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ABSTRACT
This paper continues the studies of symbolic integration by focusing

on the stability problems on D-finite functions. We introduce the

notion of stability index in order to investigate the order growth of

the differential operators satisfied by iterated integrals of D-finite

functions and determine bounds and exact formula for stability

indices of several special classes of differential operators. With the

basic properties of stability index, we completely solve the stability

problem on general hyperexponential functions.
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1 INTRODUCTION
New functions were introduced when certain integrals could not

be evaluated in term of a specific class of functions. We need to

introduce the logarithmic function log(𝑥) since 1/𝑥 has no primi-

tive in the field of rational functions. The special functions, such

as

∫
exp(𝑥2) 𝑑𝑥,

∫
1/log(𝑥) 𝑑𝑥 etc., are introduced likewise since

they are not elementary. We can continue to study the integrals

of the newly introduced functions, e.g., the indefinite integral of

log(𝑥) is 𝑥 log(𝑥) − 𝑥 . A natural question is whether we need keep

introducing new functions in order to integrate a given function

iteratively.
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Motivated by the above question and irrationality proofs in num-

ber theory, Chen initialized the dynamical aspect of symbolic inte-

gration by studying some stability problems in differential fields

in [4]. For a given special function 𝑓 in certain differential ring

(𝑅, 𝐷), the stability problem is deciding whether there exists a se-

quence {𝑔𝑖 }𝑖≥0 in 𝑅 such that 𝑓 = 𝐷𝑖 (𝑔𝑖 ) for all 𝑖 ∈ N. Such stable

special functions appear in any integro-differential algebra, which is

an algebra equipped with derivation and integration operators. The

theory of integro-differential algebras has been developed in [5].

Two basic examples of integro-differential algebras are the ring of

polynomials C[𝑥] and the ring 𝐶∞ (R) of smooth functions on R.
From the algorithmic point of view, the algebra 𝐶∞ (R) is too big
and we are more interested in some subalgebra whose elements are

computable, such as the subalgebras C[𝑥, log(𝑥)] and C[𝑥, exp(𝑥)].
To find more rich examples, it is necessary to classify certain class

of functions that are iteratively integrable in this class.

Focusing on elementary functions, Chen in [4] had solved the

stability problems on three families of special functions including

rational functions, logarithmic functions, and exponential functions.

In this paper, we shall continue the work [4] by focusing on D-finite

functions using the language of differential operators.

The notion of D-finite power series was first introduced by Stan-

ley [12] in 1980 in the univariate case and later studied by Lipshitz

in the multivariate case [9]. D-finite functions are also called holo-

nomic functions that had played a significant role in Zeilberger’s

method of creative telescoping [14, 15]. These series, like algebraic

numbers, can be algorithmically manipulated via its defining linear

differential equations [2, 11]. For a comprehensive introduction to

theory and algorithms for D-finite functions, one can see the com-

ing monograph by Kauers [7]. The indefinite integration problem

on D-finite functions was studied by Abramov and van Hoeij in [3].

The main goal of this paper is to investigate Abramov-van Hoeij’s

algorithm iteratively.

The remainder of this paper is organized as follows. We recall

some basic terminologies in differential algebra and then define

the notion of principal integrals related to iterated integration in

Section 2. We will focus on studying the order of the differential

operators satisfied by principal integrals in Section 3, which inspires

us to introduce the notion of stability index. In Section 4, we will

determine the stability indices of two special classes of differential

operators including Katz’s operators and first-order operators. With

the help of stability index, we will completely solve the stability

problem for general hyperexponential functions in Section 5 which

generalizes the results in [4]. As an application, we present an exact

formula for the stability index of a special class of rational functions

in Section 6.
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2 PRINCIPAL INTEGRALS
Throughout this paper, let 𝐶 be any algebraically closed field of

characteristic zero and 𝑘 = 𝐶 (𝑥) be the differential field with the

usual derivation
′
such that 𝑥 ′ = 1 and 𝑐′ = 0 for all 𝑐 ∈ 𝐶 . Let

K be a differential closure of 𝐶 (𝑥) (see Kolchin’s book [8] for the

existence of such closures). Any system of algebraic differential

equations with coefficients from 𝑘 has solutions in K if it has any

solution in some differential extension of 𝑘 . Let 𝑘 ⟨𝐷⟩ be the ring of
linear differential operators with coefficients in 𝑘 in which we have

𝐷 · 𝑓 = 𝑓 · 𝐷 + 𝑓 ′, for any 𝑓 ∈ 𝑘. The ring 𝑘 ⟨𝐷⟩ is a left Euclidean
domain in which any left ideal is principal [10]. For an𝑚 ∈ Z, Z≤𝑚
(resp., we let Z≥𝑚) stand for the set of all integers not greater than

𝑚 (resp., not less than𝑚).

Let 𝐿 be a nonzero operator in 𝑘 ⟨𝐷⟩. Write

𝐿 =

𝑛∑︁
𝑖=0

𝑎𝑖𝐷
𝑖 , where 𝑎𝑖 ∈ 𝑘 and 𝑎𝑛 ≠ 0.

The integer 𝑛 is called the order of 𝐿, denoted by ord(𝐿), and 𝑎𝑛 is

called the leading coefficient of 𝐿, denoted by lc(𝐿). If 𝑎𝑛 = 1, then

𝐿 is called a monic operator. The adjoint operator of 𝐿, denoted by

𝐿∗, is defined to be

𝐿∗ :=
𝑛∑︁
𝑖=0

(−𝐷)𝑖𝑎𝑖 .

The field K can be equipped with a left 𝑘 ⟨𝐷⟩-module structure

with the action 𝐿(𝑓 ) = ∑𝑛
𝑖=0 𝑎𝑖 𝑓

(𝑖 )
for any 𝐿 =

∑𝑛
𝑖=0 𝑎𝑖𝐷

𝑖 ∈ 𝑘 ⟨𝐷⟩
and 𝑓 ∈ K . The annihilating ideal

Ann𝑘 ⟨𝐷 ⟩ (𝑓 ) := {𝑃 ∈ 𝑘 ⟨𝐷⟩ | 𝑃 (𝑓 ) = 0}
is a left ideal of 𝑘 ⟨𝐷⟩. Since 𝑘 ⟨𝐷⟩ is a left Euclidean domain, we

have Ann𝑘 ⟨𝐷 ⟩ (𝑓 ) = ⟨𝐿⟩ for some monic operator 𝐿 ∈ 𝑘 ⟨𝐷⟩.

Definition 2.1. An element 𝑓 ∈ K is said to be D-finite over 𝑘 if
Ann𝑘 ⟨𝐷 ⟩ (𝑓 ) = ⟨𝐿⟩ for some nonzero and monic operator 𝐿 ∈ 𝑘 ⟨𝐷⟩.
We call 𝐿 the defining operator for 𝑓 , denoted by 𝐿𝑓 , whose order
is called the order of 𝑓 , denoted by ord(𝑓 ). For convenience, we set
ord(𝑓 ) = ∞ if 𝑓 is not D-finite.

Lipshitz [9] showed that the set of all D-finite elements over 𝑘

forms a subalgebra of K , which is also closed under taking deriva-

tives and integrals. We will investigate how the order changes when

integrating a D-finite function.

Definition 2.2. For 𝑓 ∈ K and 𝑖 ∈ Z>0, 𝑔 ∈ K is called an 𝑖-th
primitive or an 𝑖-th integral of 𝑓 if 𝑓 = 𝐷𝑖 (𝑔). When 𝑖 = 1, we simply
call 𝑔 an integral of 𝑓 .

Suppose 𝑓 is a D-finite function and 𝑔𝑖 is an 𝑖-th integral of 𝑓 .

Then 𝑔𝑖 is also D-finite and ord(𝑔𝑖 ) ≤ ord(𝑓 ) + 𝑖 . Set
N𝑖 (𝑓 ) = min{ord(𝑔) | 𝑔 is an 𝑖-th integral of 𝑓 }.

The following example shows that different 𝑖-th integrals of a given

function may have different orders.

Example 2.3. Let 𝑓 = exp(𝑥). Then 𝑓 itself is a second integral of
𝑓 and ord(𝑓 ) = 1. Since every second integral of 𝑓 must be of order
not less than 1, N2 (𝑓 ) = 1. On the other hand, there exist second
integrals of 𝑓 that are of order greater than 1. In fact, each second
integral of 𝑓 is of the form exp(𝑥) + 𝛼𝑥 + 𝛽 with 𝛼, 𝛽 ∈ 𝐶 . Assume
that not all 𝛼, 𝛽 are zero. We claim that ord(exp(𝑥) + 𝛼𝑥 + 𝛽) = 2.

First, as exp(𝑥) +𝛼𝑥 + 𝛽 is not hyperexponential, exp(𝑥) +𝛼𝑥 + 𝛽 can
not be annihilated by any first-oder operator. Second, if 𝛼 ≠ 0 then
exp(𝑥) +𝛼𝑥 +𝛽 is annihilated by (𝑥 + 𝛽/𝛼 + 1) 𝐷2− (𝑥 + 𝛽/𝛼) 𝐷−1,

and if 𝛼 = 0 and 𝛽 ≠ 0 then exp(𝑥) + 𝛽 is annihilated by 𝐷2 − 𝐷 . So
ord(exp(𝑥) + 𝛼𝑥 + 𝛽) = 2 and the claim is shown.

The example above motivates the following notion of principal

integrals.

Definition 2.4. The 𝑖-th integrals of order N𝑖 (𝑓 ) are called the
principal 𝑖-th integrals of 𝑓 .

It can happen that all integrals are principal as shown in the

following example.

Example 2.5. Let 𝑓 = 1

𝑥 . Then each principal second integral of 𝑓
is of the form 𝑥 ln(𝑥) + 𝛼𝑥 + 𝛽 with 𝛼, 𝛽 ∈ 𝐶 . It is easy to check that
𝑥 ln(𝑥) + 𝛼𝑥 + 𝛽 is annihilated by (𝑥 − 𝛽)𝐷2 − 𝐷 + 1/𝑥 . A similar
argument as in Example 2.3 implies that ord(𝑥 ln(𝑥) + 𝛼𝑥 + 𝛽) = 2

for all 𝛼, 𝛽 ∈ 𝐶 .

