to the variable y. Another major difference is in the algorithm for
finding a rational function solution of a first-order autonomous O∆E F(y, y1) = 0. In the differential
case, it is relatively easy to find power series solutions of F = 0. But such amethod cannot be extended
to the difference case. Instead, we give an algorithm for computing Laurent series solutions in 1

x
of

F = 0 and use it for finding the rational solutions of F = 0.
The algorithm for finding polynomial solutions is implemented in Maple. The algorithm is very

efficient in that our program can find the solutions of O∆Es with high degrees and hundreds of terms
(see Table 1).

The paper is organized as follows. In Section 2, we define Pn and Rn,m and give an equivalent
condition for an O∆E to have a rational general solution. In Section 3, we give a polynomial time
algorithm for finding polynomial solutions of first-order autonomous O∆Es. In Section 4, for the first-
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order autonomous O∆E, we give an algorithm for finding its Laurent series solution and an algorithm
for finding its possible rational solution with given degree based on Padé approximation.

2. Rational general solutions of O∆E

2.1. Some concepts of difference algebra

In this subsection, we will introduce some concepts of difference algebra, which can be found in
Cohn (1965, Chapters 2, 4, and 6). A field with an automorphism σ is called a difference field and σ is
called a difference operator. The difference field considered in this paper is the rational function field
Q(x) in the variable xwith the difference operator σ(x) = x+ 1. If a difference field F with difference
operator σ̄ satisfies F ⊇ Q(x) and σ̄|Q(x) = σ, then F is called the difference extension field of Q(x).
Let y be an indeterminate over Q(x). We use yi to denote the ith transformation σi(y) of y. Assume
that y, y1, y2, . . . are algebraically independent overQ(x). DenoteQ(x)[y, y1, y2, . . .] byQ(x){y}.We call
elements in Q(x){y} difference polynomials. Then Q(x){y} is a difference polynomial ring (Cohn, 1965,
p.64). Let F ∈ Q(x){y} \Q(x). The order of F is the largest k such that yk appears in F, denoted by ord(F).
Let ord(F) be o. We can also regard F as an algebraic polynomial in y, y1, . . . , yo with coefficients in
Q(x). Then deg(F, yi) denotes the degree of F with respect to yi. When we say that F is an irreducible
difference polynomial, we mean that F is irreducible over Q̄(x) as an algebraic polynomial where Q̄ is
the algebraic closure of Q.

Let F ∈ Q(x){y} and o = ord(F). Write F as a polynomial in yo:

F := Iny
n
o + In−1y

n−1
o + · · · + I0

where Ii ∈ Q(x)[y, y1, . . . , yo−1]. Then In is called the initial of F, ∂F
∂yo

is called the separant of F. Let Σ be
an ideal of algebraic polynomial ring Q(x)[y, y1, y2, · · ·]. Σ is called a difference ideal if P ∈ Σ implies
that σ(P) ∈ Σ . A difference ideal Σ is reflexive if σ(P) ∈ Σ implies that P ∈ Σ . A difference ideal Σ is
prime if PQ ∈ Σ implies that P ∈ Σ or Q ∈ Σ . A difference ideal Σ is perfect if

(σk1(P)σk2(P) · · ·σkn(P))m ∈ Σ ⇒ P ∈ Σ

where σi(P) is the ith shift of P and the ki are nonnegative integers (Cohn, 1965, p. 76). We will use {F}
to denote the perfect difference ideal generated by F. A perfect difference ideal {F} can be decomposed
into the intersection of the reflexive prime difference ideals, which are called irreducible components of
F = 0 (Cohn, 1965, p. 88, Theorem4). An irreducible componentΛ of F = 0 is principal if the dimension
of Λ (in the sense of algebraic ideal) equals ord(F) − k where k is the smallest integer i such that yi
appears in F (Cohn, 1965, p. 161).

Let F ∈ Q(x){y} \ Q(x) be an irreducible difference polynomial and

ΣF = {A ∈ Q(x){y}|SA ≡ 0mod {F}} (1)

where S is the separant of F. Cohn proved thatΣF is a perfect difference ideal and it can be decomposed
into the intersection of the principal components of F (Cohn, 1965, p. 192). Now we give a simple
example to explain the above definitions.

Example 2.1. Let F = (y1 − y)2 − 2(y1 + y) + 1. Then ord(F) = 1, the initial of F is 1 and the separant
of F is 2y1 − 2y − 2. Moreover

ΣF = {F} = {F, y2 − 2y1 + y − 2}︸ ︷︷ ︸
prime difference ideal

⋂
{F, y2 − y}︸ ︷︷ ︸

prime difference ideal

.

Both of these prime difference ideals are the principal components of F = 0.

Let U be the complete system of difference extension fields of Q(x), which is the collection of
difference extension fields of Q(x) (Cohn, 1965, p. 238). For simplification, when we say that an
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element w is in U, we mean that w belongs to some difference fields in U. The elements in U which
annul each element in a difference ideal are called zeros of this difference ideal. A generic zero η(x) of
a prime difference ideal Λ is a zero of Λ such that for any Q ∈ Q(x){y}, Q(η(x)) = 0 ⇔ Q ∈ Λ where
Q(η(x)) is defined by replacing any occurrence of yi by η(x+ i). The complete system has the property
that two distinct perfect ideals in Q(x){y} have at least one different zero in U (Cohn, 1965, p. 238).
An element in U which is invariant under the difference operators is called a constant.

Definition 2.2. Let F ∈ Q(x){y} \ Q(x) be an irreducible difference polynomial. A general solution of
F = 0 is defined as a generic zero of one of the principal components of ΣF . A rational general solution
of F(y) = 0 is defined as a general solution of F = 0 with the following form:

ŷ(x) =
anxn + an−1xn−1

+ · · · + a0
xm + bm−1xm−1 + · · · + b0

(2)

where the ai, bj are constants. In particular, if m = 0, we call ŷ(x) a polynomial general solution.

Example 2.3. The difference equation (y − y1)2 − 2(y + y1) + 1 = 0 has two general solutions:
y(x) = (x + c)2 and y(x) = (ceiπx

+
1
2 )

2 where c is an arbitrary constant.

2.2. Difference equation description for univariate rational functions

In this subsection, we will construct a class of difference equations whose solutions are rational
functions. Moreover, each rational function is a solution of some difference equation in this class. This
result is significant, because it gives a difference equation description for univariate rational functions.
First let us look at the polynomial case.

