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Abstract

In this paper, we present a necessary and sufficient condition for the existence of
rational first integrals of the following separable differential equation:

dy

dx
= f (x)g(y)

where f (x), g(y) are two univariate rational functions. We also present an algorithm to
verify the condition and to compute a rational first integral when the condition is
satisfied.
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1 Introduction
Let K denote a field of characteristic zero, and K(x) be the differential field with usual
derivation δx = d

dx . Consider the following first order differential system
dy
dx

= P(x, y)
Q(x, y)

(1)

whereP,Q ∈ K[x, y] andPQ �= 0. A rational first integral of the system (1) is a nonconstant
rational function R(x, y) such that R(x, η(x)) is a constant, i.e., δx(R(x, η(x))) = 0, for any
solution η(x) of (1) that does not make the denominator of R(x, y) vanish. A polynomial
S ∈ K[x, y] \ K is called a Darboux polynomial or special polynomial if all ξ ∈ K(x)
with S(x, ξ ) = 0 are solutions of (1). Here and henceforth, the overline of a field denotes
its algebraic closure. Rational first integrals are closely related to Darboux polynomials:
the numerator and denominator of a rational first integral are Darboux polynomials, and
conversely, the quotient of two different Darboux polynomials with the same cofactor is
a rational first integral.
The problem of computing rational first integrals was already studied by Darboux in

1878. Darboux [1] showed that if there are enough Darboux polynomials, then the system
will admit a rational first integral. Due to the lack of degree bounds, the computation
of Darboux polynomials is quite difficult, and there is no complete algorithm for this
task so far. In the celebrated work by Prelle and Singer [2], a procedure was presented
to compute Darboux polynomials when the degree bound of the Darboux polynomials is
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given. Since then, there has been various literature regarding the computation of rational
or elementary first integrals [3–12] and Darboux polynomials [5,13–15].
In this paper, we do not intend to develop algorithms for computing rational first

integrals or Darboux polynomials for general first-order differential equations. Instead,
we will focus on the necessary and sufficient conditions for the existence of rational
first integrals for a first-order differential system. The first such condition was given by
Darboux in [1]. Modern proofs were later presented in [7,16], and a generalization was
also provided in [8,16].

Theorem 1 Let d = max{deg(P), deg(Q)}. Then the system (1) has a rational first integral
if and only if (1) has at least d(d+1)

2 + 2 irreducible Darboux polynomials.

Due to the difficulty in computingDarbouxpolynomials, the condition given inTheorem1
is hard to verify. In this paper, we will consider the following separable differential system:

dy
dx

= f (x)g(y) (2)

where f (x) ∈ K(x), g(y) ∈ K(y) and f (x)g(y) �= 0. Note that the system (2) always has
an elementary first integral, see Remark 1. Here, we provide an effective necessary and
sufficient condition for the existence of a rational first integral. To describe our result,
we need to introduce Hermite reduction of rational functions. Suppose h(x) ∈ K(x). A
Hermite reduction of h(x) is

h(x) = δx(h1(x)) + h2(x)

where h1(x), h2(x) ∈ K(x) satisfy

(a) h2(x) is proper, i.e., the degree of the numerator of h2(x) is less than the degree of its
denominator;

(b) the denominator of h2(x) is squarefree.

The readers are referred to Chapter 2 of [17] for the details of Hermite reduction and
referred to [18–21] for its various generalizations. Since the denominator of δx(h1(x)) can
not be square-free, the Hermite reduction of h(x) is unique, i.e., if h(x) = δx(h̄1(x))+ h̄2(x)
is another Hermite reduction of h(x) then δx(h1(x)) = δx(h̄1(x)) and h2(x) = h̄2(x). The
specific proof can be found in Lemma 2.1 of [22], where the uniqueness of a more general
reduction is proven. Let

f (x) = δx(f1(x)) + f2(x) and
1

g(y)
= δy(g1(y)) + g2(y) (3)

be the Hermite reductions of f (x) and 1
g(y) respectively. The main result of this paper is

the following theorem.

Theorem 2 The system (2) admits a rational first integral if and only if one of the following
conditions holds:

(a) f2(x) = 0 = g2(y); or
(b) δx(f1(x)) = δy(g1(y)) = 0, and there exists a nonzero λ ∈ K such that

f2(x) = λ
δx(f̃ (x))
f̃ (x)

and g2(y) = λ
δy(g̃(y))
g̃(y)

for some f̃ (x) ∈ K(x) \ {0}, g̃(y) ∈ K(y) \ {0}.
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The condition (b) of Theorem 2 implies that all residuces of f2(x) and g2(y) are integer
multiples of λ. In Sect. 2, we shall prove that these residues (and consequently λ) belong
to an extension of K with a degree of at most two. Furthermore, we will demonstrate
that the conditions of Theorem 2 can be verified efficiently, and rational first integrals, if
they exist, can be computed in O(�3 log(�)) operations in K, plus the cost of factoring a
univariate polynomial overK of degree not greater than �, where � is the maximum of the
degrees of the numerators and denominators of f (x) and g(y). See Algorithm 1 and the
proof of its correctness.
The paper is organized as follows: In Sect. 2, we shall prove Theorem 2 and give a

method to verify its conditions and to compute a rational first integral when one of these
conditions is satisfied. In Sect. 3, we summarize the results from Sect. 2 into an algorithm
and present some examples.