It was proved in [1, 3] thatN1 (𝑓 ) = ord(𝑓 ) if and only if 𝐿∗
𝑓
(𝑦) =

1 has a solution in 𝑘 . If 𝐿∗
𝑓
(𝑦) = 1 has no solution in 𝑘 thenN1 (𝑓 ) =

ord(𝑓 ) +1 and moreover 𝐿𝑔 = 𝐿𝑓 𝐷 for any integrals 𝑔 of 𝑓 . Suppose

that 𝐿∗
𝑓
(𝑦) = 1 has a solution 𝑙 in 𝑘 . Then (1 − 𝑙𝐿𝑓 )∗ (1) = 0 and so

there is a unique 𝐻𝑙 ∈ 𝑘 ⟨𝐷⟩ of order 𝑛 − 1 such that 1 − 𝑙𝐿𝑓 = 𝐷𝐻𝑙

where 𝑛 = ord(𝑓 ). Note that −𝑙 is the leading coefficient of 𝐻𝑙 . Set

𝑔 = 𝐻𝑙 (𝑓 ). Then 𝑔 is an integral of 𝑓 and 𝐿𝑔 = 1

𝑙
(1 − 𝐻𝑙𝐷). For a

nonzero operator 𝑃 ∈ 𝑘 ⟨𝐷⟩ and 𝑞 ∈ 𝐶 [𝑥], define

𝛿 (𝑃, 𝑞) =
{
1 𝑃∗ (𝑦) = 𝑞 has a solution in 𝐶 (𝑥)
0 otherwise

.

When 𝑞 = 1, we abbreviate 𝛿 (𝑃, 𝑞) to 𝛿 (𝑃). The above discussions
motivate the definition below.

Definition 2.6. Suppose that 𝐿 is a nonzero monic operator in
𝑘 ⟨𝐷⟩. A principal integral of 𝐿 is defined to be{

𝐿𝐷 𝛿 (𝐿) = 0

1

𝑙
(1 − 𝐻𝑙𝐷) 𝛿 (𝐿) = 1

where 𝑙 ∈ 𝑘 is a solution of 𝐿∗ (𝑦) = 1 and 𝐻𝑙 is the unique operator
in 𝑘 ⟨𝐷⟩ of order ord(𝐿) − 1 such that 𝑙𝐿 + 𝐷𝐻𝑙 = 1. We also call
1

𝑙
(1 − 𝐻𝑙𝐷) the principal integral of 𝐿 with respect to 𝑙 . An 𝑖-th

principal integral of 𝐿 is defined iteratively.

Remark 2.7. Notice that in the case 𝛿 (𝐿) = 1 principal integrals
of 𝐿 depend on the rational solutions of 𝐿∗ (𝑦) = 1 and thus they are
generally not unique. For example, let 𝐿 = 𝐷 . The adjoint 𝐿∗ of 𝐿
is −𝐷 . For every 𝑐 ∈ 𝐶 , −𝑥 + 𝑐 is a rational solution of 𝐿∗ (𝑦) = 1.
One sees that 𝑥 − 𝑐 satisfies that (−𝑥 + 𝑐)𝐷 + 𝐷 (𝑥 − 𝑐) = 1. Since

1

−𝑥+𝑐 (1− (𝑥 − 𝑐)𝐷) = 𝐷 − 1

𝑥−𝑐 , by definition, 𝐷 − 1

𝑥−𝑐 is a principal
integral of 𝐿 for any 𝑐 ∈ 𝐶 . Therefore the principal integrals of 𝐿 are
not unique. However they have the same order.

Lemma 2.8. Suppose that 𝑓 ∈ K and 𝐿𝑖 is an 𝑖-th principal integral
of 𝐿𝑓 . Then there is an 𝑖-th integral of 𝑓 , say 𝑔𝑖 , such that 𝐿𝑖 = 𝐿𝑔𝑖 .

Proof. We shall show the lemma by induction on 𝑖 . The case

𝑖 = 1 follows from Definition 2.6 and the discussions before Defi-

nition 2.6. Suppose that 𝑖 > 1 and the assertion holds for the case
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𝑖 − 1. Let 𝐿𝑖−1 be an (𝑖 − 1)-th principal integral of 𝐿𝑓 and 𝐿𝑖 is

a principal integral of 𝐿𝑖−1. By induction hypothesis, there is an

(𝑖 − 1)-th integral 𝑔𝑖−1 of 𝑓 such that 𝐿𝑖−1 = 𝐿𝑔𝑖−1 . Since 𝐿𝑖 is a

principal integral of 𝐿𝑖−1 = 𝐿𝑔𝑖−1 , by induction hypothesis again,

there is an integral 𝑔𝑖 of 𝑔𝑖−1 such that 𝐿𝑖 = 𝐿𝑔𝑖 . The lemma then

follows from the fact that 𝑔𝑖 is an 𝑖-th integral of 𝑓 .

In next section, we shall show that the 𝑔𝑖 in Lemma 2.8 is ac-

tually an 𝑖-th principal integral of 𝑓 . Furthermore, we shall show

that ord(𝐿𝑖 ) = N𝑖 (𝑓 ), and Definition 2.4 and Definition 2.6 are

consistent in some sense.

3 ORDERS OF PRINCIPAL INTEGRALS
Throughout this section, 𝐿 is always a monic operator in 𝑘 ⟨𝐷⟩.
Suppose that 𝐿𝑖 is an 𝑖-th principal integral of 𝐿 for any positive

integer 𝑖 . Set 𝐿0 = 𝐿. We are going to prove that ord(𝐿𝑖+1) = ord(𝐿𝑖 )
if and only if there is a polynomial 𝑝 ∈ 𝐶 [𝑥] of degree 𝑖 such that

𝐿∗ (𝑦) = 𝑝 has a solution in 𝑘 . This generalizes the results in [1, 3]

for the case when 𝑖 = 0. For a rational function 𝑙 ∈ 𝑘 , 𝑙 is said to be

rationally integrable if 𝑙 = 𝐷 (ℎ) for some ℎ ∈ 𝑘 .

Lemma 3.1. Suppose that 𝑃 = 1 +𝑀𝐷 and 𝑙 is a rational solution
of 𝑃∗ (𝑦) = 𝑝 , where 𝑀 ∈ 𝑘 ⟨𝐷⟩ and 𝑝 ∈ 𝐶 [𝑥]. Then 𝑙 is rationally
integrable.

Proof. Note that 𝑃∗ = 1−𝐷𝑀∗
. Since 𝑙 is a solution of 𝑃∗ (𝑦) = 𝑝

in 𝑘 , we have that 𝑙 − 𝐷 (𝑀∗ (𝑙)) = 𝑝 . Let 𝑞 ∈ 𝐶 [𝑥] be such that

𝑝 = 𝑞′. Then 𝑙 = 𝐷 (𝑞 +𝑀∗ (𝑙)). The lemma then follows from the

fact that 𝑞 +𝑀∗ (𝑙) ∈ 𝑘 .

Proposition 3.2. Suppose that 𝐿0 = 𝐿 and 𝐿𝑖+1 is a principal
integral of 𝐿𝑖 for any 𝑖 ≥ 0. Set 𝐼−1 = 1 and for each 𝑖 ≥ 0 set

𝐼𝑖 =

{
1 𝛿 (𝐿𝑖 ) = 0

𝐷 + 𝐷 (𝑙𝑖 )
𝑙𝑖

𝛿 (𝐿𝑖 ) = 1

where 𝑙𝑖 ∈ 𝑘 is a solution of 𝐿∗
𝑖
(𝑦) = 1 such that 𝐿𝑖+1 is the principal

integral of 𝐿𝑖 with respect to 𝑙𝑖 . Then for each 𝑛 ≥ 0,

𝐿𝐷𝑛 =

(
𝑛−1∏
𝑖=−1

𝐼𝑖

)
𝐿𝑛 . (1)

Proof. We shall prove the proposition by induction on 𝑛. The

case 𝑛 = 0 is clear. Assume that 𝑛 > 0 and the assertion holds

for 𝑛 − 1. By induction hypothesis, 𝐿𝐷𝑛−1 =

(∏𝑛−2
𝑖=−1 𝐼𝑖

)
𝐿𝑛−1 . If

𝛿 (𝐿𝑛−1) = 0 then 𝐿𝑛 = 𝐿𝑛−1𝐷 and 𝐼𝑛−1 = 1. Thus

𝐿𝐷𝑛 = 𝐿𝐷𝑛−1𝐷 =

(
𝑛−2∏
𝑖=−1

𝐼𝑖

)
𝐿𝑛−1𝐷 =

(
𝑛−1∏
𝑖=−1

𝐼𝑖

)
𝐿𝑛 .

If 𝛿 (𝐿𝑛−1) = 1 then 𝑙𝑛−1𝐿𝑛−1 + 𝐷𝐻𝑙𝑛−1 = 1 and 𝐿𝑛 = 1

𝑙𝑛−1
(1 −

𝐻𝑙𝑛−1𝐷). These imply that

𝐿𝑛−1𝐷 =
1

𝑙𝑛−1
(1 − 𝐷𝐻𝑙𝑛−1 )𝐷 =

1

𝑙𝑛−1
𝐷 (1 − 𝐻𝑙𝑛−1𝐷)

=
1

𝑙𝑛−1
𝐷𝑙𝑛−1𝐿𝑛 =

(
𝐷 + 𝐷 (𝑙𝑛−1)

𝑙𝑛−1

)
𝐿𝑛 = 𝐼𝑛−1𝐿𝑛 .

Therefore 𝐿𝐷𝑛 = 𝐿𝐷𝑛−1𝐷 =

(∏𝑛−2
𝑖=−1 𝐼𝑖

)
𝐿𝑛−1𝐷 =

(∏𝑛−1
𝑖=−1 𝐼𝑖

)
𝐿𝑛 .

The assertion holds for all nonnegative integers 𝑛.

Lemma 3.3. Suppose that 𝐿𝑛 is a principal integral of 𝐿𝑛−1. Then
for every 𝑝 ∈ 𝐶 [𝑥], 𝛿 (𝐿𝑛, 𝑝) = 𝛿 (𝐿𝑛−1, 𝑞) for some 𝑞 ∈ 𝐶 [𝑥] with
𝑝 = 𝑞′. In other words, 𝐿∗𝑛 (𝑦) = 𝑝 has a solution in 𝑘 if and only if
𝐿∗
𝑛−1 (𝑦) = 𝑞 has a solution in 𝑘 .

Proof. Assume that 𝛿 (𝐿𝑛−1) = 0. Then 𝐿𝑛 = 𝐿𝑛−1𝐷 and thus

𝐿∗𝑛 = −𝐷𝐿∗
𝑛−1. One can verify that for each ℎ ∈ 𝑘 , 𝐿∗𝑛 (ℎ) = 𝑝 if and

only if 𝐿∗
𝑛−1 (−ℎ) = 𝑞 for some 𝑞 ∈ 𝐶 [𝑥] with 𝑝 = 𝑞′. Now suppose

that 𝛿 (𝐿𝑛−1) = 1 and 𝐿𝑛 is the principal integral of 𝐿𝑛−1 with

respect to 𝑙𝑛−1. Then 𝐿𝑛 = 1/𝑙𝑛−1 (1−𝐻𝑙𝑛−1𝐷), where𝐻𝑙𝑛−1 ∈ 𝑘 ⟨𝐷⟩
satisfies that 𝑙𝑛−1𝐿𝑛−1+𝐷𝐻𝑙𝑛−1 = 1. Suppose thatℎ ∈ 𝑘 is a solution

of 𝐿∗𝑛 (𝑦) = 𝑝 . Then ℎ/𝑙𝑛−1 is a solution of (1 − 𝐻𝑙𝑛−1𝐷)∗ (𝑦) = 𝑝

in 𝑘 . Due to Lemma 3.1, there is a 𝑔 ∈ 𝑘 such that 𝐷 (𝑔) = ℎ/𝑙𝑛−1.
Since 𝑙𝑛−1𝐿𝑛−1𝐷 = 𝐷 − 𝐷𝐻𝑙𝑛−1𝐷 = 𝐷 (1 − 𝐻𝑙𝑛−1𝐷), one has that

𝐷𝐿∗𝑛−1 (𝑙𝑛−1𝑔) = 𝐷𝐿∗𝑛−1𝑙𝑛−1 (𝑔) = (1 − 𝐻𝑙𝑛−1𝐷)
∗𝐷 (𝑔)

= (1 − 𝐻𝑙𝑛−1𝐷)
∗ (ℎ/𝑙𝑛−1) = 𝑝.