Let P = y − y1. Then

Pn = P ◦ · · · ◦ P︸ ︷︷ ︸
n+1

=

n+1∑
i=0

(−1)i
(
n + 1

i

)
yi

is a linear difference polynomial with order n + 1, where ◦ means the composition of two difference
polynomials. Then we get

Theorem 2.4. For each n ≥ 0 and y(x) ∈ U,

y(x) = anx
n
+ an−1x

n−1
+ · · · + a0 ⇔ Pn(y(x)) = 0

where the ai are constants.

Proof. We will first apply induction on n to prove that Pn(xk) = 0 for 0 ≤ k ≤ n. When n = 0, it is
obvious thatP0(x0) = P (1) = 0. Now assume that it is true for n < N. We have thatP (xl) =

∑l−1
i=0

(l
i

)
xi

for any integer l. For l ≤ N,

PN(x
l) = PN−1 ◦ P (xl) =

l−1∑
i=0

(
l

i

)
PN−1(x

i) = 0.

This implies that 1, x, x2, . . . , xn form a basis of the solution space of Pn(y) = 0. Hence the lemma
holds. �

We can generalize the above result to the rational functions. We start with a lemma. LetM(x, k) be
the following matrices:

M(x, k) :=


1 x + k . . . (x + k)m

1 x + k + 1 . . . (x + k + 1)m
...

... . . .
...

1 x + k + m . . . (x + k + m)m

 .

It is easy to see thatM(x, k) is always invertible for every x ∈ Q, k ∈ Z.Moreover,wehave the following
lemma:
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Lemma 2.5. M(x, k)M−1(x, 0) ∈ Q(m+1)×(m+1) for each k ∈ Z, whereM−1(x, 0) is the inverse of the matrix
M(x, 0).

Proof. Assume that M−1(x, 0) = (ci,j(x))(m+1)×(m+1). By M(x, 0)M−1(x, 0) = Im+1, we have that
m∑
i=0

(x + l)ici,j(x) = δl,j for l, j = 0, . . . ,m (3)

where δl,j is the Kronecker δ function. Suppose that

M(x, k)M−1(x, 0) = (dl,j(x, k))(m+1)×(m+1).

That is,

dl,j(x, k) =

m∑
i=0

(x + k + l)ici,j(x).

Regarding dl,j(x, k) as polynomials in k, then the degree of dl,j(x, k) is not greater than m. From (3), we
get

dl,j(x, j − l) = 1 and dl,j(x, s − l) = 0 for s = 0, 1, . . . , j − 1, j + 1, . . . ,m

which implies that

dl,j(x, k) =

∏m
i=0,i 6=j(k − i + l)∏m
i=0,i 6=j(j − i + l)

.

Hence the lemma holds. �

Since M(x, k) = M(x + i, k − i) for all integers i, the above lemma implies that M(x, k)M−1(x, l) ∈

Q(m+1)×(m+1) for every k, l ∈ Z.
In the following, we describe the idea of how we construct difference equations which have the

property that all rational functions are their solutions. Let

r(x) =
anxn + an−1xn−1

+ · · · + a0
bmxm + bm−1xm−1 + · · · + 1

be a generic rational function with degree (n,m) where the ai, bj are arbitrary constants. By
Theorem 2.4, we have that

σk(Pn(r(x)(bmx
m

+ · · · + 1))) = 0, k = 0, 1, . . . ,m.

Since the bj are arbitrary constants and Pn are linear, we get

bmσk(Pn(r(x)x
m)) + bm−1σ

k(Pn(r(x)x
m−1)) + · · · + σk(Pn(r(x))) = 0 (4)

where k = 0, 1, . . . ,m. Because the coefficients of Pn are constants, σ(Pn) = Pn(σ). Rewrite (4) in
matrix form:

An,m(r(x))


1
b1
...
bm

 =


0
0
...
0

 (5)

where

An,m(y) =


Pn(y) Pn(yx) . . . Pn(yxm)
Pn(y1) Pn(y1(x + 1)) . . . Pn(y1(x + 1)m)

...
... . . .

...
Pn(ym) Pn(ym(x + m)) . . . Pn(ym(x + m)m)

 .

From (5), we have that |An,m(r(x))| = 0 where | | is used to denote the determinant of a matrix.
Hence |An,m(y)| satisfies the property that each rational function is a solution of |Ak,l(y)| = 0 for some
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nonnegative integers k, l. In general, the variable x appears in the coefficients of |An,m(y)| = 0. In
the following, from |An,m(y)|, we construct new difference polynomials Rn,m whose coefficients are
independent of x. We rewrite An,m(y) in the form

An,m(y) = Pn




y yx . . . yxm

y1 y1(x + 1) . . . y1(x + 1)m
...

... . . .
...

ym ym(x + m) . . . ym(x + m)m


 = Pn(Y0M(x, 0))

where Yi = diag(yi, yi+1 . . . , yi+m) are the diagonal matrices. Therefore

An,m(y) =

n+1∑
i=0

(−1)i
(
n + 1

i

)
YiM(x, i)

=

(
n+1∑
i=0

(−1)i
(
n + 1

i

)
YiM(x, i)M−1(x, 0)

)
M(x, 0).

By Lemma 2.5 and the remark below, |
∑n+1

i=0 (−1)i
(n+1

i

)
YiM(x, i)M−1(x, 0)| is independent of x. This

implies that∣∣∣∣∣n+1∑
i=0

(−1)i
(
n + 1

i

)
YiM(x, i)M−1(x, 0)

∣∣∣∣∣ =
∣∣∣∣∣n+1∑
i=0

(−1)i
(
n + 1

i

)
YiM(0, i)M−1(0, 0)

∣∣∣∣∣ .
Now we set

Rn,m =

∣∣∣∣∣n+1∑
i=0

(−1)i
(
n + 1

i

)
YiM(0, i)

∣∣∣∣∣ .
Remark 2.6. In fact, |An,m(y)| is the Casoratian determinant of Pn(y), Pn(xy), . . . ,Pn(xmy) (Cohn,
1965, p. 271). It is similar to the Wronskian determinant in the differential case.

When m = 0, Rn,0 = Pn. By induction on m, we know that Rn,m is an ordinary difference
polynomial with order n + m + 1.

Theorem 2.7. For every n ≥ 0, m ≥ 0 and y(x) ∈ U,

y(x) =
anxn + an−1xn−1

+ · · · + a0
bmxm + bm−1xm−1 + · · · + b0

⇔ Rn,m(y(x)) = 0

where the ai, bj are constants.

Proof. Since |M(x, 0)| 6= 0 for any x ∈ Q, we have that

Rn,m(y(x)) = 0 ⇔ |An,m(y(x))| = 0.