2 Proof of Theorem 2
Before presenting the proof of Theorem2, let us define rational first integrals andDarboux
polynomials in the language of differential algebra. As before, denote by δx and δy the usual
derivations with respect to x and y. Equipped with δx and δy,K(x, y) becomes a differential
field and K is the field of constants of K(x, y). Set

D = P(x, y)δx + Q(x, y)δy,

where P,Q are given in (1). Then D is a new derivation on K(x, y). It is clear that the field
{a ∈ K(x, y) | D(a) = 0} contains K. In the following, we shall use CF to denote the field
of constants of a differential field F .

Definition 1 A nonzero polynomial h(x, y) ∈ K[x, y] such that h divides D(h) is called a
Darboux polynomial ofD or the system (1). An element h ∈ K(x, y)\K such thatD(h) = 0
is called a rational first integral of D or the system (1).

It is easy to see that if the system (1) has a rational first integral in K(x, y) then it has
a rational first integral in K(x, y), because P,Q ∈ K[x, y]. Suppose that η ∈ K(x) is an
algebraic solution of the system (1) then the defining polynomial h(x, y) ∈ K[x, y] of η

is an irreducible Darboux polynomial of D. Therefore Theorem 1 implies that if (1) has
enough algebraic solutions then it admits a rational first integral. Conversely, we have the
following well-known result.

Lemma 3 Suppose that the system (1) admits a rational first integral and F is a differential
field extension of K(x). Then any solution η ∈ F of (1) is algebraic over CF (x).

Proof Assume that h(x, y) ∈ K(x, y) is a rational first integral of (1) and that η is a solution
of (1) in F . If η is a zero of the denominator of h(x, y) then η is algebraic overK(x). Suppose
that η is not a zero of the denominator of h(x, y). Then h(x, η) ∈ CF and thus η is algebraic
over CF (x). ��
Let f2(x), g2(y) be as in (3). We further write

f2(x) =
m∑

i=1

αi
x − ai

and g2(y) =
n∑

j=1

βj

y − bj

where ai, bj ,αi,βj ∈ K and a1, . . . , am are distinct, b1, . . . , bn are distinct. Set

V = SpanQ{α1, . . . ,αm,β1, . . . ,βn} (4)
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the vector space over Q spanned by α1, . . . ,αm,β1, . . . ,βn. Let γ1, . . . , γ� be a basis of V .
Write αi = ∑�

s=1 di,sγs,βj = ∑�
s=1 ej,sγs, where di,s, ej,s ∈ Q. Let p be the least common

multiple of the denominators of the di,s and the ej,s, and set

Rs(x, y) =
( m∏

i=1
(x − ai)pdi,s

) ⎛

⎝
n∏

j=1
(y − bj)−pej,s

⎞

⎠ ∈ K(x, y).

Remark 1 Set

I(x, y) = p(f1(x) − g1(y)) +
�∑

s=1
γs ln(Rs(x, y)).

Applying δx to I(x, y) yields that

δx(I(x, y)) = δx(pf1(x)) +
�∑

s=1
γs

δx(Rs(x, y))
Rs(x, y)

= pδx(f1(x)) +
�∑

s=1
γs

( m∑

i=1

pdi,s
x − ai

)
= pf (x).

Applying f (x)g(y)δy to I(x, y) yields that

f (x)g(y)δy(I(x, y)) = f (x)g(y)
(

−p
1

g(y)

)
= −pf (x).

Since f (x)g(y) �= 0, δx(I(x, y)) �= 0 and thus I(x, y) /∈ K. On the other hand,

(δx + f (x)g(y)δy)(I(x, y)) = 0

and so I(x, y) is an elementary first integral of the system (2).

The following lemma is essential. It demonstrates that if the system (2) has a
rational first integral, then we can find a rational first integral in the set {f1(x) −
g1(y), R1(x, y), . . . , R�(x, y)}.
Lemma 4 Suppose that the system (2) admits a rational first integral. Then for any h ∈
{f1(x) − g1(y), R1(x, y), . . . , R�(x, y)}, if h /∈ K then h is a rational first integral of (2).

Proof We have that

0 = f (x) − 1
g(y)

dy
dx

= (δx(f1(x)) + f2(x)) − (δy(g1(y)) + g2(y))
dy
dx

= δx(f1(x)) − δy(g1(y))
dy
dx

+
�∑

s=1
γs

⎛

⎝
m∑

i=1

di,s
x − ai

−
n∑

j=1

ej,s
y − bj

dy
dx

⎞

⎠ .

Suppose that η is a solution of (2) in F , a differential field extension of K(x). Replacing y
with η in the above equalities yields that

δx(f1(x) − g1(η)) +
�∑

s=1

γs
p

δx(Rs(x, η))
Rs(x, η)

= 0.