Let 𝑞 ∈ 𝐶 [𝑥] be such that 𝐷 (𝑞) = 𝑝 . Then 𝐷 (𝐿∗
𝑛−1 (𝑙𝑛−1𝑔) − 𝑞) = 0

and thus 𝐿∗
𝑛−1 (𝑙𝑛−1𝑔)−𝑞 = 𝑐 ∈ 𝐶 . Set 𝑞 = 𝑞+𝑐 . Then 𝐿∗

𝑛−1 (𝑙𝑛−1𝑔) =
𝑞. Conversely, assume that ℎ is a solution of 𝐿∗

𝑛−1 (𝑦) = 𝑞 for some

𝑞 ∈ 𝐶 [𝑥] with 𝑝 = 𝑞′. Then 𝐷𝐿∗
𝑛−1 (ℎ) = 𝑝 . Set ˜ℎ = 𝑙𝑛−1𝐷 (ℎ/𝑙𝑛−1).

One then has that

𝐿∗𝑛 ( ˜ℎ) = (1 − 𝐻𝑙𝑛−1𝐷)
∗ ( ˜ℎ/𝑙𝑛−1) = (1 − 𝐻𝑙𝑛−1𝐷)

∗𝐷 (ℎ/𝑙𝑛−1)

= (1 + 𝐷𝐻∗
𝑙𝑛−1

)𝐷 1

𝑙𝑛−1
(ℎ) = 𝐷 (1 + 𝐻∗

𝑙𝑛−1
𝐷) 1

𝑙𝑛−1
(ℎ)

= 𝐷

(
1

𝑙𝑛−1
(1 − 𝐷𝐻𝑙𝑛−1 )

)∗
(ℎ) = 𝐷𝐿∗𝑛−1 (ℎ) = 𝑝.

In other words, 𝐿∗𝑛 (𝑦) = 𝑝 has a solution in 𝑘 .

Proposition 3.4. Let 𝐿𝑖 be as in Proposition 3.2. Then

𝛿 (𝐿𝑛, 𝑝) = 𝛿 (𝐿𝐷𝑛, 𝑝)

for any 𝑝 ∈ 𝐶 [𝑥] \ {0} and nonnegative integer 𝑛.

Proof. We shall prove the assertion by induction on 𝑛. The case

𝑛 = 0 is clear, because 𝐿0 = 𝐿 = 𝐿𝐷0
in this case. Suppose that

𝑛 > 0 and the assertion holds for the case 𝑛 − 1. Consider the case

𝑛. It suffices to show that 𝛿 (𝐿𝑛, 𝑝) = 1 if and only if 𝛿 (𝐿𝐷𝑛, 𝑝) = 1.

Assume that 𝛿 (𝐿𝑛, 𝑝) = 1. Lemma 3.3 implies that 𝛿 (𝐿𝑛−1, 𝑞) = 1 for

some𝑞 ∈ 𝐶 [𝑥] with 𝑝 = 𝑞′. By induction hypothesis, 𝛿 (𝐿𝐷𝑛−1, 𝑞) =
1, i.e. there is an 𝑟 ∈ 𝑘 such that (𝐿𝐷𝑛−1)∗ (𝑟 ) = 𝑞. Since (𝐿𝐷𝑛)∗ =
−𝐷 (𝐿𝐷𝑛−1)∗, one sees that (𝐿𝐷𝑛)∗ (−𝑟 ) = 𝐷 ((𝐿𝐷𝑛−1)∗ (𝑟 )) = 𝑞′ =
𝑝 , i.e. 𝛿 (𝐿𝐷𝑛, 𝑝) = 1. Conversely, assume that 𝛿 (𝐿𝐷𝑛, 𝑝) = 1. Then

𝛿 (𝐿𝐷𝑛−1, 𝑞) = 1 for some 𝑞 ∈ 𝐶 [𝑥] with 𝐷 (𝑞) = 𝑝 . By induction

hypothesis again, 𝛿 (𝐿𝑛−1, 𝑞) = 1. By Lemma 3.3 again, 𝛿 (𝐿𝑛, 𝑝) = 1.

Hence the assertion holds for the case 𝑛.

Corollary 3.5. Let 𝐿𝑖 be as in Proposition 3.2. Then ord(𝐿𝑖+1) =
ord(𝐿𝑖 ) if and only if 𝛿 (𝐿, 𝑞) = 1 for some 𝑞 ∈ 𝐶 [𝑥] of degree 𝑖 .

Proof. From Definition 2.6, ord(𝐿𝑖+1) = ord(𝐿𝑖 ) if and only if

𝛿 (𝐿𝑖 ) = 𝛿 (𝐿𝑖 , 1) = 1. Note that 𝛿 (𝐿𝑖 ) = 𝛿 (𝐿𝑖 , 𝑐) for any nonzero

𝑐 ∈ 𝐶 . Using Lemma 3.3 repeatedly, there is a 𝑞 ∈ 𝐶 [𝑥] of degree 𝑖
such that

𝛿 (𝐿, 𝑞) = 𝛿 (𝐿1, 𝑞′) = · · · = 𝛿 (𝐿𝑖 , 𝑖! lc(𝑞)) = 𝛿 (𝐿𝑖 ) .
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In other words, for such𝑞, 𝛿 (𝐿𝑖 ) = 1 if and only if 𝛿 (𝐿, 𝑞) = 1. Hence

ord(𝐿𝑖+1) = ord(𝐿𝑖 ) if and only if 𝛿 (𝐿, 𝑞) = 1 for some 𝑞 ∈ 𝐶 [𝑥] of
degree 𝑖 .

Lemma 3.6. Let 𝑓 ∈ K and 𝐿𝑖 as in Proposition 3.2 with 𝐿 = 𝐿𝑓 .
Then ord(𝐿𝑖 ) = N𝑖 (𝑓 ).

Proof. Set 𝑆𝑖 (𝑓 ) = {0 ≤ 𝑗 ≤ 𝑖 − 1 | 𝛿 (𝐿𝑓 𝐷 𝑗 ) = 1}. Then by

Proposition 3.4, ord(𝐿𝑖 ) = 𝑖 + ord(𝑓 ) − |𝑆𝑖 (𝑓 ) |. Therefore, it suffices

to show that |𝑆𝑖 (𝑓 ) | = 𝑖 − N𝑖 (𝑓 ) + ord(𝑓 ). We shall prove this by

induction on 𝑖 . The case 𝑖 = 1 follows from the fact that N1 (𝑓 ) =
ord(𝑓 ) if and only if 𝛿 (𝐿𝑓 ) = 1. Suppose that 𝑖 > 1 and the assertion

holds true for the case 𝑖 − 1. Let 𝑔 be an 𝑖-th principal integral of

𝑓 . Then any (𝑖 − 1)-th integral ℎ of 𝐷𝑖−1 (𝑔) is an 𝑖-th integral of 𝑓 .

Hence ord(ℎ) ≥ ord(𝑔) and so 𝑔 is an (𝑖 − 1)-th principal integral

of 𝐷𝑖−1 (𝑔). In other words, N𝑖−1 (𝐷𝑖−1 (𝑔)) = N𝑖 (𝑓 ). By induction

hypothesis,

|𝑆𝑖−1 (𝐷𝑖−1 (𝑔)) | = 𝑖 − 1 − N𝑖 (𝑓 ) + ord(𝐷𝑖−1 (𝑔)) .
Assume that 𝐷𝑖−1 (𝑔) is a principal integral of 𝑓 . Set �̃�1 = 𝐿𝐷𝑖−1 (𝑔) .

Let �̃�𝑗+1 be a principal integral of �̃�𝑗 for 1 ≤ 𝑗 ≤ 𝑖 − 1. As �̃�1 is

a principal integral of 𝐿𝑓 , �̃�𝑗 is a 𝑗-th principal integral of 𝐿𝑓 . By

Proposition 3.4 𝛿 (�̃�1𝐷 𝑗 ) = 1 if and only if 𝛿 (�̃�𝑗+1) = 1, and so if

and only if 𝛿 (𝐿𝑓 𝐷 𝑗+1) = 1. Thus {𝑠 + 1 | 𝑠 ∈ 𝑆𝑖−1 (𝐷𝑖−1 (𝑔))} ⊂
𝑆𝑖 (𝑓 ). On the other hand, one has that 0 ∈ 𝑆𝑖 (𝑓 ) if and only if

ord(𝐷𝑖−1 (𝑔)) = ord(𝑓 ). Hence |𝑆𝑖 (𝑓 ) | is not less than
|{𝑠 + 1 | 𝑠 ∈ 𝑆𝑖−1 (𝐷𝑖−1 (𝑔))}| + 1 + ord(𝑓 ) − ord(𝐷𝑖−1 (𝑔))
≥ 𝑖 − 1 − N𝑖 (𝑓 ) + ord(𝐷𝑖−1 (𝑔)) + 1 + ord(𝑓 ) − ord(𝐷𝑖−1 (𝑔))
= 𝑖 − N𝑖 (𝑓 ) + ord(𝑓 ).

If |𝑆𝑖 (𝑓 ) | > 𝑖−N𝑖 (𝑓 ) +ord(𝑓 ) then ord(𝐿𝑖 ) < N𝑖 (𝑓 ). By Lemma 2.8

there is an 𝑖-th integral 𝑔 of 𝑓 such that 𝐿𝑔 = 𝐿𝑖 . So ord(𝑔) < N𝑖 (𝑓 ),
a contradiction. Hence |𝑆𝑖 (𝑓 ) | = 𝑖 − N𝑖 (𝑓 ) + ord(𝑓 ). It remains to

show that 𝐷𝑖−1 (𝑔) is a principal integral of 𝑓 . Assume on the con-

trary that 𝐷𝑖−1 (𝑔) is not a principal integral of 𝑓 . Then 𝐿𝐷𝑖−1 (𝑔) =
𝐿𝑓 𝐷 and N1 (𝑓 ) = ord(𝑓 ). These imply that 𝛿 (𝐿𝑓 𝐷𝑠+1) = 1 for all

𝑠 ∈ 𝑆𝑖−1 (𝐷𝑖−1 (𝑔)) and 𝛿 (𝐿𝑓 ) = 1. These imply that

ord(𝐿𝑖 ) ≤ 𝑖 + ord(𝑓 ) − |𝑆𝑖−1 (𝐷𝑖−1 (𝑔)) | − 1

≤ N𝑖 (𝑓 ) − ord(𝐷𝑖−1 (𝑔)) + ord(𝑓 ) = N𝑖 (𝑓 ) − 1.

