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a b s t r a c t

A normal form is given for integrable linear difference–differential
equations {σ(Y ) = AY , δ(Y ) = BY }, which is irreducible over
C(x, t) and solvable in terms of Liouvillian solutions.We refine this
normal form and devise an algorithm to compute all Liouvillian
solutions of such kinds of systems of prime order.
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1. Introduction

Algorithms computing Liouvillian solutions of linear differential equations or difference equations
have been well developed by Kovacic (1986), Singer (1981), Petkovšek (1992), Petkovšek and Salvy
(1993), van Hoeij et al. (1999), Hendriks and Singer (1999), van Hoeij (1999) and Labahn and Li (2004).
For a linear differential equation

L(y) = y(n) + an−1y(n−1) + · · · + a0y = 0

over C(x), the differential Galois theory allows us to conclude that if L(y) = 0 has a Liouvillian solu-
tion, then it has a solution of the form e

∫
f , where f is algebraic overC(x) (see Singer (1981)). Although

one cannot deduce a similar conclusion from the difference Galois group, one can show that a linear
difference equation will have a solution that is the interlacing of hypergeometric sequences if it has a
solution in the ring of Liouvillian sequences (see Hendriks and Singer (1999); Bomboy (2002); Khmel-
nov (2008); Cha and vanHoeij (2009); Abramov et al. (2009)). Therefore, computing hyperexponential
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solutions (or hypergeometric sequences) is the basic step of the algorithm for finding Liouvillian so-
lutions (or Liouvillian sequences); see Section 3 for further references.
In our previous paper Feng et al. (2009), we prove that if a linear difference–differential system

{σ(Y ) = AY , δ(Y ) = BY } is irreducible over C(x, t) and solvable in terms of Liouvillian sequences,
then there is some positive integer ` such that {σ `(Y ) = A`Y , δ(Y ) = BY } is equivalent over a suitable
algebraic extension of C(x, t) to a system of diagonal form (see Theorem 1 and Proposition 2 below).
In other words, the solution space of the system {σ `(Y ) = A`Y , δ(Y ) = BY } has a basis consisting of
the interlacing of hypergeometric sequences (in the difference–differential sense). In this paper, we
will devote ourselves to devising an algorithm to compute the above diagonal form in the case that the
system is of prime order. Our algorithm will rely on the above known algorithms and the algorithms
on computing rational solutions of linear difference equations.
The paper is organized as follows. In Section 2, based on some results in Feng et al. (2009) (see

Theorem 1 and Proposition 2 below) and integrability conditions, we give a normal form for a linear
difference–differential system of arbitrary order which is irreducible over C(x, t) and solvable in
terms of Liouvillian sequences. We then further refine this normal form for systems of prime order.
In Section 3, we give algorithms to compute all Liouvillian sequence solutions of systems which are
irreducible over C(x, t) and of prime order. Two examples are given to illustrate our algorithms.
Throughout this paper, we will use the same notations as in Feng et al. (2009). We use k0 to denote

the difference–differential fieldC(x, t)with an automorphism σ : x 7→ x+1 and a derivation δ = d
dt ,

and let k denote its extension field C(t)(x). We use (·)T to denote the transpose of a vector or matrix
and det(·) to denote the determinant of a square matrix. The symbols Z≥0 and Z>0 represent the set
of non-negative integers and the set of positive integers, respectively. For a field k, denote by gln(k)
the set of n×nmatrices over k and by GLn(k) the set of n×n invertiblematrices over k. All difference–
differential systems of the form {σ(Y ) = AY , δ(Y ) = BY }with A ∈ GLn(k) and B ∈ gln(k) that are in
discussion in the paper are assumed to be integrable, which means that σ(B)A = δ(A)+ AB. For any
positive integer `, the symbol A` denotes σ `−1(A)σ `−2(A) · · · σ(A)A.
We would like to thank Reinhart Shaefke for supplying a simple proof of Lemma 20.

2. Normal forms for the system

Assume that a system {σ(Y ) = AY , δ(Y ) = BY }where A ∈ GLn(k0) and B ∈ gln(k0) is irreducible
over k0 and that its Galois group over k0 has solvable identity component. Let R and R0 be the σδ-
Picard–Vessiot extension of the system over k and k0 respectively, and Gal(R/k) and Gal(R0/k0) be
the Galois group of the system over k and k0, respectively. Let F0 and F be the total ring of fractions
of R0 and R respectively. First we restate two results in Feng et al. (2009) here.