Due to Lemma 3, η is algebraic over CF (x) and thus so are f1(x) − g1(η) and the Rs(x, η).
Set K = CF (x)(f1(x) − g1(η), R1(x, η), . . . , R�(x, η)). Then the transcendence degree of K
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over CF (x) is zero. By Theorem 1 of [23] (with i = 1, uj = Rj(x, η), j = 1, . . . , � and
v1 = f1(x) − g1(η)),

d(f1(x) − g1(η)) +
�∑

s=1

γs
p
d(Rs(x, η))
Rs(x, η)

= 0

where d : K −→ 
K/CF is the universal derivation from K to the module of Kähler
differentials. Proposition 4 of [23] implies that f1(x) − g1(η) and the Rs(x, η) are algebraic
overCF . Hence, δx(f1(x)− g1(η)) = 0 and δx(Rs(x, η)) = 0 for all 1 ≤ s ≤ �. This concludes
the lemma. ��

Proposition 5 Suppose that δx(f1(x)) = δy(g1(y)) = 0. If the system (2) admits a rational
first integral then � = dimQ(V ) = 1, where V is given in (4).

Proof We have that f (x) = f2(x) and 1
g(y) = g2(y). Since f (x)g(y) �= 0 and both f2(x)

and g2(y) are proper, f2(x), g2(y) /∈ K. Without loss of generality, we may assume that∏m
i=1 αi

∏n
j=1 βj �= 0, where αi,βj are as in (4). Then for each 1 ≤ i ≤ m and each

1 ≤ j ≤ n, there are at least one of the di,s that is not zero and at least one of the ej,s that
is not zero. Hence Rs /∈ K for all 1 ≤ s ≤ �. Lemma 4 implies that Rs is a rational first
integral for all 1 ≤ s ≤ �.
Applying 1

g(y)δx + f (x)δy (= g2(y)δx + f2(x)δy) to Rs yields that

0 = g2(y)δx(Rs) + f2(x)δy(Rs)
Rs

= g2(y)
δx(Rs)
Rs

+ f2(x)
δy(Rs)
Rs

=
n∑

j=1

βj

y − bj

m∑

i=1

pdi,s
x − ai

−
m∑

i=1

αi
x − ai

n∑

j=1

pej,s
y − bj

=
m∑

i=1

n∑

j=1

p(βjdi,s − αiej,s)
(x − ai)(y − bj)

.

Since a1, . . . , am are distinct and b1, . . . , bn are distinct, βjdi,s − αiej,s = 0 for all i, j, s. As
not all d1,1, . . . , d1,� are zero, assume that d1,s1 �= 0. Then βj = ej,s1

d1,s1
α1 for all j, i.e., α1,βj

are linearly dependent overQ for all j. Similarly, we have that β1,αi are linearly dependent
over Q for all i. Then αi,α1 are also linearly dependent over Q and thus dimQ(V ) = 1. ��

Proof of Theorem 2 Write f (x) = p1(x)
q1(x) , g(y) = p2(y)

q2(y) , where pi and qi are coprime polyno-
mials. Set

D = q1(x)q2(y)δx + p1(x)p2(y)δy.

Suppose that (a) holds. Then p1(x)
q1(x) = δx(f1(x)) and p2(y)

q2(y) = 1
δy(g1(y)) . This implies that

D(f1(x) − g1(y)) = q1(x)q2(y)δx(f1(x) − g1(y)) + p1(x)p2(y)δy(f1(x) − g1(y))

= p1(x)q2(y) − p1(x)q2(y) = 0.

If f1(x) − g1(y) ∈ K then both f1(x) and g1(y) must be in K. This implies that f (x) =
δx(f1(x)) = 0 and 1/g(y) = δy(g1(y)) = 0, which leads to a contradiction. Therefore,
f1(x) − g1(y) /∈ K, and thus f1(x) − g1(y) is a rational first integral.
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Now assume that the item (b) holds. Then

f (x) = p1(x)
q1(x)

= λ
δx(f̃ (x))
f̃ (x)

and g(y) = p2(y)
q2(y)

= g̃(y)
λδy(g̃(y))

.

We have that

D(f̃ (x)g̃(y)−1) = q1(x)q2(y)δx(f̃ (x))g̃(y)−1 − p1(x)p2(y)δy(g̃(y))g̃(y)−2 f̃ (x)

=
(
1
λ
p1(x)q2(y) − 1

λ
p1(x)q2(y)

)
g̃(y)−1 f̃ (x) = 0.

If f̃ (x) ∈ K, then since f (x) = λ
δx(f̃ (x))
f̃ (x)

, it follows that f (x) = 0, which contradicts the

assumption that f (x) �= 0. Therefore, f̃ (x) /∈ K. Similarly, g̃(y) /∈ K. Thus f̃ (x)g̃(y)−1 /∈ K,
and so f̃ (x)g̃(y)−1 is a rational first integral.
It remains to show that the item (a) or (b) is necessary. Suppose that the system (2) admits

a rational first integral. By Lemma 4, for any h ∈ {f1(x) − g1(y), R1(x, y), . . . , R�(x, y)}, if
h /∈ K then h is a rational first integral. We first show that if f1(x) − g1(y) /∈ K then
f2(x) = 0 = g2(y). Assume that f1(x) − g1(y) /∈ K. Then f1(x) − g1(y) is a rational first
integral, and we have that

0 = D(f1(x) − g1(y))
q1(x)q2(y)

= δx(f1(x)) − f (x)g(y)δy(g1(y))

= δx(f1(x)) − f (x)g(y)
(

1
g(y)

− g2(y)
)

= δx(f1(x)) − f (x) + f (x)g(y)g2(y)

= −f2(x) + f (x)g(y)g2(y).