Using a similar argument as before, one will obtain a contradiction.

Thus 𝐷𝑖−1 (𝑔) must be a principal integral of 𝑓 .

The following proposition shows that Definition 2.4 and Defini-

tion 2.6 are consistent.

Proposition 3.7. Let 𝑓 ∈ K .
(1) Assume that 𝑔 is an 𝑖-th integral of 𝑓 and 𝐿𝑖 (𝑔) = 0, where 𝐿𝑖

is an 𝑖-th principal integral of 𝐿𝑓 . Then 𝑔 is an 𝑖-th principal
integral of 𝑓 .

(2) Suppose that 𝑔 is an 𝑖-th principal integral of 𝑓 . Then 𝐿𝑔 is an
𝑖-th principal integral of 𝐿𝑓 .

Proof. (1). By Lemma 2.8, ord(𝑔) ≤ ord(𝐿𝑖 ) = N𝑖 (𝑓 ). So 𝑔 must

be an 𝑖-th principal integral of 𝑓 .

(2). We shall show the assertion by induction on 𝑖 . The case 𝑖 = 1

follows from the discussion after Proposition 4 of [1]. Suppose that

𝑖 > 1 and the assertion holds true for the case 𝑖 − 1. The proof of

Lemma 2.8 implies that𝑔 is an (𝑖−1)-th principal integral of𝐷𝑖−1 (𝑔)
and 𝐷𝑖−1 (𝑔) is a principal integral of 𝑓 . By induction hypothesis,

𝐿𝑔 is an (𝑖 − 1)-th principal integral of 𝐿𝐷𝑖−1 (𝑔) and 𝐿𝐷𝑖−1 (𝑔) is a
principal integral of 𝐿𝑓 . So 𝐿𝑔 is an 𝑖-th principal integral of 𝐿𝑓 .

Given a nonzero 𝑃 ∈ 𝑘 ⟨𝐷⟩, there exist a nonzero polynomial

ind
𝑃 (𝑠) ∈ 𝐶 [𝑠] and an integer 𝜎𝑃 such that for any 𝑠 ∈ Z,

𝑃 (𝑥𝑠 ) = ind
𝑃 (𝑠)𝑥𝑠+𝜎

𝑃

(1 + 𝑐1𝑥−1 + 𝑐2𝑥−2 + . . . )
where 𝑐𝑖 ∈ 𝐶 (see [13, p. 102]). The polynomial ind

𝑃
is usually

called the indicial polynomial of 𝑃 at∞. Remark that 𝑃𝑑 and 𝑃 have

the same indicial polynomial and 𝜎𝑃𝑑 = 𝜎𝑃 + deg(𝑑), where 𝑑 is

a nonzero monic polynomial. In the following, 𝑉Z≥0 (ind𝑃 ) stands
for the set of nonnegative integer solutions of ind

𝑃 (𝑠) = 0 and we

agree that max ∅ = −1.

Theorem 3.8. Let 𝑑 be a nonzero monic polynomial of minimal
degree such that 𝑑𝐿 is an operator of polynomial coefficients. Set

B(𝐿) = max{0,max𝑉Z≥0 (ind
𝐿∗ ) + 1 + 𝜎𝐿

∗
+ deg(𝑑)}. (2)

Then for all 𝑖 ≥ B(𝐿), there exists a polynomial 𝑝 of degree 𝑖 such
that 𝛿 (𝐿, 𝑝) = 1.

Proof. It is clear that 𝛿 (𝑑𝐿, 𝑝) = 𝛿 (𝐿, 𝑝) for any nonzero polyno-
mial 𝑝 . So it suffices to consider 𝑑𝐿. Note that ind(𝑑𝐿)

∗
= ind

𝐿∗
and

𝜎 (𝑑𝐿)∗ = 𝜎𝐿
∗ + deg(𝑑). Suppose that 𝑖 ≥ B(𝐿). Set ℓ = 𝑖 − 𝜎 (𝑑𝐿)∗

.

Then ℓ ≥ 0 and (𝑑𝐿)∗ (𝑥 ℓ ) is a polynomial. Furthermore,

(𝑑𝐿)∗ (𝑥 ℓ ) = ind
𝑃 (ℓ)𝑥 ℓ+𝜎

(𝑑𝐿)∗
+ lower terms

= ind
𝑃 (ℓ)𝑥𝑖 + lower terms.

Since ℓ ≥ B(𝐿)−𝜎 (𝑑𝐿)∗ ≥ max𝑉Z≥0 (ind𝑃 )+1, ind(𝑑𝐿)
∗ (ℓ) ≠ 0 and

thus deg((𝑑𝐿)∗ (𝑥 ℓ )) = 𝑖 . Set 𝑝 = (𝑑𝐿)∗ (𝑥 ℓ ). Then 𝑝 is a polynomial

as required.

In the case of D-finite power series, it has been proved in [4, The-

orem 4.5] that the order of 𝑖-th principal integrals of a given D-finite

function is uniformly bounded. We now provide a more explicit

order bound in terms of the information of indicial polynomials.

Definition 3.9. The stability index of 𝐿, denoted by Sind(𝐿),
is defined to be the minimal nonnegative integer𝑚 satisfying that
for each 𝑖 ≥ 𝑚 there exists a polynomial 𝑝𝑖 of degree 𝑖 such that
𝛿 (𝐿, 𝑝𝑖 ) = 1. For an 𝑓 ∈ K , the stability index of 𝑓 is defined to be
the stability index of 𝐿𝑓 , also denoted by Sind(𝑓 ).

Remark 3.10. It is clear that Sind(𝐿) ≤ B(𝐿).

Example 3.11. Let 𝐿 = 𝐷2 + (1/𝑥)𝐷 . Then ind
𝐿∗ (𝑠) = (𝑠 − 1)2

and 𝜎𝐿
∗
= −2. Hence B(𝐿) = 1, while Sind(𝐿) = 0, i.e. 𝐿 is stable. In

fact, for every 𝑖 ≥ 0, 𝐿∗ (𝑥𝑖+2) = (𝑖 + 1)2𝑥𝑖 , which is a polynomial of
degree 𝑖 . Hence the bound in Remark 3.10 is not tight.

Definition 3.12. A nonzero operator 𝐿 ∈ 𝑘 ⟨𝐷⟩ is said to be stable
under integration, or simply stable, if Sind(𝐿) = 0. An 𝑓 ∈ K is said
to be stable if Sind(𝑓 ) = 0.

Remark 3.13. 𝐿 is a nonzero operator and 𝐿𝑖 is an 𝑖-th principal
integral of 𝐿 for all 𝑖 ≥ 0. Then Corollary 3.5 implies that ord(𝐿𝑖 ) =
ord(𝐿

Sind(𝐿) ) for all 𝑖 ≥ Sind(𝐿).
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Below are several examples of stable operators.

Example 3.14. Suppose that 𝛽 ∈ 𝐶 is not a positive integer and
𝐿 = 𝐷 + 𝛽/(𝑥 − 𝑐) for some 𝑐 ∈ 𝐶 . Then for each 𝑠 ≥ 1,

𝐿∗ ((𝑥 − 𝑐)𝑠 ) = −𝑠 (𝑥 − 𝑐)𝑠−1 + 𝛽 (𝑥 − 𝑐)𝑠−1 = (𝛽 − 𝑠) (𝑥 − 𝑐)𝑠−1 .
Since 𝛽 is not a positive integer, 𝛽 − 𝑠 ≠ 0 for any 𝑠 ≥ 1. Hence
deg(𝐿∗ ((𝑥 − 𝑐)𝑠 )) = 𝑠 − 1 for all 𝑠 ≥ 1 and then 𝛿 (𝐿, (𝛽 − 𝑠) (𝑥 −
𝑐)𝑠−1) = 1 for all 𝑠 ≥ 1. So Sind(𝐿) = 0, i.e. 𝐿 is stable.

Example 3.15. Suppose that 𝐿 = 𝑝 (𝐷), where 𝑝 ∈ 𝐶 [𝑧] is a
polynomial of positive degree. Let 𝑠 be the maximal integer such
that 𝑧𝑠 divides 𝑝 . Then for each 𝑖 ≥ 𝑠 , 𝐿∗ (𝑥𝑠 ) = (−1)𝑠𝑐𝑠

(𝑖
𝑠

)
𝑥𝑖−𝑠 +

lower terms, where 𝑐𝑠 is the trailing coefficient of 𝑝 . Thus Sind(𝐿) = 0,
i.e. 𝐿 is stable.

Example 3.16. Suppose 𝛼, 𝛽,𝛾 ∈ 𝐶 . Consider the hypergeometric
differential operator

𝐿 = 𝐷2 + (𝛼 + 𝛽 + 1)𝑥 − 𝛾

𝑥 (𝑥 − 1) 𝐷 + 𝛼𝛽

𝑥 (𝑥 − 1) .

For each 𝑠 ≥ 0, an easy calculation yields that

𝐿∗ (𝑥𝑠+1 (𝑥 − 1)) = (𝑠 + 1 − 𝛼) (𝑠 + 1 − 𝛽)𝑥𝑠 − 𝑠 (𝑠 + 1 − 𝛾)𝑥𝑠−1 .
Suppose that 𝛼 − 1 ∉ Z≥0 and 𝛽 − 1 ∉ Z≥0. Then deg((𝐿∗ (𝑥𝑠+1 (𝑥 −
1))) = 𝑠 . Hence 𝐿 is stable if neither 𝛼 − 1 nor 𝛽 − 1 is a nonnegative
integer.

4 STABILITY INDICES OF SPECIAL
OPERATORS

For a general operator , even for a first order operator, it is difficult

to compute its stability index. In this section, we shall study the

stability indices of some special operators.

Proposition 4.1. The set 𝑃𝐿 = {𝑝 ∈ 𝐶 [𝑥] |𝛿 (𝐿, 𝑝) = 1} is a 𝐶-
vector space for arbitrary nonzero operator 𝐿. Further if 𝐿 is stable,
then 𝑃𝐿 = 𝐶 [𝑥].