Now by Cohn (1965, p. 271, Lemma 2), for some function y(x), |An,m(y(x))| = 0 if and only if there exist
bm, bm−1, . . . , b0 which are constants and not all 0 such that

∑m
j=0 bjPn(xjy(x)) = 0. Moreover, we have

that

m∑
j=0

bjPn(x
jy(x)) = 0 ⇔ Pn

((
m∑
j=0

bjx
j

)
y(x)

)
= 0 ⇔

(
m∑
j=0

bjx
j

)
y(x) =

n∑
i=0

aix
i

where the ai are constants. The last step is due to Theorem 2.4. Hence the theorem holds. �
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2.3. A criterion for an O∆E to have rational general solutions

On the basis of the property of Rn,m, we give an equivalent condition for an O∆E to have a rational
general solution.

Theorem 2.8. Let F = 0 be an irreducible polynomial in Q(x){y}. Then F = 0 has a rational general
solution iff there exist n and m such that Rn,m belongs to one of the components of ΣF where ΣF is defined
by (1).

Proof (⇒). Suppose that F = 0 has a rational general solution ŷ(x) of the form (2), which is a generic
zero ofΛwhereΛ is one of the components ofΣF . ThenRn,m(ŷ(x)) = 0 for some non-negative integers
n,m. By the definition of the generic zero, we have that Rn,m ∈ Λ.

(⇐) Assume that Rn,m belongs to one of the components Λ of ΣF . Let ŷ(x) be a generic zero of Λ.
Then Rn,m(ŷ(x)) = 0. Hence ŷ(x) has the form (2) by Theorem 2.7. So F = 0 has a rational general
solution. �

Corollary 2.9. Let F = 0 be an irreducible O∆E in Q(x){y}. Then F = 0 has a polynomial general solution
iff there exists an n such that Pn belongs to one of the components of ΣF where ΣF is defined by (1).

Remark 2.10. Given n and m, the property of whether Rn,m belongs to one of the components of ΣF

can be decided by the difference characteristic set method (Gao and Luo, 2004).

Now we give an example to explain the above results.

Example 2.11. Consider the difference polynomial: F = (y1 − y)2 − 2(y1 + y) + 1. From Example 2.1,
F = 0 has two principal components:

{F, y2 − 2y1 + y − 2} and {F, y2 − y}.

Since P3 = y3 − 3y2 + 3y1 − y = σ(y2 − 2y1 + y − 2) − (y2 − 2y1 + y − 2), P3 ∈ {F, y2 − 2y1 + y − 2}

which implies that F = 0 has a polynomial general solution with degree 2 on the first component. In
fact, y(x) = (x + c)2 is its polynomial general solution.

In order to use the equivalent condition given in Theorem 2.8, we need to know the degree bound
n and m of the possible rational general solutions of F = 0. In general, we do not know this bound.

Example 2.12. Consider F = x(y1 − y) − (n + 1)y. Then y(x) = cx(x + 1) · · · (x + n) is a polynomial
general solution of F = 0 where c is an arbitrary constant. Here we cannot bound the degree of y(x)
from the degree of F.

3. A polynomial time algorithm for the polynomial solutions

In this section, F will always be an absolutely irreducible first-order autonomous difference
polynomial with coefficients in Q, i.e. F ∈ Q[y, y1] and F is irreducible over Q̄ where Q is the rational
number field and Q̄ is the algebraic closure ofQ. Wewill describe amethod for computing polynomial
solutions of a first-order autonomous difference equation F(y, y1) = 0. Here an element in Q̄ will not
be considered as a polynomial solution.

We will need some basic facts on the parametrization of a plane algebraic curve. Let F(x, y) be a
polynomial in Q[x, y] which is irreducible over Q̄[x, y].

Definition 3.1. Assume that r(x) = r1(x)/r2(x) ∈ Q̄(x) where r1(x), r2(x) ∈ Q̄[x] and
gcd(r1(x), r2(x)) = 1 . Then deg(r(x)) is defined as max{deg(r1(x)), deg(r2(x))}. Assume that

P = a0x
i0yj0 + · · · + anx

inyjn ∈ Q̄[x, y]

where ak 6= 0 and (ik, jk) 6= (il, jl) if k 6= l. Then the total degree of P with respect to x, y is defined as
max{ik + jk|0 ≤ k ≤ n}, denoted by tdeg(P).

Definition 3.2. (r(t), s(t)) is called a parametrization of F(x, y) = 0 if F(r(t), s(t)) = 0where r(t), s(t) ∈

Q̄(t) and not all of them are in Q̄. A parametrization (r(t), s(t)) is called proper if Q̄(r(t), s(t)) = Q̄(t).
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Lüroth’s Theorem guarantees that there always exists a proper parametrization if the
parametrization exists (Walker, 1950, p. 151, Theorem 7.3). A proper parametrization has the
following properties (Sendra and Winkler, 2001):

Proposition 3.3. Let (r(t), s(t)) be a proper parametrization of F(x, y) = 0. Then

(1) deg(r(t)) = deg(F, y), deg(s(t)) = deg(F, x).
(2) Assume that r(t) = r1(t)/r2(t) and s(t) = s1(t)/s2(t) where ri(t), si(t) ∈ Q̄[t]. Then res(r2(t)x −

r1(t), s2(t)y − s1(t), t) = λF where res is the Sylvester resultant and λ ∈ Q̄ \ {0}.

The following is a key lemma for determining the degree of the polynomial solutions of F = 0.

Lemma 3.4. Let p(x) ∈ Q̄[x] \ Q̄. Then Q̄(p(x), p(x + 1)) = Q̄(x).

Proof. By Lüroth’s Theorem, there exists g(x) ∈ Q̄(x) such that

Q̄(p(x), p(x + 1)) = Q̄(g(x)).

By Schinzel (1982, p. 10, Theorem 4), g(x) can be chosen to be in Q̄[x]. Hence there are h1(x), h2(x) ∈

Q̄[x] such that p(x) = h1(g(x)) and p(x+1) = h2(g(x)). It is clear that deg(h1(x)) = deg(h2(x)). Assume
that

h1(x) = anx
n
+ an−1x

n−1
+ · · · , h2(x) = bnx

n
+ bn−1x

n−1
+ · · ·

and g(x) = xm + · · · + c0 with m > 1. Then we have

p(x + 1) = h1(g(x + 1)) = anx
nm

+ n(m + cm−1)anx
nm−1

+ r1(x)

= h2(g(x)) = bnx
nm

+ ncm−1bnx
nm−1

+ r2(x)

where deg(r1(x)) < nm − 1 and deg(r2(x)) < nm − 1, which implies that an = bn and n = 0, a
contradiction. Therefore m = 1. The lemma holds. �

Since F is first order and autonomous, we can view F(y, y1) = 0 as a plane algebraic curve. The
above lemma means that y(x) = p(x), y1(x) = p(x + 1) is a proper parametrization of F(y, y1) = 0.
Hence by Proposition 3.3, we have the following theorem.