Hence f2(x)
f (x) = g(y)g2(y) and so c = f2(x)

f (x) = g(y)g2(y) ∈ K. This implies that

0 = cf (x) − f2(x) = δx(cf1(x)) + (c − 1)f2(x).

By the uniqueness of Hermite reduction, (c − 1)f2(x) = 0 = δx(cf1(x)). If f2(x) �= 0 then
c = 1 and δx(f1(x)) = 0. So b = f1(x) ∈ K and f1(x) − g1(y) = b − g1(y) is a rational first
integral. This is impossible because it implies that δy(g1(y)) = 0, but g1(y) /∈ K. Therefore,
f2(x) = 0. Similarly, g2(y) = 0.
Now assume that f1(x) − g1(y) ∈ K. Then f1(x) ∈ K and g1(y) ∈ K, i.e., δx(f1(x)) = 0 =

δy(g1(y)). Proposition 5 implies that � = dimQ(V ) = 1. Using the notation introduced
after Lemma 3, we set w(x) = ∏m

i=1(x − ai)pdi,1 . Then

f2(x) =
m∑

i=1

αi
x − ai

= γ1

m∑

i=1

di,1
x − ai

= γ1
p

δx(w(x))
w(x)

.

Similarly, set v(y) = ∏n
j=1(y−bj)pej,1 . Then we have that g2(y) = γ1

p
δy(v(y))
v(y) . This concludes

the theorem. ��
Suppose that δx(f1(x)) = δy(g1(y)) = 0. In the following, we shall explain how to verify the
item (b) of Theorem 2. To this end, we first demonstrate that if the system (2) admits a
rational first integral then the residues of f2(x) and g2(y) lie in a finite extension of K of
degree atmost two. This result has already been established in [24] for the caseK = Q. For
completeness, we provide an alternative proof here. For A, B ∈ K[x], resx(A, B) denotes
the Sylvester resultant of A and B with respect to x.
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Definition 2 Let t be an indeterminate overK(x) and A, B be inK[x] with deg(B) > 0, B
squarefree and gcd(A, B) = 1. We call resx(B, A − tδx(B)) ∈ K[t] the residue polynomial
of A

B , denoted by respoly(AB ).

Concerning the residue polynomial, we have the following theorem, originally proved by
Trager and Rothstein (see Theorem 22.8 on page 601 of [25]).

Theorem 6 Let A, B ∈ K[x] be coprime with deg(A) < deg(B), and B monic and square-
free. If E is an algebraic extension of K, c1, . . . , cl ∈ E \ {0} are pairwise distinct, and
v1, . . . , vl ∈ E[x] \ E are monic, squarefree, and pairwise coprime, then the following are
equivalent:

(1) A
B = ∑l

i=1 ci
δx(vi)
vi .

(2) The polynomial respoly(AB ) splits over E in linear factors, c1, . . . , cl are precisely the
distinct roots of respoly(AB ), and vi = gcd(B, A − ciδx(B)) for all 1 ≤ i ≤ l.

Proposition 7 Assume that the system (2) admits a rational first integral and δx(f1(x)) =
0 = δy(g1(y)). Let S = respoly(f2(x))respoly(g2(y)). Then S takes one of the following forms:

S = a
�∏

i=1
(t − rib)di , (5)

or

S = a
�∏

i=1
(t2 − r2i b)

di , (6)

where a, b ∈ K \ {0}, ri ∈ Q \ {0}, di > 0, and ri �= rj if i �= j in case (5), while r2i �= r2j if
i �= j and t2 − b is irreducible over K in case (6).

Proof Note that the denominators of f2(x) and g2(y) are squarefree. By Theorem 6, all
residues of f2(x) and g2(y) are exactly the roots of S. Assume that γ ∈ K is a zero of
S, i.e., γ is a residue of f2(x) or g2(y). Due to Proposition 5, every root of S in K is of
the form rγ for some nonzero r ∈ Q. If γ ∈ K then it is easy to see that S takes the
form (5). Now assume that γ /∈ K. Then d = [K(γ ) : K] > 1. We shall show that S
takes the form (6). Since S ∈ K[t], each conjugate of γ over K is still a root of S and
thus it is of the form rγ for some nonzero r ∈ Q. Let riγ be all conjugates of γ over K,
where i = 1, . . . , d and r1 = 1. Denote by σi(r1, . . . , rd) the i-th elementary symmetric
polynomial on r1, . . . , rd . Suppose that σi′ (r1, . . . , rd) �= 0 for some 1 ≤ i′ ≤ d − 1.
Then σi′ (r1γ , . . . , rdγ ) = σi′ (r1, . . . , rd)γ i′ ∈ K and thus γ i′ ∈ K, which contradicts with
[K(γ ) : K] = d > i′. Hence σi(r1, . . . , rd) = 0 for all i = 1, . . . , d − 1. Therefore, the
minimal polynomial of γ overKmust be of the form td − c for some c ∈ K. This implies
that every conjugate of γ over K is of the form ξγ , where ξ is a d-th root of unity, and
conversely. Hence, all d-th roots of unity must be rational numbers, so d must equal two.
Consequently, the minimal polynomial of γ over K is of the form t2 − c, and S takes the
form (6). ��

Remark 2 Assume that K is a field of characteristic zero, equipped with a polynomial
factorization algorithm. Then we can decide whether S ∈ K[t] takes the form (5) or (6) in
Proposition 7 as follows. Let S = aSd11 . . . Sdν

ν be the irreducible factorization of S overK.
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(1) If Si = t−bi for all i = 1, . . . , ν and for each pair (i, j), bi and bj are linearly dependent
over Q then S takes the form (5).