Theorem 1 (Feng et al., 2009, Theorem 23). If a system {σ(Y ) = AY , δ(Y ) = BY } of order n is irre-
ducible over k0, then there exists a positive integer d such that the system is equivalent over k̂0 := F0 ∩ k
to the system

σ(Y ) = diag(A1, A2, . . . , Ad)Y , δ(Y ) = diag(B1, B2, . . . , Bd)Y

where Ai ∈ GL`(k̂0), Bi ∈ gl`(k̂0) and ` = n
d and the system {σ(Y ) = AiY , δ(Y ) = BiY } is irreducible

over k for i = 1, . . . , d. Moreover, there exists gi ∈ Gal(R0/k0) such that gi(A1) = Ai and gi(B1) = Bi.

Proposition 2 (Feng et al., 2009, Proposition 37). If {σ(Y ) = AY , δ(Y ) = BY } is an irreducible system
of order ` over k and its Galois group over k has solvable identity component, then {σ `(Y ) = A`Y , δ(Y ) =
BY } is equivalent over k to

σ `(Y ) = DY , δ(Y ) = diag(b1, . . . , b`)Y

whereD = diag(a, σ (a), . . . , σ `−1(a)) for some a ∈ k \ {0} and bi ∈ k for i = 1, . . . , `.

Theorem 1 and Proposition 2 imply that, for an irreducible system {σ(Y ) = AY , δ(Y ) = BY } of
order n over k0, there exists ` ∈ Z>0 with `|n such that {σ `(Y ) = A`Y , δ(Y ) = BY } is equivalent
over k to a system of diagonal form. In this section, we will show further that the original system is
equivalent over k to a more special form when its order n is prime.



Author's personal copy

308 R. Feng et al. / Journal of Symbolic Computation 45 (2010) 306–323

2.1. Normal forms for a general system

Let us first review some notions and properties concerning rational solutions of difference equa-
tions.

Definition 3 (Hardouin and Singer, 2008, Definition 6.1). Let f = P
Q with P,Q ∈C(t)[x] and gcd(P,Q )

= 1.

(1) The dispersion of Q , denoted by disp(Q ) is

max{j ∈ Z>0|Q (α) = Q (α + j) = 0 for some α ∈ C(t)}.

(2) The polar dispersion of f is the dispersion of Q and denoted pdisp(f ).
(3) f is said to be standard with respect to σm, withm ∈ Z>0, if disp(P · Q ) < m.

As in Hardouin and Singer (2008), we have the following

Lemma 4. Assume that f ∈ k \ {0}, a ∈ C(t) \ {0} and m ∈ Z>0.

(1) There exist f̃ , g̃ ∈ k \ {0} such that f = σm(g̃)
g̃ f̃ where f̃ is standard with respect to σm.

(2) If f has a pole, then pdisp(σm(f )− af ) ≥ m.

Proof. The proof is similar to that of Lemma 6.2 in Hardouin and Singer (2008). �

Proposition 5. Let 0 6= a, b ∈ k satisfy σm(b)− b = δ(a)
a where m ∈ Z>0. Then

a =
σm(f )
f

α(x)β(t) and b =
δ(f )
f
+
δ(β(t))
mβ(t)

x+ c

where f ∈ k, c, β(t) ∈ C(t), and α(x) ∈ C(x) is standard with respect to σm.

Proof. Let a = σm(f )
f â with â standard with respect to σ

m and b̂ = b − δ(f )
f . Then σ

m(b̂) − b̂ = δ(â)
â .

View â and b̂ as rational functions in x. Then pdisp( δ(â)â ) < m. If
δ(â)
â /∈ C(t), then δ(â)

â has a pole and so
does b̂. By Lemma 4, pdisp(σm(b̂)− b̂) ≥ m, a contradiction. Hence δ(â)â = w(t) ∈ C(t), which means
that â = α(x)e

∫
w(t)dt . Since â ∈ k, â is of the form α(x)β(t)where α(x) ∈ C(x) and β(t) ∈ C(t). Then

b̂ ∈ C(t)[x]. Suppose that b̂ = cnxn + cn−1xn−1 + · · · + c0 where ci ∈ C(t) and cn 6= 0. Then

σm(b̂)− b̂ = nmcnxn−1 + · · · =
δ(â)
â
=
δ(β(t))
β(t)

.

So n = 1 and b̂ = δ(β(t))
mβ(t) x+ c0. �

Now we proceed to give the normal form.