Theorem 3.5. If y(x) = p(x) is a polynomial solution of F(y) = 0, then

deg(p(x)) = deg(F, y) = deg(F, y1).

This theorem gives the exact degree of polynomial solutions and we can compute the polynomial
solutions by solving algebraic equations. However, the difference equationswith polynomial solutions
have special structure, which provides a more efficient method.

Definition 3.6. Let P be a nonzero monomial (term) in Q[x, t, y, y1, a1, . . . , an] where t, a1, . . . , an are
independent indeterminates. A weight of P is defined as

w(P) = deg(P, x) + deg(P, t) + n(deg(P, y) + deg(P, y1)) +

n∑
i=1

(n − i) deg(P, ai).

A polynomial G ∈ Q[x, t, y, y1, a1, . . . , an] is said to be isobaric if all monomials in G have the same
weight.

Theorem 3.7. Let F = 0 be an irreducible first-order autonomousO∆E inQ[y, y1] and ȳ(x) = anxn +· · ·+

a0 be its polynomial solution with deg(ȳ(x)) = n > 0. Then F must have the following form:

F = a(y − y1)
n
+ G(y, y1) (6)

where a is a nonzero element in Q, G ∈ Q[y, y1] and tdeg(G) ≤ n − 1.
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Proof. Consider the following resultant:

R(y, y1, t) = res(anxn + · · · + a0 − y, an(x + t)n + · · · + a0 − y1, x).

Herewe regard ai and t as indeterminates. ByDefinition 3.6, anxn+· · ·+a0−y and an(x+t)n+· · ·+a0−y1
are isobaric polynomials with the weight n. We know that R(y, y1, 0) = ann(y − y1)n. Hence

R(y, y1, t) = ann(y − y1)
n
+ tG(y, y1, t)

for some G ∈ Q[y, y1, t]. Because R(y, y1, t) is an isobaric polynomial with the weight n2, the total
degrees of the terms in G(y, y1, t)with respect to y, y1 are less than n. By Proposition 3.3 , we have that
F = λR(y, y1, 1). Hence F has the form (6). �

Assume that ȳ(x) is a polynomial solution of F = 0 and deg(ȳ(x)) = n > 0. Since F = 0 is
autonomous, ȳ(x+ c) is still a solution of F = 0 for any c ∈ Q. Hence if ȳ(x) = anxn + an−1xn−1

+· · ·+ a0
is a polynomial solution of F = 0, we can always let an−1 = 0 by a translation. The following theorems
show that we can compute the coefficients of ȳ(x) only by rational operations over Q. Now assume
that F has the following form:

F = λ(y − y1)
n
+

n−1∑
i=0

biy
iyn−1−i

1 + H(y, y1) (7)

where λ is a nonzero element in Q, bi ∈ Q and tdeg(H) ≤ n − 2.

Theorem 3.8. Let F = 0 be of the form (7) and ȳ(x) = anxn + · · · + a0 be its polynomial solution with
deg(ȳ(x)) = n > 0. Then we have that

∑n−1
i=0 bi 6= 0 and an =

∑n−1
i=0 bi

(−1)n+1nnλ
.

Proof. Substitute ȳ(x) into F = 0. Then in F(ȳ(x), ȳ(x + 1)), the highest possible degree of x equals
n(n− 1). It is easy to compute the coefficient of xn(n−1) in F(ȳ(x), ȳ(x+ 1)) which equals (−1)nnnλann +∑n−1

i=0 bian−1
n . Because F(ȳ(x), ȳ(x+1)) ≡ 0 and an 6= 0,we have that

∑n−1
i=0 bi 6= 0 and an =

∑n−1
i=0 bi

(−1)n+1nnλ
. �

Theorem 3.9. Assume that F = 0has the form (7). Let z(x) = βxn+an−2xn−2
+· · ·+a0 whereβ =

∑n−1
i=0 bi

(−1)n+1nnλ

and the ai are indeterminates. Then for i = n−2, . . . , 0, the coefficients Ci of x(n−1)2+i−1 in F(z(x), z(x+1))
are (

βn−2(n − 1 − i)
n−1∑
j=0

bj

)
ai + hi(an−2, . . . , ai+1) (8)

where hi are polynomials in an−2, . . . , ai+1.

Proof. By Definition 3.6, z(x) is an isobaric polynomial with the weight n and the highest weight of
the terms in z(x + 1) equals n. Hence the weight of every term in z(x)iz(x + 1)j is not greater than
n(i+ j). Since the highest weight of the terms in z(x) − z(x+ 1) equals n− 1, the highest weight of the
terms in F(z(x), z(x+1)) equals n(n−1). So if k < i, ak cannot appear in Ci and if ai appears in Ci then it
can only appear linearly. It is not difficult to see that the coefficient of x(n−1)2+i−1 in λ(z(x)− z(x+ 1))n
which includes ai is λ(−1)nnniβn−1ai and the coefficient in

∑n−1
j=0 bjz(x)jz(x + 1)n−1−j which includes ai

is (n−1)
∑n−1

j=0 bjβn−2ai. Because the highest weight of the terms in H(z(x), z(x+1)) is not greater than

n(n − 2), ai cannot appear in the coefficient of x(n−1)2+i−1 in H(z(x), z(x + 1)). Since β =

∑n−1
i=0 bi

(−1)n+1nnλ
,

(
λ(−1)nnniβn−1

+ (n − 1)
n−1∑
j=0

bjβ
n−2

)
ai =

(
βn−2(n − 1 − i)

n−1∑
j=0

bj

)
ai.

Hence Ci has the form (8). �



R. Feng et al. / Journal of Symbolic Computation 43 (2008) 746–763 755

Table 2
Timings for randomly generated first-order autonomous ODEs

deg(F, y1) 10 11 12 13 14 15
tdeg(F) 10 11 12 13 14 15
Average time <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Polynomial solution No No No No No No

In Theorem 3.9, since hi(an−2, . . . , ai+1) is independent of ai, . . . , a0, we can compute hi(an−2, . . . ,
ai+1) as follows: if one substitutes u(x) = anxn + · · · + ai+1xi+1 into F then hi(an−2, . . . , ai+1) is the
coefficient of x(n−1)2+i−1 in F(u(x), u(x + 1)). Now we can give the algorithm for finding a polynomial
solution.