(2) If Si = t2 − bi for all i = 1, . . . , ν and for each pair (i, j), bi/bj is a square of some
rational number then S takes the form (6).

(3) In other cases, S does not take the form (5) or (6).

3 Algorithm and Examples
In this section,we summarize the previous results into an algorithm (seeAlgorithm1). The
correctness of the algorithm is guaranteed by Theorem 2 and Proposition 7. Additionally,
we will illustrate our results with several examples. In the following, we assume thatK is a
field of characteristic zero, equipped with a polynomial factorization algorithm. We shall
use num(·) and den(·) to denote the numerator and denominator of a rational function
respectively. Furthermore, den(·) is assumed to be monic.

Algorithm 1 FindRationalFirstIntegral
Input: f (x) ∈ K(x) \ {0} , g(y) ∈ K(y) \ {0}.
Output: a rational first integral of (2) if it exists, or “No” otherwise.

1. Compute the Hermite reduction:

f (x) = δx(f1(x)) + f2(x) and
1

g(y)
= δy(g1(y)) + g2(y).

2. If f2(x) = g2(y) = 0 then return f1(x) − g1(y).
3. If δx(f1(x)) = δy(g1(y)) = 0 then

3.1. Compute S = respoly(f2(x)) and T = respoly(g2(y)).
3.2. Compute S = aSd11 . . . Sdmm and T = bTe1

1 . . .Ten
n , irreducible factorization.

3.3. If for all i, j, Si = t − riα and Tj = t − sjα with ri, sj ∈ Q\{0}, r1 = 1 and
α ∈ K\{0} then compute

Gi = gcd(den(f2),num(f2) − riαδx(den(f2))),

Hj = gcd(den(g2),num(g2) − sjαδy(den(g2)))

and return
( m∏

i=1
Grip
i

) ⎛

⎝
n∏

j=1
Hsjp
j

⎞

⎠
−1

,

where p is the least common multiple of the denominators of the ri and the sj .
3.4. If for all i, j, Si = t2 − r2i α and Tj = t2 − s2j α with r1 = 1 then compute

G±i = gcd(den(f2),num(f2) ± ri
√

αδx(den(f2))),

H±j = gcd(den(g2),num(g2) ± sj
√

αδy(den(g2)))

and return
( m∏

i=1

(
Gi
G−i

)rip
) ⎛

⎝
n∏

j=1

( Hj

H−j

)sjp
⎞

⎠
−1

.
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4. Otherwise, return “No”.

As defined in Definition 8.26 on page 232 of [25],M(�) denotes the multiplication time
for polynomials of degree less than �, meaning that polynomials in K[x] of degree less
than � can be multiplied using at mostM(�) operations inK. For instance, if the classical
algorithm is used,M(�) = 2�2.

Proposition 8 Algorithm 1 works correctly and its runtime is O(�M(�) log(�)) oper-
ations in K, plus the cost for factoring S and T over K in Step 3.2, where � =
max{deg(num(f )), deg(num(g)), deg(den(f )), deg(den(g))}.

Proof From the proof of Theorem 2, if f2(x) = 0 = g2(y) then f1(x)−g1(y) is a rational first
integral of the system (2). It remains to show that Step 3 works correctly. By Proposition 7,
if the system (2) admits a rational first integral and δx(f1(x)) = 0 = δy(g1(y)) then ST takes
the form (5) or (6). If ST takes the form (5) then Step 3.3 is performed. In this case, set
f̃ (x) = ∏m

i=1G
rip
i and g̃(y) = ∏n

j=1H
sjp
j , where Gi and Hj are given as in Step 3.3. Due to

Theorem 6, one has that

f2(x) =
m∑

i=1
riα

δx(Gi)
Gi

=
m∑

i=1

α

p
δx(G

rip
i )

Grip
i

= α

p
δx

(∏m
i=1G

rip
i

)
∏m

i=1G
rip
i

= α

p
δx(f̃ (x))
f̃ (x)

,

g2(y) =
n∑

j=1
sjα

δy(Hj)
Hj

=
n∑

j=1

α

p
δy(H

sjp
j )

Hsjp
j

= α

p

δy
(∏n

j=1H
sjp
j

)

∏n
j=1H

sjp
j

= α

p
δy(g̃(y))
g̃(y)

.

From the proof of Theorem 2, the output in Step 3.3, which is f̃ (x)g̃(y)−1, is a rational first
integral. If ST takes the form (6) then Step 3.4 is performed. In this case, set

f̃ (x) =
m∏

i=1

(
Gi
G−i

)rip
and g̃(y) =

n∏

j=1

( Hj

H−j

)sjp
.