Proof. Suppose that 𝑝1, 𝑝2 ∈ 𝑃𝐿 and 𝑎1, 𝑎2 ∈ 𝐶 . Then there

are 𝑙1, 𝑙2 ∈ 𝐶 (𝑥) such that 𝐿∗ (𝑙1) = 𝑝1 and 𝐿∗ (𝑙2) = 𝑝2. Then

𝐿∗ (𝑎1𝑙1 + 𝑎2𝑙2) = 𝑎1𝑝1 + 𝑎2𝑝2. Hence 𝑎1𝑝1 + 𝑎2𝑝2 ∈ 𝑃𝐿 and so 𝑃𝐿
is a 𝐶-vector space. Suppose that 𝐿 is stable. Then for each 𝑖 ≥ 0,

there is a nonzero ℎ𝑖 ∈ 𝐶 [𝑥] of degree 𝑖 such that 𝛿 (𝐿,ℎ𝑖 ) = 1. Let

𝑟𝑖 ∈ 𝐶 (𝑥) be a solution of 𝐿∗ (𝑦) = ℎ𝑖 . Note that {ℎ𝑖 | 𝑖 ≥ 0} is
a basis of 𝐶 [𝑥] as a vector space over 𝐶 . Assume that 𝑝 ∈ 𝐶 [𝑥].
Write 𝑝 =

∑ℓ
𝑖=0 𝑐𝑖ℎ𝑖 where ℓ = deg(𝑝). Then ∑ℓ

𝑖=0 𝑐𝑖𝑟𝑖 is a solution

of 𝐿∗ (𝑦) = 𝑝 in 𝐶 (𝑥). So 𝑝 ∈ 𝐶 [𝑥] and then 𝑃𝐿 = 𝐶 [𝑥].

4.1 Stability indices of Katz’s operators
In [6], Katz introduced a class of operators of the following form:

𝑝 (𝐷) + 𝑞 (3)

where 𝑝, 𝑞 ∈ 𝐶 [𝑧] \ 𝐶, 𝑝 (0) = 0 and gcd(deg(𝑝), deg(𝑞)) = 1. He

proved that differential Galois groups of the operators of the above

form are large. In this subsection, let us compute the stability indices

of Katz’s operators.

Lemma 4.2. Suppose that 𝐿 is of the form

𝐷𝑛 + 𝑎𝑛−1
𝑎𝑛

𝐷𝑛−1 + · · · + 𝑎0

𝑎𝑛
, 𝑎𝑖 ∈ 𝐶 [𝑥], 𝑎𝑛 ≠ 0.

Suppose further that gcd(𝑎0, 𝑎1, . . . , 𝑎𝑛) = 1 and for each 𝑖 = 1, . . . , 𝑛,
deg(𝑎0) > deg(𝑎𝑖 ) − 𝑖 . Then Sind(𝐿) ≤ deg(𝑎0).

Proof. Write 𝑎0/𝑎𝑛 = 𝛼𝑥𝑑0−𝑑𝑛 +lower terms, where 𝛼 ∈ 𝐶 \{0}
and 𝑑0 = deg(𝑎0), 𝑑𝑛 = deg(𝑎𝑛). A simple calculation implies that

ind
𝐿∗ (𝑠) = 𝛼 and 𝜎𝐿

∗
= 𝑑0 − 𝑑𝑛 . Hence max𝑉Z≥0 (ind𝐿

∗ (𝑠)) = −1
and B(𝐿) = max𝑉Z≥0 (ind𝐿

∗ (𝑠)) +1+𝜎𝐿∗ +deg(𝑎𝑛) = 𝑑0 = deg(𝑎0).
By Remark 3.10, Sind(𝐿) ≤ deg(𝑎0).

Proposition 4.3. Suppose that 𝐿 = 𝑝 (𝐷) + 𝑞(𝑥), where 𝑝, 𝑞 ∈
𝐶 [𝑧] and 𝑝 (0) = 0. Then Sind(𝐿) = max{deg(𝑞), 0}.

Proof. If 𝑞(𝑥) = 0 then from Example 3.15 one sees that

Sind(𝐿) = 0 = max{deg(𝑞), 0}.
Assume that 𝑞(𝑥) ≠ 0. By Lemma 4.2, Sind(𝐿) ≤ deg(𝑞). It remains

to show that 𝛿 (𝐿,𝑑) = 0 for any polynomial 𝑑 of degree deg(𝑞) − 1.

Suppose on the contrary that there is an 𝑙 ∈ 𝐶 (𝑥) such that 𝐿∗ (𝑙) is a
polynomial of degree deg(𝑞) − 1. Suppose that 𝑙 is not a polynomial

and 𝑐 ∈ 𝐶 is a pole of 𝑙 . Then 𝑐 must be a pole of 𝐿∗ (𝑙) and so 𝐿∗ (𝑙)
can not be a polynomial. Hence 𝑙 ∈ 𝐶 [𝑥]. While, this implies that

deg(𝐿∗ (𝑙)) = deg(𝑞) + deg(𝑙) > deg(𝑞) − 1, a contradiction. Hence

𝛿 (𝐿,𝑑) = 0 for any polynomial 𝑑 of degree deg(𝑞) − 1.

4.2 Stability indices of first-order operators
In this subsection, we shall focus on studying the stability indices

of first-order operators. Suppose that 𝑓 ∈ 𝑘 and 𝑐 ∈ 𝐶 . Let

𝑓 =
∑︁
𝑖≥ℓ

𝑎𝑖 (𝑥 − 𝑐)𝑖 with 𝑎𝑖 ∈ 𝐶 and 𝑎ℓ ≠ 0

be the power series expansion of 𝑓 at 𝑐 . Then ℓ is called the order

of 𝑓 at 𝑐 , denoted by ord𝑐 (𝑓 ), and 𝑎−1 is called the residue of 𝑓 at 𝑐 ,

denoted by res𝑐 (𝑓 ). Similarly, we can define the order and residue

of 𝑓 at ∞. Let 𝑓 =
∑
𝑖≥ℓ 𝑎𝑖

(
1

𝑥

)𝑖
, 𝑎𝑖 ∈ 𝐶, 𝑎ℓ ≠ 0 be the power series

expansion of 𝑓 at∞. Then ℓ is called the order of 𝑓 at∞, denoted

by ord∞ (𝑓 ), and 𝑎1 (not 𝑎−1 in this case) is called the residue of 𝑓

at ∞, denoted by res∞ (𝑓 ). Later one will see that the residues of
𝑓 play an important role in estimating the stability index of 𝐷 + 𝑓 .

We shall use S(𝑓 ) to denote the set of 𝑐 ∈ 𝐶 such that 𝑐 is a simple

pole of 𝑓 and res𝑐 (𝑓 ) is a negative integer. As usual, we use den(𝑓 )
to denote the denominator of 𝑓 .

Notation 4.4. For a rational function 𝑓 ∈ 𝑘 , set

Δ(𝑓 ) =
∏
𝑐∈S

(𝑥 − 𝑐)− res𝑐 (𝑓 )

Lemma 4.5. Suppose that 𝐿 = 𝐷+ 𝑓 and 𝑟 ∈ 𝑘 . If 𝐿∗ (𝑟 ) is a nonzero
polynomial then the denominator of 𝑟 divides Δ(𝑓 ). Furthermore, the
zeros of the denominator of 𝑟 has the same multiplicity as Δ(𝑓 ).

Proof. Set 𝑟2 = den(𝑟 ). If 𝑟2 ∈ 𝐶 then there is nothing to prove.

Suppose that 𝑟2 ∉ 𝐶 . Let 𝑐 ∈ 𝐶 be a zero of 𝑟2 with multiplicity

𝑚. It suffices to show that (𝑥 − 𝑐)𝑚 divides Δ(𝑓 ). One has that

ord𝑐 (𝑟 ) = −𝑚 and ord𝑐 (𝑟 ′) = −𝑚 − 1. Write 𝑟 = 𝑟0 (𝑥 − 𝑐)−𝑚 + · · ·
and 𝑓 = 𝑓0 (𝑥 − 𝑐)` + · · · , where 𝑟0, 𝑓0 ∈ 𝐶 and ` = ord𝑐 (𝑓 ). From
−𝑟 ′ + 𝑓 𝑟 = 𝑑 , one sees that −𝑚 − 1 = −𝑚 + ` and𝑚𝑟0 + 𝑓0𝑟0 = 0.

These imply that ` = −1 and 𝑓0 = −𝑚. Consequently, 𝑐 is a simple

pole of 𝑓 and res𝑐 (𝑓 ) = 𝑓0 = −𝑚. So (𝑥 − 𝑐)𝑚 divides Δ(𝑓 ) and the

multiplicity of 𝑐 in Δ(𝑓 ) is equal to𝑚.
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The following result reduces the stability problem on first order

operators into that on operators of special form.

Proposition 4.6. Suppose that 𝐿 = 𝐷 + 𝑓 and ℎ ∈ 𝐶 [𝑥] is a non
zero polynomial. If 𝐿 is stable then 𝐿 − ℎ′

ℎ
is stable.

Proof. For each 𝑖 ≥ 0, let 𝑟𝑖 be a solution of 𝐿∗ (𝑦) = 𝑥𝑖ℎ in

𝑘 . Such 𝑟𝑖 exists because of Proposition 4.1. A simple calculation

yields that(
𝐿 − ℎ′

ℎ

)∗ ( 𝑟𝑖
ℎ

)
= −

( 𝑟𝑖
ℎ

)′
+ 𝑓 𝑟𝑖

ℎ
− 𝑟𝑖ℎ

′

ℎ
=

−𝑟 ′
𝑖
+ 𝑓 𝑟𝑖

ℎ
= 𝑥𝑖

i.e. 𝛿 (𝐿 − ℎ′/ℎ, 𝑥𝑖 ) = 1 for all 𝑖 ≥ 0. So 𝐿 − ℎ′/ℎ is stable.

The converse of Proposition 4.6 sometimes is not true. For ex-

ample, 𝐷 is stable but 𝐷 + 1/𝑥 is not (see Corollary 6.4 for a proof).

However, if ℎ is a special divisor of the denominator of 𝑓 then the

converse is still true.

Lemma 4.7. Suppose that 𝐿 = 𝐷 + 𝑓 and 𝑐 ∈ 𝐶 is a pole of 𝑓 .
(1) For each 𝑖 ≥ Sind(𝐿) + 1, there is a polynomial 𝑝𝑖 ∈ 𝐶 [𝑥] of

degree 𝑖 such that 𝐿∗ (𝑦) = 𝑝𝑖/(𝑥 − 𝑐) has a solution in 𝑘 .
(2) If 𝐿 is stable then for each 𝑖 ≥ 0, 𝐿∗ (𝑦) = 𝑥𝑖/(𝑥 − 𝑐) has a

solution in 𝑘 .