Theorems 3.7–3.9 provide an almost explicit solution for the polynomial solution of a first-order
autonomous difference equation.

Algorithm 3.10. Input: An absolutely irreducible first-order autonomous O∆E F = 0.
Output: All polynomial solutions of F = 0 if there is one; otherwise, a message “NULL" if F = 0 has
no polynomial solution.

(1) Rewrite F in the form (7). If F cannot be rewritten in the form (7) or in the form (7)
∑n−1

i=0 bi = 0,
then by Theorems 3.7 and 3.8 F = 0 has no polynomial solutions. Then return (NULL) and the
algorithm terminates.

(2) Let n = deg(F, y) > 0. Let ān =

∑n−1
i=0 bi

(−1)n+1nnλ
, ān−1 = 0 and z(x) = ānxn.

(3) For i from n − 2 to 0 do
(a) Substitute z(x) to F and let C = coeff(F(z(x), z(x + 1)), x, (n − 1)2 + i − 1).
(b) Let āi = −

C

ān−2
n (n−1−i)

∑n−1
j=0 bj

.

(c) Let z(x) = z(x) + āixi.
(4) If F(z(x), z(x + 1)) = 0, then z(x) is a polynomial solution of F = 0. Then return (z(x)) and the

algorithm terminates. Otherwise, F = 0 has no polynomial solutions, then return (NULL) and the
algorithm terminates.

The complexity of the above algorithm is polynomial in the number of the multiplications (or
divisions) over Q. The dominating step for the complexity comes from the Step (3) and Step (4). At
these steps, we need only to substitute a polynomial in x with degree n to a polynomial in y, y1 with
total degree n. It is not difficult to show that the total number of the multiplications and divisions in
these steps is polynomial in n.

We implemented the above algorithm in Maple. Tables 1 and 2 show the experiment results. In
Table 1, all difference polynomials Fi,Gi have the form (7). Here the coefficients of Fi,Gi are integers.
The column of “tdeg" means the total degrees of the difference polynomials; “term" means the total
numbers of the monomials; “solution" means whether the difference equations have polynomial
solutions. The running time is in seconds and is collected on a computer with Pentium 4, 2.99 GHz
CPU and 760Mmemory.

From Table 2, we can see that for randomly given O∆Es, our program can identify almost
immediately that such equations have no polynomial solutions. This is because the O∆Es with
polynomial solutions have very special structure as shown by Theorems 3.7 and 3.8. From Table 1,
we can see that for O∆Es with the “correct" form (7), our program solves very large O∆Es. Also, the
most difficult case is that the given O∆E has the “correct" form (7) but does not have a polynomial
solution, which is shown on the right part of Table 1.

4. Rational solutions for first-order autonomous O∆Es

The idea introduced in Feng and Gao (2006) for finding rational solutions for F = 0 is first finding a
Laurent series solution in x = 0 and from it constructing a Padé approximation to this Laurent series
solution. If the degree of the Padé approximation is high enough, it will be the rational solution of
F = 0. But Laurent series solutions in x = 0 for difference equations are meaningless (Q̄((x)) is not
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a difference field under the difference operation σ(x) = x + 1). Instead, we give an algorithm for
computing Laurent series solutions in 1

x
and use it to find the rational solutions of F = 0.

As in Section 3, F will always be an absolutely irreducible first-order autonomous difference
polynomial with coefficients in Q, i.e. F ∈ Q[y, y1] and an element in Q̄ will not be considered
as a rational solution. The idea for computing rational solutions with a given degree includes two
ingredients: (1) find a formal series solution of F = 0 which is a series expansion of a rational solution
at x = ∞; (2) recover the rational solution by Padé approximation. First we give an example to show
that Lemma 3.4 cannot be generalized to the rational case.

Example 4.1. Let g1(x) =
(x−2)2

x− 3
2

, g2(x) =
x2−2
x+ 3

2
and h(x) = x +

1
2x . Then we have that

g1(h(x + 1)) =
(2x2 − 1)2

2(2x + 1)(x + 1)x
= g2(h(x)).

Hence Q̄(g1(h(x)), g1(h(x + 1))) = Q̄(h(x)) 6= Q̄(x).

Lemma 4.2. If F = 0 has a rational solution, then deg(F, y) = deg(F, y1).

Proof. Assume that r(x) is a rational solution of F = 0. by Lüroth’s Theorem, there exists h(x) ∈ Q̄(x)
such that

r(x) = r1(h(x)), r(x + 1) = r2(h(x)) and Q̄(r1(x), r2(x)) = Q̄(x).

Then by Definition 3.2, (r1(x), r2(x)) is a proper parametrization of F = 0. By Proposition 3.3,

deg(F, y) = deg(r2(x)), deg(F, y1) = deg(r1(x)). (9)

By Binder (1996, 1.2. Proposition), we have that

deg(r(x)) = deg(r1(x)) deg(h(x)) = deg(r(x + 1)) = deg(r2(x)) deg(h(x)). (10)

Then (9) and (10) imply the conclusion. �

4.1. An algorithm for finding Laurent series solutions

Since each element in Q̄(x) can be expanded as Laurent series at x = ∞, we can view the difference
field Q̄(x) as a subfield of the difference field Q̄(( 1

x
)) where Q̄(( 1

x
)) is the field of the Laurent series

in 1
x
. Hence, it is helpful to find a solution of F = 0 in Q̄(( 1

x
)). In this subsection, we will describe an

algorithm for computing Laurent series solutions in 1
x
of F = 0.

Lemma 4.3. Let P(x)/Q(x) be a rational solution of an O∆E F = 0. If deg(P(x)) is not less than deg(Q(x)),
we can obtain a new O∆E F̄ = 0 which has a rational solution P̄(x)/Q̄(x) with deg(P̄(x)) < deg(Q̄(x)).
Moreover,

(1) if deg(P(x)) > deg(Q(x)), P(x)/Q(x) = Q̄(x)/P̄(x);
(2) if deg(P(x)) = deg(Q(x)), P(x)/Q(x) = P̄(x)/Q̄(x) + α where α is one of the nonzero solutions of

F(y, y) = 0 in Q̄.