Again, by Theorem 6, one has that

f2(x) =
m∑

i=1
ri
√

α

(
δx(Gi)
Gi

− δx(G−i)
G−i

)
=

√
α

p
δx

(∏m
i=1(Gi/G−i)rip

)
∏m

i=1(Gi/G−i)rip
=

√
α

p
δx(f̃ (x))
f̃ (x)

,

g2(y) =
n∑

j=1
sj
√

α

(
δy(Hj)
Hj

− δy(H−j)
H−j

)
=

√
α

p

δy
(∏n

j=1(Hj/H−j)sjp
)

∏n
j=1(Hj/H−j)sjp

=
√

α

p
δy(g̃(y))
g̃(y)

.

From the proof of Theorem 2 again, one sees that the output in Step 3.4, which is
f̃ (x)g̃(y)−1, is a rational first integral. This concludes the correctness of the algorithm.
By Theorem 22.7 on page 600 of [25], Step 1 requires O(M(�) log(�)) operations in K

and one sees that deg(den(g2)), deg(den(f2)) ≤ �. Due to Corollary 11.18 on page 310
of [25], Step 3.1 requires O(�M(�) log(�)) operations in K. It is straightforward to verify
that deg(S), deg(T ) ≤ �. Note that both Si and Tj are of degree not greater than two.
By Corollary 11.6 on page 304 and Corollary 11.8 on page 305 of [25], computing G±i
or H±j requires O(M(�) log(�)) operations in K. So the total cost for Steps 3.3 and 3.4
is O(�M(�) log(�)). Therefore, the overall runtime for Algorithm 1 is O(�M(�) log(�))
operations in K, plus the cost for factoring S and T in Step 3.2. ��
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Set

C =
{
h ∈ K(x, y) | 1

g(y)
δx(h) + f (x)δy(h) = 0

}
. (7)

Then C is a subfield ofK(x, y) containingK. Suppose that the system (2) admits a rational
first integral. Then C \ K �= ∅. We claim that tr.deg(C/K), the transcendence degree of
C over K, is equal to one. Assume, for contradiction, that tr.deg(C/K) = 2. Then y is
algebraic over C and thus y ∈ C . This implies

0 = 1
g(y)

δx(y) + f (x)δy(y) = f (x),

which contradicts the assumption that f (x) �= 0. This proves the claim. Due to a theorem
of Gordan and Igusa (see Theorem 3 on page 15 of [26]), we have C = K(h̃) for some
h̃ ∈ C . We refer to such h̃ as a generator of C over K.

Lemma 9 Assume that the system (2) admits a rational first integral and C is as in (7). Let
h̃ be the output of Algorithm 1, and let h be a generator of C over K. Then h can be chosen
such thatden(h)dividesden(h̃). Furthermore, ifdeg(den(h̃), y) > 0 thendeg(den(h), y) > 0,
and if h̃ = u(x)v(y) for some u(x) ∈ K(x), v(y) ∈ K(y) then h can be chosen to have the same
form.

Proof Since h̃ ∈ C = K(h), there exist two coprime polynomials P,Q ∈ K[z] such that
h̃ = P(h)/Q(h). Write h = h1/h2, where h1, h2 ∈ K[x, y] and they are coprime. Set

P̄ = Y dP
(
X
Y

)
, Q̄ = Y dQ

(
X
Y

)
,

where d = max{deg(P), deg(Q)}. Then

h̃ = P̄(h1, h2)
Q̄(h1, h2)

. (8)

By Lemma on page 16 of [26], P̄(h1, h2) and Q̄(h1, h2) are coprime. Hence Q̄(h1, h2) =
αden(h̃) for some nonzero α ∈ K. Let a1h1 − b1h2 be a factor of P̄(h1, h2) and a2h1 − b2h2
be a factor of Q̄(h1, h2), where ai, bi ∈ K and a1b2 − a2b1 �= 0. Then a2h1 − b2h2 divides
den(h̃) and (a1h1 − b1h2)/(a2h1 − b2h2) is also a generator of C .
Suppose that deg(den(h̃), y) > 0. We take a2h1 − b2h2 to be a factor of Q̄(h1, h2) such

that deg(a2h1 − b2h2, y) > 0. In this case, we take h = (a1h1 − b1h2)/(a2h1 − b2h2) and
then deg(den(h), y) > 0. Now assume that h̃ = u(x)v(y). Then both a1h1 − b1h2 and
a2h1 − b2h2 are of the form p(x)q(y), where p(x) ∈ K[x], q(y) ∈ K[y]. Hence h can be
taken to have the same form as h̃. ��

Proposition 10 Suppose that C is as in (7) and f1(x) − g1(y) is the output of Algorithm 1.
Then f1(x) − g1(y) is a generator of C.