Proof. (1). Write den(𝑓 ) = (𝑥 − 𝑐)𝑀 . One has that

𝐿∗ (𝑀) = −𝑀′ + 𝑓 𝑀 = −𝑀′ + 𝑓1/(𝑥 − 𝑐) = �̃� + 𝛼/(𝑥 − 𝑐)

where 𝑓1 is the numerator of 𝑓 , �̃� ∈ 𝐶 [𝑥] and 𝛼 ∈ 𝐶 . For each

𝑗 ≥ Sind(𝐿), let 𝑑 𝑗 ∈ 𝐶 [𝑥] be a polynomial of degree 𝑗 such that

𝐿∗ (𝑦) = 𝑑 𝑗 has a solution 𝑟 𝑗 ∈ 𝑘 . Fix an 𝑖 ≥ Sind(𝐿) + 1. It is

easy to see that there are ℓ > 0, 𝛽1, . . . , 𝛽ℓ ∈ 𝐶 such that ℎ =

�̃� + ∑ℓ
𝑗=Sind(𝐿) 𝛽 𝑗𝑑 𝑗 is of degree 𝑖 − 1. Then

𝐿∗ ©«𝑀 +
ℓ∑︁

𝑗=Sind(𝐿)
𝛽 𝑗𝑟 𝑗

ª®¬ = ℎ + 𝛼

𝑥 − 𝑐
=

(𝑥 − 𝑐)ℎ + 𝛼

𝑥 − 𝑐
.

Since deg((𝑥 −𝑐)ℎ +𝛼) = 𝑖 , (𝑥 −𝑐)ℎ +𝛼 is a polynomial as required.

(2). As in (1), one has that 𝐿∗ (𝑀) = �̃� +𝛼/(𝑥 −𝑐). As gcd(𝑓1, 𝑥 −
𝑐) = 1, 𝛼 ≠ 0. If �̃� = 0 then𝑀/𝛼 is a solution of 𝐿∗ (𝑦) = 1/(𝑥 − 𝑐).
Otherwise, let 𝑟 be a solution of 𝐿∗ (𝑦) = �̃� . Such 𝑟 exists due to

Proposition 4.1. Then (𝑀 − 𝑟 )/𝛼 is a solution of 𝐿∗ (𝑦) = 1/(𝑥 − 𝑐).
This proves the case 𝑖 = 0. For the case 𝑖 > 0, write 𝑥𝑖/(𝑥 − 𝑐) =
𝑝 + 𝛽/(𝑥 − 𝑐) where 𝑝 ∈ 𝐶 [𝑥] and 𝛽 ∈ 𝐶 . Let 𝑟1 be a solution of

𝐿∗ (𝑦) = 𝑝 in 𝑘 and 𝑟2 a solution of 𝐿∗ (𝑦) = 𝛽/(𝑥 − 𝑐). Then 𝑟1 + 𝑟2
is a solution of 𝐿∗ (𝑦) = 𝑥𝑖/(𝑥 − 𝑐) in 𝑘 .

Proposition 4.8. Suppose that 𝐿 = 𝐷 + 𝑓 and 𝑐 ∈ 𝐶 is a pole of
𝑓 . Then

(1) Sind(𝐿 + 1/(𝑥 − 𝑐)) ≤ Sind(𝐿) + 1;
(2) 𝐿 + 1/(𝑥 − 𝑐) is also stable if 𝐿 is stable.

Proof. (1). For each 𝑖 ≥ Sind(𝐿) + 1, by Lemma 4.7, there exists

a polynomial 𝑝𝑖 of degree 𝑖 such that 𝐿∗ (𝑦) = 𝑝𝑖
𝑥−𝑐 has a solution 𝑟𝑖

in 𝑘 . Then

(𝐿 + 1/(𝑥 − 𝑐))∗ ((𝑥 − 𝑐)𝑟𝑖 ) = (𝑥 − 𝑐) (−𝑟 ′𝑖 + 𝑓 𝑟𝑖 ) = 𝑝𝑖 .

Hence Sind(𝐿 + 1/(𝑥 − 𝑐)) ≤ Sind(𝐿) + 1.

(2). Use a similar argument as in (1).

We now apply Theorem 3.8 to the first order operators to obtain

an upper bound on the stability indices of such operators. We use

num(𝑓 ) to denote the numerator of a rational function 𝑓 .

Proposition 4.9. Suppose that 𝐿 = 𝐷 + 𝑓 and a = res∞ (𝑓 ). Then

Sind(𝐿) ≤


max{deg(𝑓1), deg(𝑓2)} ord∞ (𝑓 ) ≠ 1

deg(𝑓2) − 1 ord∞ (𝑓 ) = 1 and a ∉ Z≤0
−a + deg(𝑓2) otherwise

where 𝑓1 = num(𝑓 ) and 𝑓2 = den(𝑓 ).

Proof. It suffices to show that B(𝐿) equals the corresponding
bounds. Let 𝑓 = 𝛼

(
1

𝑥

)𝑡
+ . . . be the power series expansion of 𝑓 at

∞, where 𝑡 = ord∞ (𝑓 ). Then for each 𝑠 ≥ 0,

𝐿∗ (𝑥𝑠 ) = −𝑠𝑥𝑠−1 + 𝛼𝑥𝑠−𝑡 + . . . .

Suppose that 𝑡 > 1. Then ind
𝐿∗ (𝑠) = −𝑠 and 𝜎𝐿∗ = −1. ThusB(𝐿) =

deg(𝑓2) = max{deg(𝑓1), deg(𝑓2)} because deg(𝑓1) < deg(𝑓2). Sup-
pose that 𝑡 < 1. Then ind

𝐿∗ (𝑠) = 𝛼 and 𝜎𝐿
∗
= −𝑡 . Hence B(𝐿) =

−𝑡+deg(𝑓2) = deg(𝑓1) = max{deg(𝑓1), deg(𝑓2)}. Now suppose that

𝑡 = 1. Then 𝛼 = − res∞ (𝑓 ) = −a . Furthermore, ind
𝐿∗ (𝑠) = −(𝑠 − 𝛼)

and 𝜎𝐿
∗
= −1. If a ∉ Z≤0 thenmax𝑉Z≥0 (ind𝐿

∗ ) = −1 and soB(𝐿) =
deg(𝑓2) − 1. Otherwise if a ∈ Z≤0 then max𝑉Z≥0 (ind𝐿

∗ ) = −a and

thus B(𝐿) = −a + deg(𝑓2).

In what follows, we shall present a lower bound.

Lemma 4.10. Suppose that 𝐿 = 𝐷 + 𝑓 with S(𝑓 ) = ∅. Set 𝑁 =

deg(den(𝑓 )) and a = res∞ (𝑓 ). Then

Sind(𝐿) =
{
𝑁 −min{1, ord∞ (𝑓 )} ord∞ (𝑓 ) ≠ 1 or a ∉ Z≤−𝑁
−a otherwise

.

Proof. Suppose that 𝑟 ∈ 𝑘 satisfies that 𝐿∗ (𝑟 ) = 𝑑 for some

nonzero polynomial 𝑑 . By Lemma 4.5, 𝑟 must be a polynomial.

Furthermore, from −𝑟 ′ + 𝑟 𝑓 = 𝑑, one sees that den(𝑓 ) divides 𝑟 . In
particular, deg(𝑟 ) ≥ deg(den(𝑓 )) = 𝑁 . Let

𝑟 = 𝑐𝑥𝑠 + . . . , 𝑓 = 𝛼𝑥−𝑡 + . . . ,

be the power series expansions of 𝑟 and 𝑓 respectively, where

𝑠 = deg(𝑟 ) and 𝑡 = ord∞ (𝑓 ). From −𝑟 ′ + 𝑟 𝑓 = 𝑑 again, one has that

−𝑠𝑐𝑥𝑠−1 + · · · + 𝑐𝛼𝑥𝑠−𝑡 + · · · = 𝑑. (4)

Suppose that 𝑡 = ord∞ (𝑓 ) < 1. Then deg(𝑑) must be equal to

𝑠−𝑡 that is not less than𝑁 −𝑡 . In other words, if 𝛿 (𝐿,𝑑) = 1 for some

nonzero polynomial 𝑑 then deg(𝑑) ≥ 𝑁 − 𝑡 . So Sind(𝐿) ≥ 𝑁 − 𝑡 .

On the other hand, for each 𝑖 ≥ 0,

𝐿∗ (den(𝑓 )𝑥𝑖 ) = −𝛼𝑥𝑁+𝑖−𝑡 + lower terms.

This implies that for each 𝑠 ≥ 𝑁 − 𝑡 , den(𝑓 )𝑥𝑠−𝑁+𝑡
is a solution of

𝐿∗ (𝑦) = −𝛼𝑥𝑠 + lower terms, i.e. Sind(𝐿) ≤ 𝑁 − 𝑡 . Consequently,

Sind(𝐿) = 𝑁 − 𝑡 . Similarly, one can prove the case 𝑡 > 1.

Now assume that 𝑡 = 1. In this case, 𝛼 = − res∞ (𝑓 ) = −a and

𝑠 = deg(𝑟 ) ≥ 𝑁 > 0. Moreover, the equality (4) becomes

−𝑐 (𝑠 + a)𝑥𝑠−1 + lower terms = 𝑑. (5)

Suppose that a ∉ Z≤−𝑁 . Then 𝑠 + a ≠ 0 for all 𝑠 ≥ 𝑁 . Hence

deg(𝑑) must be equal to 𝑠 − 1. Using a similar argument as in the

case 𝑡 < 1, one has that Sind(𝐿) = 𝑁 − 1. It remains to show the
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case a ∈ Z≤−𝑁 . We first show that 𝛿 (𝐿,𝑑) = 0 for any polynomial

𝑑 ∈ 𝐶 [𝑥] of degree −a − 1. Suppose on the contrary that there

is a polynomial 𝑑 ∈ 𝐶 [𝑥] of degree −a − 1 such that 𝐿∗ (𝑦) = 𝑑

has a solution 𝑟 ∈ 𝐶 [𝑥]. If 𝑠 = deg(𝑟 ) > −a then 𝑠 + a = 0 by

(5). This implies that 𝑠 = −a , a contradiction. So 𝑠 ≤ −a . From (5),

it is obvious that 𝑠 can not be less than −a . Thus 𝑠 = −a . While,

this means that the degree of the left-hand side of (5) is less than

−a − 1. This contradicts the assumption that deg(𝑑) = −a − 1.

Consequently, 𝛿 (𝐿,𝑑) = 0 for any polynomial 𝑑 of degree −a − 1

and so Sind(𝐿) ≥ −a . Finally, for each 𝑖 ≥ 0,

𝐿∗
(
den(𝑓 )𝑥𝑖+1−a−𝑁

)
= −(𝑖 + 1)𝑥𝑖−a + lower terms.

This implies that Sind(𝐿) ≤ −a . Therefore Sind(𝐿) = −a .

Proposition 4.11. Suppose that 𝐿 = 𝐷 + 𝑓 . Set

𝑁 = deg(den(𝑓 )) − |S(𝑓 ) | − deg(Δ(𝑓 ))
and a = res∞ (𝑓 ) . Then

Sind(𝐿) ≥
{
𝑁 −min{1, ord∞ (𝑓 )} ord∞ (𝑓 ) ≠ 1 or a ∉ Z≤−𝑁
−a otherwise

.