Proof. If deg(P(x)) = deg(Q(x)), let P̄(x) = P(x) − (p/q)Q(x) and Q̄(x) = Q(x) where p, q are the
leading coefficients of P(x) and Q(x) respectively. Then deg(P̄(x)) is less than deg(Q̄(x)) and P̄(x)/Q̄(x)
is a rational solution of F̄ = F(y+p/q, y1+p/q) = 0. Note that in this case p/q is a solution of F(y, y) = 0.
If deg(P(x)) > deg(Q(x)), let F̄ = ynyn1F(

1
y
, 1

y1
)where n = deg(F, y). Then F̄ is an irreducible polynomial

in y, y1 by Lemma 4.2 and Q(x)/P(x) is a solution of F̄ = 0. The second statement is obvious. �

Remark 4.4. The new O∆E F̄ = 0 in Lemma 4.3 may be not in Q[y, y1]. However, from the proof of
Lemma 4.3, there exists α ∈ Q̄with [Q(α) : Q] ≤ tdeg(F) such that F̄ ∈ Q(α)[y, y1].

Remark 4.5. By Lemma 4.3, we need only to consider the case that F = 0 has a rational solution
P(x)/Q(x) in Q̄(x) with deg(P(x)) < deg(Q(x)). In this case, F = 0 has a Laurent series solution
y(x) = ck

1
xk

+ ck+1
1

xk+1 + · · · in Q̄(( 1
x
)) with k > 0. Moreover, if c = −

ck+1
k

, we have that y(x − c) =

ck
1
xk

+ c̄k+2
1

xk+2 + · · · and y(x − c) is still a solution of F = 0 because F is autonomous.
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Lemma 4.6. Let ȳ(x) = ck
1
xk

+ ck+2
1

xk+2 + · · · be a Laurent series solution of F = 0 in Q̄(( 1
x
)) where k > 0

and ck 6= 0. Then regarding y1 as an algebraic function in y defined by F = 0, there is a Puiseux series
expansion of y1 at y = 0 which has the form

y1 = y + a1y
k+1
k + a2y

k+2
k + · · · (11)

where a1 6= 0 and a2 =
k2+k
2k2 a21.

Proof. Let Q̄(( 1
x
)) be the field consisting of the Laurent series in 1

x
. Then ȳ(x) ∈ Q̄(( 1

x
)) and since

ȳ(x + 1) = ck
1
xk

− kck
1

xk+1 +

(
k2 + k

2
ck + ck+2

)
1

xk+2 + · · · ,

ȳ(x + 1) is also in Q̄(( 1
x
)). Let ϕ(x) = x(b0 + b1

1
x

+ b2
1
x2

+ · · ·) where the bi are indeterminates. Then

1
ϕ(x)

=
1
b0x

−
b1
b20x

2
+

(
b21
b30

−
b2
b20

)
1
x3

+ · · ·

and

ȳ(ϕ(x)) = ck

(
1
b0x

−
b1
b20x

2
+ · · ·

)k

+ ck+2

(
1
b0x

−
b1
b20x

2
+ · · ·

)k+2

+ · · ·

=
ck

(b0x)k
−

kckb1
(b0x)k+1 +

(
kckb

2
1 − kckb0b2 + ck+2

) 1
(b0x)k+2 + · · ·

+ (−kckb0bi + Hi(ck, . . . , ck+i, b0, . . . , bi−1))
1

(b0x)k+i
+ · · ·

where Hi is a polynomial in its arguments. Let b0 = c
1
k
k , b1 = 0, b2 =

ck+2
k

c
−

k+1
k

k and bi =
Hi
k
c
−

k+1
k

k for
i = 3, 4, . . . . Then we have that

ϕ(x) = x

c
1
k
k +

ck+2c
−

k+1
k

k

k

1
x2

+ · · ·


and

ȳ(ϕ(x)) =
1
xk

,

ȳ(ϕ(x) + 1) =
1
xk

− kc
−

1
k

k

1
xk+1 +

k2 + k

2
c
−

2
k

k

1
xk+2 + · · ·

= ȳ(ϕ(x)) − kc
−

1
k

k ȳ(ϕ(x))
k+1
k +

k2 + k

2
c
−

2
k

k ȳ(ϕ(x))
k+2
k + · · · .

By Theorem 1.5 on page 92 of Walker (1950), the map ϕ(x) : g(x) → g(ϕ(x)) is an automorphism of
Q̄(( 1

x
)). Applying this automorphism to F(ȳ(x), ȳ(x+1)) = 0 yields F(ȳ(ϕ(x)), ȳ(ϕ(x)+1)) = 0. Hence

F

(
ȳ(ϕ(x)), ȳ(ϕ(x)) − kc

−
1
k

k ȳ(ϕ(x))
k+1
k +

k2 + k

2
c
−

2
k

k ȳ(ϕ(x))
k+2
k + · · ·

)
= 0. (12)

Applying the inverse automorphism of ϕ(x) to (12), we have that

F

(
ȳ(x), ȳ(x) − kc

−
1
k

k ȳ(x)
k+1
k +

k2 + k

2
c
−

2
k

k ȳ(x)
k+2
k + · · ·

)
= 0. (13)
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Since ȳ(x) is transcendental over Q̄, so is ȳ(x)
1
k . Then themap ȳ(x)

1
k → y

1
k gives rise to an isomorphism

between Q̄((ȳ(x)
1
k )) and Q̄((y

1
k )) where y is an indeterminate. Applying this isomorphism to (13)

yields

F

(
y, y − kc

−
1
k

k y
k+1
k +

k2 + k

2
c
−

2
k

k y
k+2
k + · · ·

)
= 0.

Hence

y1 = y − kc
−

1
k

k y
k+1
k +

k2 + k

2
c
−

2
k

k y
k+2
k + · · ·

is a Puiseux series expansion of the algebraic function defined by F(y, y1) = 0 at y = 0. Let a1 = −kc
−

1
k

k

and a2 =
k2+k
2 c

−
2
k

k . Then a2 =
k2+k
2k2 a21. The lemma holds. �

From the proof of Lemma 4.6, we know how to construct a Puiseux series expansion of F = 0 at
y = 0 from a solution of F = 0 in Q̄(( 1

x
)). Conversely, we can find a solution of F = 0 in Q̄(( 1

x
)) from a

Puiseux series which has the form (11). We describe this process as the following algorithm.

Algorithm 4.7. Input: The first N+1 terms of a Puiseux series expansion of F = 0, which has the form
(11).
Output: The first N terms of a solution of F = 0 in Q̄(( 1

x
)), which must be of the following form:

bk
1
xk

+ bk+2
1

xk+2 + · · · + bk+N−1
1

xk+N−1 .

(1) Let c1 = −
k
a1
.

(2) Let c2 = 0.
(3) Let i = 2 and φ2(x) = c1

1
x

+ c2
1
x2
.

(4) while i < N do
(a) Let ri+1 be the coefficient of 1

xk+i+1 of the polynomial
Pi(x) = φi(x)

k
+ a1φi(x)

k+1
+ · · · + ai+1φi(x)

k+i+1
− φi(x + 1)k

and ci+1 = −
ri+1

(i−1)kck−1
1

.