Proof Note that in this case, f (x) = δx(f1(x)) and 1
g(y) = δy(g1(y)). Since fg �= 0, we have

δx(f1(x)) �= 0 and δy(g1(y)) �= 0. Let h(x, y) be a generator of C . We first show that h(x, y)
can be chosen to have the same form as f1(x)− g1(y). By Lemma 9, we may write h(x, y) =
u(x,y)
p(x)q(y) , where p(x) divides den(f1(x)), q(y) divides den(g1(y)), u(x, y) ∈ K[x, y], and u(x, y)
and p(x)q(y) are coprime. Moreover, if deg(den(g1)) > 0 then deg(q(y)) > 0. We regard h
as a rational function inK(y), whereK = K(x). For a rational functionw(y) ∈ K(y), denote
by∇w = wn(Y )wd(Z)−wn(Z)wd(Y ),wherewn andwd are thenumerator anddenominator
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of w, respectively. We have ∇f1(x)−g1(y) = −∇g1(y). Since f1(x) − g1(y) ∈ C = K(h), by
Proposition 3.1 of [27], ∇h divides ∇f1(x)−g1(y). Since ∇f1(x)−g1(y) = −∇g1(y) ∈ K[Y, Z], we
have

∇h = p(x)(u(x, Y )q(Z) − u(x, Z)q(Y )) = a(x)M(Y, Z)

where M(Y, Z) ∈ K[Y, Z] and a(x) ∈ K. Let c1 ∈ K be such that p(c1), a(c1) are well-
defined, a(c1) �= 0, and u(c1, y) and q(y) are coprime. We then have that

M(Y, Z) = 1
a(c1)

p(c1)(u(c1, Y )q(Z) − u(c1, Z)q(Y )) = 1
a(c1)

∇h(c1 ,y),

and thus

∇h = a(x)M(Y, Z) = a(x)
a(c1)

∇h(c1 ,y).

By Proposition 3.1 of [27] again, we further have h(x, y) = w1(h(c1, y)) and h(c1, y) =
w2(h(x, y)) for some w1, w2 ∈ K(z). This implies that w1(z) = (b11z + b12)/(b21z + b22),
where bij ∈ K[x] and b11b22 − b12b21 �= 0. In other words,

h(x, y) = u(x, y)
p(x)q(y)

= b11u(c1, y) + b12p(c1)q(y)
b21u(c1, y) + b22p(c1)q(y)

.

Since u(x, y) and p(x)q(y) are coprime, q(y) divides b21u(c1, y) + b22p(c1)q(y), viewed as
polynomials in y. Furthermore, because u(c1, y) and q(y) are coprime, b21 = 0. Therefore
h(x, y) = ã(x)h(c1, y) + b̃(x) for some ã, b̃ ∈ K(x). Note that if h(c1, y) ∈ K or ã(x) = 0
then δy(h(x, y)) = 0. In this case, the equality δx(f1)δy(h(x, y)) + δy(g1)δx(h(x, y)) = 0 with
δy(g1) �= 0 implies that δx(h(x, y)) = 0. This leads to the conclusion that h(x, y) ∈ K, which
is a contradiction since tr.deg(C/K) = 1 and C = K(h(x, y)). Hence h(c1, y) /∈ K and
ã(x) �= 0.
Now, substituting h(x, y) = ã(x)h(c1, y) + b̃(x) into δy(g1)δx + δx(f1)δy gives

δy(g1)δx(ã)h(c1, y) + δy(g1)δx(b̃) + δx(f1)δy(h(c1, y))ã = 0. (9)

Assume thath(c1, y) is a polynomial in y, i.e., deg(q(y)) = 0.Thenh(x, y) is also apolynomial
in y. By the choice of h(x, y), g1 is a polynomial in y aswell. Since δy(g1) �= 0, deg(δy(g1)) ≥ 0.
This together with deg(h(c1, y)) > 0 implies

deg(δy(g1)h(c1, y)) > max{deg(δy(g1)), deg(δy(h(c1, y)))}.
Equality (9) then implies that δx(ã(x)) = 0. Suppose instead thath(c1, y) is not apolynomial,
i.e., deg(q(y)) > 0. Let c2 be a zero of q(y) in K. Then ordc2 (h(c1, y)) < 0, where ordc2 (·)
denotes the order of a rational function at y = c2. Because q(y) divides den(g1), c2 is a pole
of g1 and so ordc2 (δy(g1)) ≤ −2. Consequently,

ordc2 (δy(g1)h(c1, y)) < min{ordc2 (δy(g1)), ordc2 (δy(h(c1, y)))}.
Similarly, equality (9) implies that δx(ã(x)) = 0. In summary, ã(x) ∈ K \ {0} and h(x, y) =
ã(x)h(c1, y)+ b̃(x), which is of the form as f1(x)− g1(y). Finally, since δx(f1)δy(g1) �= 0 and
δx(ã) = 0, by (9), we have

δx(b̃)
δx(f1)

= −δy(ãh(c1, y))
δy(g1)

.

Because the left-hand side of the above equality is independent of y and the right-hand
side is independent of x, it follows that α = −δy(ãh(c1, y))/δy(g1) ∈ K. Furthermore, since
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ã ∈ K\{0} and h(c1, y) ∈ K(y)\K, we conclude that α �= 0, ãh(c1, y) = −αg1(y) + β1 and
b̃(x) = αf1(x) + β2 for some β1,β2 ∈ K. Consequently,

h(x, y) = α(f1(x) − g1(y)) + β1 + β2

and thus f1(x) − g1(y) = 1
α
(h(x, y) − β1 − β2) is a generator of C . ��

Proposition 11 Suppose that C is as in (7) and f̃ (x)g̃(y)−1 is the output of Algorithm 1.
Then f̃ (x)g̃(y)−1 is a generator of C.