Theorem 6. If {σ(Y ) = AY , δ(Y ) = BY } with A ∈ GLn(k0) and B ∈ gln(k0) is irreducible over k0 and
its Galois group over k0 has solvable identity component, then there exists ` ∈ Z>0 with `|n such that the
system

σ `(Y ) = A`Y , δ(Y ) = BY

is equivalent over k to{
σ `(Y ) = diag(Λ(x)β1(t),Λ(x)β2(t), . . . ,Λ(x)βm(t))Y ,

δ(Y ) = diag
(
δ(β1(t))
`β1(t)

xI` + C1, . . . ,
δ(βm(t))
`βm(t)

xI` + Cm
)
Y

(1)

whereΛ(x) = diag(α(x), . . . , α(x+ `− 1)), C1 = diag(c1, . . . , c`) and m`=n. Moreover, α(x) ∈ C(x)
is standard with respect to σ `, βi(t), ci ∈ C(t), and there exists gi in the Galois group of the original system
over k0 such that βi(t) = gi(β1(t)) and Ci = gi(C1).
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Proof. By Theorem 1, it suffices to prove the theorem for a factor over k of the given system. Let
{σ(Y ) = AY , δ(Y ) = BY } be such a factor with A ∈ GL`(k) and B ∈ gl`(k). By Proposition 2,
{σ `(Y ) = A`Y , δ(Y ) = BY } is equivalent over k to

σ `(Y ) = DY , δ(Y ) = diag(b1, . . . , b`)Y

where D is as in Proposition 2 and bi ∈ k for i = 1, . . . , `. Since σ ` and δ commute, we have
σ `(b1)− b1 = δ(a)

a . By Proposition 5, we have

a =
σ `(f )
f

α(x)β1(t) and b1 =
δ(f )
f
+
δ(β1(t))
`β1(t)

x+ c1

where α(x) ∈ C(x) is standard with respect to σ `, c1, β1(t) ∈ C(t) and f ∈ k. Then for i = 1, . . . , `,

σ i−1(a) =
σ(σ i−1(f ))
σ i−1(f )

α(x+ i− 1)β1(t) and bi =
δ(σi−1(f ))
σ i−1(f )

+
δ(β1(t))
`β1(t)

x+ ci.

Let F = diag(f , σ (f ), . . . , σ `−1(f )). Then the system

σ `(Y ) = DY , δ(Y ) = diag(b1, . . . , b`)Y

is equivalent over k to

σ `(Y ) = Λ(x)β1(t)Y , δ(Y ) =
(
δ(β1(t))
`β1(t)

xI` + C1

)
Y

under the transformation Y → FY where Λ(x) = diag(α(x), . . . , α(x + ` − 1)) and C1 = diag(c1,
. . . , c`). �

2.2. Normal forms for systems of prime order

If a difference–differential system is of prime order n, then the integer ` in Theorem 6 equals
either 1 or n. For the case where the system is reducible over k, we can refine Theorem 6 further
in the following

Proposition 7. Assume that n is a prime number. Suppose that the system {σ(Y ) = AY , δ(Y ) = BY }
with A ∈ GLn(k0) and B ∈ gln(k0) is irreducible over k0 and reducible over k and that its Galois group over
k0 has solvable identity component. Then the system is equivalent over k to{

σ(Y ) = α(x)diag(β1(t), β2(t), . . . , βn(t))Y ,

δ(Y ) = diag
(
δ(β1(t))
β1(t)

x+ c1, . . . ,
δ(βn(t))
βn(t)

x+ cn
)
Y

(2)

where α(x) ∈ C(x) is standard with respect to σ , βi(t) = gi(β1(t)) ∈ C(t) and ci = gi(c1) ∈ C(t) for
some gi in the Galois group of the original system over k0.

Before discussing the other case where a difference–differential system is irreducible over k, let us
look at the following

Lemma 8. Assume that σ(Y ) = AY with A ∈ GLn(k0) is equivalent over k to σ(Y ) = ĀY where

Ā =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
β(t)α(x) 0 0 · · · 0

 ,
with α(x) ∈ C(x) and β(t) ∈ C(t). Then β(t) ∈ C(t).
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Proof. There exists G ∈ GLn(k) such that σ(G)ĀG−1 = A. Then

det(σ (G)) det(Ā) det(G−1) = det(A).

Since det(σ (G)) = σ(det(G)) and det(G−1) = 1
det(G) , we have

(−1)n−1β(t)α(x)
σ (det(G))
det(G)

= det(A).

Expand the rational functions in x in the above equation as series at x = ∞. Since σ(det(G))det(G) = 1+
1
xQ

where Q ∈ C(t)[[ 1x ]], one sees that β(t) ∈ C(t). �

Proposition 9. Let A, Ā ∈ GLn(k0). If σ(Y ) = AY and σ(Y ) = ĀY are equivalent over k then they are
equivalent over k0.