(b) Let φi+1(x) = φi(x) + ci+1
1

xi+1 .
(c) Let i = i + 1.

(5) return (φN(x)k mod 1
xk+N ).

Theorem 4.8. Algorithm 4.7 is correct.

Proof. Let ci, ai,φi(x) and Pi(x) be as those in Algorithm 4.7. Let

φ(x) = c1
1
x

+ c2
1
x2

+ c3
1
x3

+ · · · .

We need only to prove that

F(φ(x)k,φ(x + 1)k) = 0.

Since F(y, y + a1y
k+1
k + · · ·) = 0 and y is transcendental over Q̄, applying the isomorphism y

1
k → y

between Q̄((y
1
k )) and Q̄((y)) and the isomorphism y → φ(x) between Q̄((y)) and Q̄((φ(x))),

F(y, y + a1y
k+1
k + · · ·) = 0 ⇒ F(yk, yk + a1y

k+1
+ · · ·) = 0

⇒ F(φ(x)k,φ(x)k + a1φ(x)k+1
+ · · ·) = 0.

Hence we need only to prove

φ(x)k +

∞∑
j=1

ajφ(x)k+j
− φ(x + 1)k = 0.

For this, we need only to show

Pi(x) ≡ 0 mod
1

xk+i+1 , i = 1, 2, . . . . (14)
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We will prove (14) by induction. Because c1 = −k/a1, c2 = 0 and a2 =
k2+k
2k2 a21,

P2(x) ≡
ck1
xk

+ a1
ck+1
1

xk+1 + a2
ck+2
1

xk+2 − ck1

(1
x

−
1
x2

+
1
x3

)k

≡ ck1(a1c1 + k)
1

xk+1 + ck1

(
c21a2 −

k(k + 1)
2

) 1
xk+2 ≡ 0 mod

1
xk+3 .

Now we assume that (14) is true for i < m where m > 2.

Pm(x) ≡ φm(x)k +

m+1∑
j=1

ajφm(x)k+j
− φm(x + 1)k

≡

(
φm−1(x) + cm

1
xm

)k

+ a1

(
φm−1(x) + cm

1
xm

)k+1

+

m∑
j=2

ajφm−1(x)
k+j

−

(
φm−1(x + 1) + cm

1
(x + 1)m

)k

≡ Pm−1(x) +
kcm
xm

φm−1(x)
k−1

+
(k + 1)a1cm

xm
φm−1(x)

k

−φm−1(x + 1)k−1 kcm
(x + 1)m

≡ Pm−1(x) +
kck−1

1 cm
xk+m−1 +

(k + 1)a1ck1cm
xk+m

− kcm

(
ck−1
1

xk−1 −
(k − 1)ck−1

1

xk

)( 1
xm

−
m

xm+1

)

≡ Pm−1(x) +
a1(k + 1)ck1cm

xm+k
+

k(m + k − 1)ck−1
1 cm

xk+m

≡ Pm−1(x) +
k(m − 2)ck−1

1 cm
xk+m

≡ 0 mod
1

xk+m+1 .

The last equality is true because a1 = −k/c1 and cm equals −
rm

k(m−2)ck−1
1

where rm is the coefficient of
1

xk+m in Pm−1(x). Hence the theorem holds. �

Lemma 4.9. Let y1 = y + a1y
k+1
k + a2y

k+2
k + · · · have the form (11). The Laurent series φ(x) satisfying

(1) φ(x) has the form c1
1
x

+ c3
1
x3

+ · · · ;

(2) φ(x)k + a1φ(x)k+1
+ · · · − φ(x + 1)k = 0 is unique.

Proof. Substitute c1
1
x

+ c3
1
x3

+ · · · into yk + a1yk+1
+ · · · − (σ(y))k = 0. We have that c1 = −k/a1. By

Algorithm 4.7, we know that cm+1 uniquely depends on c1, . . . , cm for m > 1. The lemma holds. �

4.2. An algorithm based on Padé approximation

Padé approximation is a particular type of rational fraction approximation to the value of a
function. It constructs the rational fraction from Taylor series expansion of the original function. Its
definition is given below (George and Baker, 1975, p. 5).

Definition 4.10. For the formal power series A(x) =
∑

∞

0 ajxj and two non-negative integers L and M,
the (L,M) Padé approximation to A(x) is the rational fraction PL(x)

QM(x)
such that

A(x) −
PL(x)

QM(x)
= O(xL+M+1)

where PL(x) is a polynomial with degree not greater than L and QM(x) is a polynomial with degree not
greater than M. Moreover, PL(x) and QM(x) are relatively prime and QM(0) = 1.
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Let PL(x) =
∑L

0 pixi and QM(x) =
∑M

0 qixi. We can compute PL(x) and QM(x) by solving linear systems,
but there are more efficient algorithms for computing Padé approximation (Beckermann et al., 1997;
Brent et al., 1980; Cabay and Choi, 1986; Cabay and Labahn, 1992; von zur Gathen and Gerhard,
1999). We can see that in order to compute the (L,M) Padé approximation to A(x), we need to know
a0, . . . , aL+M .

For Padé approximation, the following results will be used in this paper (George and Baker, 1975,
Theorem 1.1 and Theorem 2.2).

Theorem 4.11 (Frobenius and Padé). When it exists, the Padé approximation to any formal power series
A(x) is unique.

Theorem 4.12 (Padé). The function f (x) is a rational function of the following form:

f (x) =
plxl + pl−1xl−1

+ · · · + p0
qmxm + qm−1xm−1 + · · · + 1

iff the (L,M) Padé approximation to f (x) equals f (x) itself for all L ≥ l and M ≥ m.

We first give an algorithm for finding a rational solution P(x)/Q(x) of F = 0 satisfying deg(P(x)) <
deg(Q(x)).

Algorithm 4.13. Input: An absolutely irreducible first-order autonomous O∆E F = 0 and a non-
negative integer n.
Output: A rational solution y(x) = P(x)/Q(x) of F = 0 satisfying deg(y(x)) ≤ n and deg(P(x)) <
deg(Q(x)) if there is one, or a message “NULL" if F = 0 has no such rational solutions.

(1) Compute the first 2n + 2 terms of all the Puiseux series expansions of the algebraic function y1
defined by F(y, y1) = 0 at (0, 0) which have the form (11) (see Cano (1993), Duval (1989) and
Walsh (2000)); denote all these series by p1(y), . . . , pd(y).