Proof Note that in this case f (x) = f2(x) and 1
g(y) = g2(y). Suppose thath(x, y) is a generator

of C . By Lemma 9, h(x, y) can be chosen to have the form u(x)v(y), where u(x) ∈ K(x) and
v(y) ∈ K(y). Substituting h(x, y) into f2(x)δy + g2(y)δx yields

f2(x)
δy(v(y))
v(y)

+ g2(y)
δx(u(x))
u(x)

= 0.

This implies that δx(u(x))
u(x) = βf2(x) and

δy(v(y))
v(y) = −βg2(y) for some nonzero β ∈ K. From

the proof of Proposition 8, we have

δx(u(x))
u(x)

= βf2(x) = βα̃
δx(f̃ (x))
f̃ (x)

and
δy(v(y))
v(y)

= −βg2(y) = −βα̃
δy(g̃(y))
g̃(y)

, (10)

where α̃ = α
p or α̃ =

√
α

p , and the residues of δx(f̃ (x))
f̃ (x)

and δy(g̃(y))
g̃(y) are the rip and sjp,

respectively. On the other hand, the residues of δx(u(x))
u(x) and δy(v(y))

v(y) are integers. Therefore,

βα̃rip = di ∈ Z and βα̃sjp = ej ∈ Z

for all i = 1, . . . , m and j = 1, . . . , n. Since r1 = 1, βα̃p = d1, which implies ri = di
d1 and

sj = ej
d1 for all i, j. Note that p is the least common multiple of the denominators of the

ri and sj . Thus, p | d1, and we conclude that ν = βα̃ ∈ Z. From (10), u(x) = c1 f̃ (x)ν and
v(y) = c2(g̃(y))−ν for some nonzero c1, c2 ∈ K. This implies

h(x, y) = u(x)v(y) = c1c2
(
f̃ (x)g̃(y)−1

)ν ∈ K(f̃ (x)g̃(y)−1),

and so C = K(h(x, y)) = K(f̃ (x)g̃(y)−1), i.e., f̃ (x)g̃(y)−1 is a generator of C . ��

Example 1 Consider

dy
dx

= y2 − 2
x2 − 2

.

We have that

S = respoly
(

1
x2 − 2

)
= 1 − 8t2 and T = respoly

(
1

y2 − 2

)
= 1 − 8t2.

So ST takes the form (6). In Step 3.4, we set α = 1/8, r1 = s1 = 1. Then

G1 = gcd(x2 − 2, 1 − √
2x/2) = x − √

2,

G−1 = gcd(x2 − 2, 1 + √
2x/2) = x + √

2,

H1 = gcd(y2 − 2, 1 − √
2y/2) = y − √

2,

H−1 = gcd(y2 − 2, 1 + √
2y/2) = y + √

2,
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and a rational first integral of the system is

(x − √
2)(y + √

2)
(x + √

2)(y − √
2)
.

Example 2 Consider

dy
dx

= y(ax − b)
x(cy − d)

where a, b, c, d ∈ K, which corresponds to the Lotka-Volterra equation

dx
dt

= x(cy − d);

dy
dt

= y(ax − b).

To apply our result, we assume that (ax − b)(cy − d) �= 0. We have that

f (x) = ax − b
x

= δx(ax) − b
x
and

1
g(y)

= cy − d
y

= δy(cy) − d
y
.

By Theorem 2, the above system admits a rational first integral if and only if one of the
following conditions holds:

(a) b = d = 0;
(b) a = c = 0 and there exists a λ ∈ K \ {0} such that − b

x = λ
δx(f̃ (x))
f̃ (x)

and −d
y = λ

δy(g̃(y))
g̃(y)

for some nonzero f̃ (x) ∈ K(x) and nonzero g̃(y) ∈ K(y).

In case (a), ax − cy is a rational first integral. In case (b), f̃ (x) must be of the form c1xe1
and g̃(y) must be of the form c2ye2 , where e1, e2 are nonzero integers and c1, c2 ∈ K are
nonzero constants. This implies that b

d = e1
e2 and xe1y−e2 is a rational first integral.

Example 3 Consider

dy
dx

= y3 + 1
x3 + 1

. (11)

We have that

S = respoly
(

1
x3 + 1

)
= 1 − 27t3 = − 1

27
(t − 1)(t2 + t + 1).

Since S does not take the form (5) or (6), the system (11) has no rational first integral.
Note that if η ∈ K(x) is a solution of the system (11) then the irreducible polynomial
h(x, y) ∈ K[x, y] with h(x, η) = 0 is an irreducible Darboux polynomial of D, where

D = (x3 + 1)δx + (y3 + 1)δy.

On the other hand, Theorem 1 implies that the system (11) has at most seven irreducible
Darboux polynomials. Thus, it has at most seven solutions in K(x). In fact, we shall
show that, except for y = x,−1, 1±

√−3
2 , the system has no other solutions in K(x). A

straightforward calculation implies that

y − x, x + 1, x − 1 ± √−3
2

, y + 1 and y − 1 ± √−3
2
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are irreducible Darboux polynomials of D. If the system (11) had a solution inK(x) other
than x,−1 or 1±√−3

2 then it would have onemore irreducible Darboux polynomial beyond
the seven polynomials listed above, implying that it admits a rational first integral, which
leads to a contradiction. We conclude that y = x,−1, 1±

√−3
2 are the only solutions of the

system in K(x).
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