Proof. Set 𝑀1 =
∏

𝑐∈S(𝑓 ) (𝑥 − 𝑐) and write den(𝑓 ) = 𝑀1𝑀2.

Then deg(𝑀2) = deg(den(𝑓 )) − |S(𝑓 ) |. Since gcd(𝑀1, 𝑀2) = 1,

there exist 𝑞1, 𝑞2 ∈ 𝐶 [𝑥] such that 𝑓 = 𝑞1/𝑀1 + 𝑞2/𝑀2 . Since𝑀1 is

square-free and res𝑐 (𝑞1/𝑀1) = res𝑐 (𝑓 ) for each 𝑐 ∈ S(𝑓 ), one has
that

𝑞1

𝑀1

=
∑︁

𝑐∈S(𝑓 )

res𝑐 (𝑓 )
𝑥 − 𝑐

= −Δ(𝑓 )′
Δ(𝑓 ) .

So 𝑓 = −Δ(𝑓 )′/Δ(𝑓 ) + 𝑞2/𝑀2. Set �̃� = 𝐿 + Δ(𝑓 )′/Δ(𝑓 ) = 𝐷 +
𝑞2/𝑀2. Using Proposition 4.8 repeatedly yields that Sind(�̃�) ≤
Sind(𝐿) + deg(Δ(𝑓 )). Since S(𝑞2/𝑀2) = ∅, by Lemma 4.10, one

has that if ord∞ (𝑞2/𝑀2) ≠ 1 or res∞ (𝑞2/𝑀2) ∉ Z≤− deg(𝑀2 ) then

Sind(�̃�) = deg(𝑀2) −min{1, ord∞ (𝑞2/𝑀2)}, otherwise Sind(�̃�) =
− res∞ (𝑞2/𝑀2).

Note that ord∞ (−Δ(𝑓 )′/Δ(𝑓 )) = 1 and res∞ (−Δ(𝑓 )′/Δ(𝑓 )) =
deg(Δ(𝑓 )). Furthermore, one has that

res∞ (𝑓 ) ≥ min

{
ord∞

(
−Δ(𝑓 )′
Δ(𝑓 )

)
, ord∞

(
𝑞2

𝑀2

)}
= min

{
1, ord∞

(
𝑞2

𝑀2

)}
and the equality holds if ord∞ (𝑞2/𝑀2) ≠ 1. If ord∞ (𝑓 ) < 1 then

ord∞ (𝑞2/𝑀2) = ord∞ (𝑓 ) < 1 and so

Sind(𝐿) ≥ Sind(�̃�) − deg(Δ(𝑓 ))
= deg(𝑀2) −min{1, ord∞ (𝑞2/𝑀2)} − deg(Δ(𝑓 ))
= 𝑁 −min{1, ord∞ (𝑓 )}.

Suppose that ord∞ (𝑓 ) > 1. Then ord∞ (𝑞2/𝑀2) = 1 and moreover

res∞ (𝑞2/𝑀2) = − res∞ (−Δ(𝑓 )′/Δ(𝑓 )) = − deg(Δ(𝑓 )). Assume

that deg(Δ(𝑓 )) ≥ deg(𝑀2). Then res∞ (𝑞2/𝑀2) ∈ Z≤− deg(𝑀2 ) and

so Sind(�̃�) = − res∞ (𝑞2/𝑀2) = deg(Δ(𝑓 )) . Thus Sind(𝐿) ≥ 0. On

the other hand, in this case,

𝑁 −min{1, ord∞ (𝑓 )} = deg(𝑀2) − deg(Δ(𝑓 )) − 1 < 0 ≤ Sind(𝐿).
Assume that deg(Δ(𝑓 )) < deg(𝑀2). Then we have res∞ (𝑞2/𝑀2) ∉
Z≤− deg(𝑀2 ) . So Sind(�̃�) = deg(𝑀2) − 1 and Sind(𝐿) ≥ Sind(�̃�) −

deg(Δ(𝑓 )) = 𝑁 − 1. Since ord∞ (𝑓 ) > 1, we have 𝑁 − 1 = 𝑁 −
min{1, ord∞ (𝑓 )} and then the assertion holds.

Note that a = res∞ (𝑓 ) = res∞ (−Δ(𝑓 )′/Δ(𝑓 )) + res∞ (𝑞2/𝑀2)
and res∞ (−Δ(𝑓 )′/Δ(𝑓 )) = deg(Δ(𝑓 )). This implies that a ∉ Z≤−𝑁
if and only if res∞ (𝑞2/𝑀2) ∉ Z≤− deg(𝑀2 ) . Suppose that ord∞ (𝑓 ) =
1 and a ∉ Z≤−𝑁 . Then ord∞ (𝑞2/𝑀2) ≥ 1 and Sind(�̃�) = deg(𝑀2) −
1. Thus Sind(𝐿) ≥ Sind(�̃�) − deg(Δ(𝑓 )) ≥ 𝑁 − 1. The assertion

then follows from the fact that min{1, ord∞ (𝑓 )} = 1. Finally, as-

sume that ord∞ (𝑓 ) = 1 and a ∈ Z≤−𝑁 . Then res∞ (𝑞2/𝑀2) ∈
Z≤− deg(𝑀2 ) . Hence Sind(�̃�) = − res∞ (𝑞2/𝑀2) and then Sind(𝐿) ≥
− res∞ (𝑞2/𝑀2) − deg(Δ(𝑓 )) = −a .

5 STABLE FIRST ORDER OPERATORS
Any solution of a first order operator over 𝑘 is called a hyperexpo-

nential function over 𝑘 . A first order operator is stable if and only if

its corresponding hyperexponential solution is stable. The stability

problem for hyperexponential functions of the form 𝑓 exp(𝑔) with
𝑓 , 𝑔 ∈ 𝑘 has been solved in [4]. In this section, we shall solve the

stability problem for general hyperexponential functions by pre-

senting a necessary and sufficient condition on the stability of first

order operators.

Theorem 5.1. Suppose that 𝐿 = 𝐷 + 𝑓 where 𝑓 ∈ 𝐶 (𝑥). Then 𝐿 is
stable if and only if 𝑓 admits one of the following forms:

−ℎ
′

ℎ
+ 𝛼 or − ℎ′

ℎ
+ 𝛽

𝑥 − 𝑐
, ℎ ∈ 𝐶 [𝑥] \ {0}, 𝛼, 𝛽, 𝑐 ∈ 𝐶

and 𝛽 is not a positive integer.

Proof. Suppose that 𝑓 admits one of the above forms. By Propo-

sition 4.6, it suffices to show that 𝐷 + 𝛼 and 𝐷 + 𝛽/(𝑥 − 𝑐) are
stable. The case 𝐷 + 𝛼 follows from Proposition 4.3 and the case

𝐷 + 𝛽/(𝑥 − 𝑐) follows from Example 3.14.

Now suppose that 𝐿 is stable. Set ℎ = Δ(𝑓 ) and ˜𝑓 = 𝑓 + ℎ′/ℎ. If
˜𝑓 = 0 then there is nothing to prove. Suppose that

˜𝑓 ≠ 0. Then there

is no simple pole of
˜𝑓 at which the residue of

˜𝑓 is a negative integer,

i.e. S( ˜𝑓 ) = ∅ and Δ( ˜𝑓 ) = 1. Using Proposition 4.8 repeatedly, one

has that �̃� = 𝐿 + ℎ′/ℎ is stable. Note that �̃� = 𝐷 + ˜𝑓 .

Set
˜𝑓1 = num( ˜𝑓 ) and ˜𝑓2 = den( ˜𝑓 ). Note that S( ˜𝑓 ) = ∅. If

ord∞ ( ˜𝑓 ) < 0 then deg( ˜𝑓1) > 0, and by Lemma 4.10 one has that

Sind(�̃�) ≥ deg( ˜𝑓2) − ord∞ ( ˜𝑓 ) = deg( ˜𝑓1) > 0

a contradiction. If ord∞ ( ˜𝑓 ) > 1 then deg( ˜𝑓2) > 1 and Sind(�̃�) ≥
deg( ˜𝑓2) − 1 > 0 by Lemma 4.10. One obtains a contradiction again.

Therefore ord∞ ( ˜𝑓 ) = 0 or ord∞ ( ˜𝑓 ) = 1.

Suppose that ord∞ ( ˜𝑓 ) = 0. Then by Lemma 4.10 again, 0 =

Sind(�̃�) = deg( ˜𝑓1). This implies that deg( ˜𝑓2) = 0 for ord∞ ( ˜𝑓 ) =

0. Hence one has that 𝛼 = ˜𝑓 ∈ 𝐶 \ {0} and then 𝑓 = −ℎ′/ℎ +
𝛼 . Now we consider the case ord∞ ( ˜𝑓 ) = 1. Then deg( ˜𝑓2) ≥ 1

and res∞ ( ˜𝑓 ) ≠ 0. If res∞ ( ˜𝑓 ) ∈ Z≤− deg( ˜𝑓2 ) then by Lemma 4.10,

Sind(�̃�) = − res∞ ( ˜𝑓 ) ≥ deg( ˜𝑓2) ≥ 1, a contradiction. So res∞ ( ˜𝑓 ) ∉
Z≤− deg( ˜𝑓2 ) . In this case, by Lemma 4.10 again, one sees that

0 = Sind(�̃�) = deg( ˜𝑓2) − 1.

Therefore deg( ˜𝑓2) = 1 and deg( ˜𝑓1) = 0. Set 𝛽 = ˜𝑓1 and write

˜𝑓2 = 𝑥 − 𝑐 for some 𝑐 ∈ 𝐶 . Then 𝑓 = −ℎ′/ℎ + 𝛽/(𝑥 − 𝑐).
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It remains to show that 𝛽 is not a positive integer. Assume on the

contrary that 𝛽 is a positive integer. Since �̃� is stable, by Proposi-

tion 4.1, there is an 𝑟 ∈ 𝑘 such that �̃�∗ (𝑟 ) = (𝑥 −𝑐)𝛽−1. As Δ( ˜𝑓 ) = 1,

Lemma 4.5 implies that 𝑟 is a polynomial. From �̃�∗ (𝑟 ) = (𝑥 − 𝑐)𝛽−1,
one has that −𝑟 ′ (𝑥 − 𝑐) + 𝑟𝛽 = (𝑥 − 𝑐)𝛽 . Write 𝑟 = 𝛼𝑥𝑠 + . . . , where

𝑠 = deg(𝑟 ). Then

−𝛼 (𝑠 − 𝛽)𝑥𝑠 + lower terms = (𝑥 − 𝑐)𝛽 .
Comparing the degrees of both sides of the above equality, one sees

that there does not exist any integer 𝑠 such that the above equality

holds, a contradiction. Therefore 𝛽 is not a positive integer.