(2) Let i = 1. While i ≤ d do
(a) By Algorithm 4.7, compute the first 2n + 1 terms ϕ(x) of a solution of F = 0 in Q̄(( 1

x
)) from

pi(y).
(b) Let ϕ̄(x) = ϕ( 1

x
). Compute the (n, n) Padé approximation to ϕ̄(x), denoted by r(x).

(c) Let y(x) = r( 1
x
).

(d) If F(y(x), y(x + 1)) ≡ 0, then return y(x) and terminate the algorithm.
(e) Let i = i + 1.

(3) Return (NULL).

Theorem 4.14. Algorithm 4.13 is correct.

Proof. Assume that F = 0 has a rational solution P(x)/Q(x) with deg(P(x)/Q(x)) ≤ n and deg(P(x)) <
deg(Q(x)). By Remark 4.5, F = 0 has a solution in Q̄(( 1

x
))which has the form: y(x) = ck

1
xk

+ck+2
1

xk+2 +· · ·

where k > 0 and ck 6= 0. By Lemma 4.6, there exists a Puiseux series expansion of F = 0 which
has the form (11). By Algorithm 4.7, we can find the first 2n + 1 terms of a Laurent series solution
from this Puiseux series expansion of F = 0. By Lemma 4.9, the Laurent series solution computed by
Algorithm 4.7 should equal y(x). By Theorem 4.12, if y(x) is the Laurent series expansion of P(x)/Q(x)
at x = ∞ , then the (n, n) Padé approximation to y( 1

x
) must be P( 1

x
)/Q( 1

x
). Here we use the fact that

deg(P( 1
x
)/Q( 1

x
)) = deg(P(x)/Q(x)). �

The complexity of Algorithm 4.13 is polynomial in terms of the number of multiplications (or
divisions) in Q. From Walsh (2000), we know that the computation complexity of the first 2n + 2
terms of a Puiseux series expansion of F = 0 is polynomial in n and tdeg(F). The coefficients of the
Puiseux series are in Q(α) where [Q(α) : Q] is a polynomial in tdeg(F). In Algorithm 4.7, we need to
compute (c1x + · · · + cixi)k+i+1 where ci ∈ Q(α) and i ≤ 2n + 1, which can be computed polynomially
in n and tdeg(F) (Feng and Gao, 2004). It is not difficult to check that all other steps are of polynomial
complexity.
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Example 4.15. Consider the difference equation

F = (−2y + 1 − 3y2)y21 − (2y2 + 2y)y1 + y2 = 0.

We try to find a rational solution with degree not greater than 2.

(1) Compute the first six terms of the Puiseux series expansion of F = 0 at y = 0 which has the form
(11):

p1 = y + 2y
3
2 + 3y2 + 5y

5
2 + 9y3 +

63
4

y
7
2 .

(2) From the above Puiseux series, we have k = 2. Compute the first five terms of the solution of F = 0
in Q̄(( 1

x
)):

ϕ(x) =
1
x2

+
1
x4

+
1
x6

.

(3) Let ϕ̄(x) = ϕ( 1
x
) = x2 + x4 + x6. Compute a (2, 2) Padé approximation y(x) to ϕ̄(x). We have that

y(x) =
x2

1−x2
.

(4) Let y(x) = y( 1
x
) =

1
x2−1 . Since F( 1

x2−1 ,
1

x2+2x ) ≡ 0, y(x) is a rational solution of F = 0.

Now we can give the algorithm, which is clearly true by Lemma 4.3.

Algorithm 4.16. Input: An absolutely irreducible first-order autonomous O∆E F = 0 and a non-
negative integer n.
Output: a rational solution P(x)/Q(x) with deg(P(x)/Q(x)) ≤ n of F = 0 if there is one, or a message
“NULL" if F = 0 has no such rational solutions.

(1) If deg(F, y) 6= deg(F, y1), then by Lemma 4.2, F = 0 has no rational solutions. Then return(NULL)
and terminate the algorithm.

(2) Case 1 (deg(P(x)) < deg(Q(x))):
Find a rational solution y(x) of F = 0 with Algorithm 4.13. If y(x) exists, then return y(x) and
terminate the algorithm. Otherwise F = 0 has no rational solutions P(x)/Q(x) with deg(P(x)) <
deg(Q(x)) and deg(P(x)/Q(x)) ≤ n.

(3) Case 2 (deg(P(x)) > deg(Q(x))):
Let G = yNyN1F(

1
y
, 1

y1
) where N = deg(F, y). Find a rational solution y(x) of G = 0 with

Algorithm 4.13. If y(x) exists, then by Lemma 4.3, 1
y(x)

is one of the solutions of F = 0. Return
1

y(x)
and terminate the algorithm. Otherwise F = 0 has no rational solutions P(x)/Q(x) with

deg(P(x)) > deg(Q(x)) and deg(P(x)/Q(x)) ≤ n.
(4) Case 3 (deg(P(x)) = deg(Q(x))):

Solve F(y, y) = 0. Assume that the nonzero roots of F(y, y) = 0 are a1, . . . , as. Let i = 1. While i ≤ s
do
(a) Let G = F(y − ai, y1 − ai). Find a rational solution y(x) of G = 0 with Algorithm 4.13.
(b) If we find a solution y(x) of G = 0, then by Lemma 4.3, y(x) + ai is a solution of F = 0. Return

y(x) + ai and terminate the algorithm.
(c) Let i = i + 1.
If we cannot find any solutions for i = 1, 2, . . . , s, F = 0 has no rational solutions P(x)/Q(x) with
deg(P(x)) = deg(Q(x)) and deg(P(x)/Q(x)) ≤ n.

(5) If we cannot find any solutions in Steps (2), (3) or (4), then F = 0 has no rational solutions
P(x)/Q(x) with deg(P(x)/Q(x)) ≤ n. Then return (NULL) and the algorithm terminates.
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5. Conclusion

In this paper, we studyO∆Eswith rational and polynomial solutions.We give a difference equation
description for univariate polynomials and rational functions by giving O∆Es whose solutions are
exactly polynomials and rational functions respectively. On the basis of theseO∆Es,we give a criterion
for an O∆E to have a rational type general solution.

For the first-order autonomous O∆Es, we give a polynomial time algorithm for computing
polynomial solutions if they exist. As shown in Example 4.1, in the difference case, the rational
solution with its shift is not always a proper parametrization of the original equation (considered as
a plane algebraic curve). Hence we cannot bound the degree of the rational solutions by the method
used in Feng and Gao (2006). However, for a given degree, we can still give an algorithm for finding a
rational solution if one exists, based on the Padé approximation and an algorithm for computing the
Laurent series solutions of difference equations.
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