Example 5.2. Let 𝐿 = 𝐷 − 1

2𝑥 − 1

2(𝑥+1) . Then 𝐿 is the defining

operator of
√︁
𝑥 (𝑥 + 1). By Theorem 5.1, 𝐿 is not stable. Notice that the

method presented in [4] is not valid for this example.

6 ITERATED INTEGRATION OF SPECIAL
RATIONAL FUNCTIONS

In the last section, we shall consider the iterated integrals of the

rational function 1/𝑞, where 𝑞 is a nonzero polynomial in 𝐶 [𝑥].
Write 𝑞 = lc(𝑞)∏𝑛

𝑖=1 (𝑥 − 𝑐𝑖 )𝑚𝑖
. Then the first order operator with

1/𝑞 as a fundamental solution is of the form

𝐿 = 𝐷 +
𝑛∑︁
𝑖=1

𝑚𝑖

𝑥 − 𝑐𝑖
. (6)

Lemma 6.1. Suppose that 𝐿 = 𝐷 − 𝑓 ′/𝑓 where 𝑓 ∈ 𝑘 \ {0}. Then
for a nonzero 𝑑 ∈ 𝐶 [𝑥], 𝛿 (𝐿,𝑑) = 1 if and only if 𝑑 𝑓 is rationally
integrable.

Proof. For 𝑟 ∈ 𝑘 \ {0}, one has that
𝐿∗ (𝑟 ) = −𝑟 ′ − 𝑓 ′𝑟/𝑓 = −(𝑓 ′𝑟 + 𝑓 𝑟 ′)/𝑓 = −(𝑟 𝑓 )′/𝑓 .

So 𝐿∗ (𝑟 ) = 𝑑 if and only if (−𝑓 𝑟 )′ = 𝑑 𝑓 . In other words, 𝛿 (𝐿,𝑑) = 1

if and only if 𝑑 𝑓 is rationally integrable.

The following lemma may seem folklore, but we did not find

any precise reference. So we include its full proof for the sake of

completeness.

Lemma 6.2. Suppose that 𝑞 = 𝑐0
∏𝑛

𝑖=1 (𝑥 − 𝑐𝑖 )𝑚𝑖 with 𝑐𝑖 ∈ 𝐶 ,
𝑚𝑖 , 𝑛 > 1 and 𝑝 ∈ 𝐶 [𝑥] is a nonzero polynomial. If either deg(𝑝) <
𝑛 − 1 or deg(𝑝) = deg(𝑞) − 1, then 𝑝/𝑞 is not rationally integrable.

Proof. Assume that deg(𝑝) < 𝑛− 1 and assume on the contrary

that 𝑝/𝑞 is rationally integrable, i.e. there is an 𝑟 ∈ 𝐶 (𝑥) such
that 𝑟 ′ = 𝑝/𝑞. Set 𝑟1 = num(𝑟 ) and 𝑟2 = den(𝑟 ). We claim that

𝑞 = 𝑞𝑟2
∏𝑛

𝑖=1 (𝑥 − 𝑐𝑖 ) for some nonzero 𝑞 ∈ 𝐶 [𝑥]. Note that 𝑐 ∈ 𝐶

is a pole of 𝑟1/𝑟2 if and only if 𝑐 is a pole of 𝑟 . Hence we may write

𝑟2 =
∏𝑛

𝑖=1 (𝑥 − 𝑐𝑖 )𝑙𝑖 where 𝑙𝑖 > 0. For each 1 ≤ 𝑖 ≤ 𝑛, ord𝑐𝑖 (𝑟 ′) =
ord𝑐𝑖 (𝑟 ) − 1 = −𝑙𝑖 − 1 and ord𝑐𝑖 (𝑝/𝑞) ≥ −𝑚𝑖 . These imply that

𝑚𝑖 ≥ 𝑙𝑖 + 1 for all 1 ≤ 𝑖 ≤ 𝑛. So 𝑞 = 𝑞𝑟2
∏𝑛

𝑖=1 (𝑥 − 𝑐𝑖 ) and our

claim holds. Now from 𝑟 ′ = 𝑝/𝑞, one has that 𝑞(𝑟 ′
1
𝑟2 − 𝑟1𝑟

′
2
) = 𝑝𝑟2

2
.

Cancelling 𝑟2 from both sides yields that

𝑞(𝑟 ′
1
𝑟2 − 𝑟1𝑟

′
2
)

𝑛∏
𝑖=1

(𝑥 − 𝑐𝑖 ) = 𝑝𝑟2 . (7)

If deg(𝑟1) ≠ deg(𝑟2) then deg(𝑟 ′
1
𝑟2 − 𝑟1𝑟

′
2
) = deg(𝑟1) + deg(𝑟2) − 1.

Suppose that deg(𝑟1) = deg(𝑟2). Write 𝑟1 = 𝑐𝑟2 + ℎ where 𝑐 ∈ 𝐶

and ℎ ∈ 𝐶 [𝑥] with deg(ℎ) < deg(𝑟2). Since gcd(𝑟1, 𝑟2) = 1, ℎ ≠ 0.

One sees that 𝑟 ′
1
𝑟2 − 𝑟1𝑟

′
2
= ℎ′𝑟2 − ℎ𝑟 ′

2
and then deg(𝑟 ′

1
𝑟2 − 𝑟1𝑟

′
2
) =

deg(ℎ′𝑟2 −ℎ𝑟 ′
2
) = deg(ℎ) + deg(𝑟2) − 1. In either case, one sees that

deg(𝑟 ′
1
𝑟2 − 𝑟1𝑟

′
2
) ≥ deg(𝑟2) − 1. Then the degree of the left-hand

side of (7) is not less than deg(𝑟2) − 1 + 𝑛. However the degree of
the right-hand side of (7) equals deg(𝑝) + deg(𝑟2) that is less than
deg(𝑟2) +𝑛−1. We obtain a contradiction. Thus 𝑝/𝑞 is not rationally
integrable.

Finally suppose that deg(𝑝) = deg(𝑞)−1. Then the residue of 𝑝/𝑞
at infinity is not zero because ord(𝑥2𝑝/𝑞) = −1. It is well-known
that a rational function is rationally integrable if and only if all of

its residues vanish. So 𝑝/𝑞 is not rationally integrable.

Proposition 6.3. Let 𝐿 be of the form (6) and let 𝐿𝑗 be a 𝑗-th
principal integral of 𝐿. Then

ord(𝐿𝑗 ) =


ord(𝐿) + 𝑗, 0 ≤ 𝑗 ≤ 𝑛 − 1

ord(𝐿) + 𝑛 − 1, 𝑛 − 1 < 𝑗 ≤ ∑𝑛
𝑖=1𝑚𝑖 − 1

ord(𝐿) + 𝑛, 𝑗 ≥ ∑𝑛
𝑖=1𝑚𝑖

.

Proof. Note that
𝑞′

𝑞 =
∑𝑛
𝑖=1

𝑚𝑖

𝑥−𝑐𝑖 . Due to Lemmas 6.1 and 6.2,

𝛿 (𝐿,𝑑) = 0 for any nonzero polynomial 𝑑 of degree less than 𝑛 − 1.

By Corollary 3.5, ord(𝐿𝑗+1) = ord(𝐿𝑗 ) +1 for all 0 ≤ 𝑗 < 𝑛−1. Thus

ord(𝐿𝑗 ) = ord(𝐿) + 𝑗 for all 0 ≤ 𝑗 ≤ 𝑛 − 1.

Set 𝑁 =
∑𝑛
𝑖=1𝑚𝑖 . Assume that 𝑁 > 𝑛. Then there is at least one

𝑚𝑖 that is greater than 1. Without loss of generality, we assume

that all of𝑚1, . . . ,𝑚𝑠 are greater than 1 and𝑚𝑠+1 = · · · =𝑚𝑛 = 1.

Suppose that 𝑗 is an integer satisfying that 𝑛 − 1 ≤ 𝑗 < 𝑁 − 1.

Then

∑𝑠
𝑖=1 (𝑚𝑖 − 1) =

∑𝑛
𝑖=1 (𝑚𝑖 − 1) ≥ 𝑁 − 1 − 𝑗 . Hence there

exist integers 𝑡, 𝑙1, . . . , 𝑙𝑡 satisfying that 1 ≤ 𝑡 ≤ 𝑠, 0 < 𝑙𝑖 < 𝑚𝑖 and∑𝑡
𝑖=1 𝑙𝑖 = 𝑁 − 1 − 𝑗 . Set 𝑟 = 1/∏𝑡

𝑖=1 (𝑥 − 𝑐𝑖 )𝑙𝑖 . Then(
1

𝑟

)′
=

ℎ∏𝑡
𝑖=1 (𝑥 − 𝑐𝑖 )𝑙𝑖+1

where ℎ is a nonzero polynomial of degree 𝑡 − 1. Let
˜𝑑 = 𝑞(1/𝑟 )′.

Then
˜𝑑 is a nonzero polynomial because 𝑙𝑖 + 1 ≤ 𝑚𝑖 , and

deg( ˜𝑑) = deg(ℎ) + deg(𝑞) −
𝑡∑︁
𝑖=1

(𝑙𝑖 + 1) = 𝑗 .

As (1/𝑟 )′ = ˜𝑑/𝑞, Lemma 6.1 implies that 𝛿 (𝐿, ˜𝑑) = 1. Due to Corol-

lary 3.5 again, ord(𝐿𝑗+1) = ord(𝐿𝑗 ) for all 𝑛 − 1 ≤ 𝑗 < 𝑁 − 1. Thus

ord(𝐿𝑗 ) = ord(𝐿𝑛−1) = ord(𝐿) + 𝑛 − 1 for all 𝑛 − 1 < 𝑗 ≤ 𝑁 − 1.

By Lemma 6.2, we have that 𝑝/𝑞 is not rationally integrable if

deg(𝑝) = deg(𝑞) − 1. Therefore 𝛿 (𝐿,𝑑) = 0 for any 𝑑 ∈ 𝐶 [𝑥] of
degree𝑁−1. Corollary 3.5 then implies that ord(𝐿𝑁 ) = ord(𝐿𝑁−1)+
1 = ord(𝐿) + 𝑛. For each 𝑗 ≥ 𝑁 , one has that

𝐿∗ (𝑞𝑥 𝑗−𝑁+1) = ( 𝑗 − 𝑁 + 1)𝑞𝑥 𝑗−𝑁 .

In other words, 𝐿∗ (𝑞𝑥 𝑗−𝑁+1) is a polynomial of degree 𝑗 . By Corol-

lary 3.5, ord(𝐿𝑗+1) = ord(𝐿𝑗 ) for all 𝑗 ≥ 𝑁 . Hence ord(𝐿𝑗 ) =

ord(𝐿) + 𝑛 for all 𝑗 ≥ 𝑁 .

Corollary 6.4. Let 𝐿 be of the form (6). Then Sind(𝐿) = deg(𝑞).
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