Proof. Suppose that there exists G ∈ GLn(k) such that σ(G)A = ĀG. Then there exists γ (t) ∈ C(t)
such that G ∈ GLn(k0(γ (t))). Letm = [k0(γ (t)) : k0]. Since 1, γ (t), . . . , γ (t)m−1 is a basis of k0(γ (t))
over k0, we can write

G = G0 + G1γ (t)+ · · · + Gm−1γ (t)m−1

where Gi ∈ gln(k0). From σ(G)A = ĀG, it follows that σ(Gi)A = ĀGi for i = 0, . . . ,m − 1. Let λ be
a parameter satisfying σ(λ) = λ and let H(λ) =

∑m−1
i=0 λ

iGi. Therefore, σ(H(λ))A = ĀH(λ). Since
det(G) = det(H(γ (t))) 6= 0, det(H(λ)) is a nonzero polynomial with coefficients in k0. Hence there
exists c ∈ C(t) such that det(H(c)) 6= 0. So σ(H(c))A = ĀH(c) and H(c) ∈ GLn(k0). �

We now turn to the case where a difference–differential system over k0 is irreducible over k.

Proposition 10. Suppose that {σ(Y ) = AY , δ(Y ) = BY }with A ∈ GLn(k0) and B ∈ gln(k0) is irreducible
over k and that its Galois group over k0 has solvable identity component. Then the system is equivalent
over k0 to

σ(Y ) = ĀY , δ(Y ) = B̄Y

where B̄ ∈ gln(k0) and

Ā =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
β(t)α(x) 0 0 · · · 0

 ∈ GLn(k0)
with α(x) ∈ C(x) standard with respect to σ n and β(t) ∈ C(t). Moreover, α(x+1)

α(x) 6=
σ n(b)
b for any b ∈

C(x).

Proof. By Proposition 32 in Feng et al. (2009), the given system is equivalent over k to the system
{σ(Y ) = ĀY , δ(Y ) = B̄Y }where B̄ ∈ gln(k) and

Ā =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
a 0 0 · · · 0

 ∈ GLn(k).

Since σ and δ commute, we have σ(B̄)Ā = δ(Ā)+ ĀB̄. Let B̄ = (b̄ij)n×n where b̄i,j ∈ k. Then

σ(b̄nn)− b̄11 =
δ(a)
a
, b̄nn = σ(b̄n−1,n−1), . . . , b̄22 = σ(b̄11).
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Hence σ n(b̄11) − b̄11 = δ(a)
a . By Proposition 5, we have a =

σ n(f )
f α(x)β(t) with f ∈ k, α(x) ∈ C(x)

standard with respect to σ n and β(t) ∈ C(t). Then {σ(Y ) = ĀY , δ(Y ) = B̄Y } is equivalent over
k to {σ(Y ) = ĀY , δ(Y ) = B̄Y } under the transformation Y → diag(f , σ (f ), . . . , σ n−1(f ))Y , where
B̄ ∈ gln(k0) and

Ā =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
β(t)α(x) 0 0 · · · 0


with α(x) ∈ C(x) and β(t) ∈ C(t). By Lemma 8 and Proposition 9, the original system is equivalent
over k0 to {σ(Y ) = ĀY , δ(Y ) = B̄Y }with β(t) ∈ C(t). Assume that α(x+1)

α(x) =
σ n(b)
b for some b ∈ C(x)

and let u = σ n−1(b) · · · σ(b)b. We have α(x+1)
α(x) =

u(x+1)
u(x) thus α(x) = cu(x) for some constant c with

respect to σ . Therefore c ∈ C since α(x) and u(x) are both in C(x). Let P ∈ GLn(C(t)) be such that

P−1


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
cβ(t) 0 0 · · · 0

 P = diag(β̃1(t), β̃2(t), . . . , β̃n(t))
where the β̃i(t)’s are the roots of Y n − cβ(t). Let

F = diag(1, b, σ (b)b, . . . , σ n−2(b) · · · σ(b)b)P

and B̃ = F−1B̄F − F−1δ(F). Then {σ(Y ) = ĀY , δ(Y ) = B̄Y } is equivalent over k to

σ(Y ) = b · diag(β̃1(t), β̃2(t), . . . , β̃n(t))Y , δ(Y ) = B̃Y

under the transformation Y → FY . Assume B̃ = (b̃ij)n×n. Since σ and δ commute,

σ(b̃ij)−
β̃i(t)

β̃j(t)
b̃ij = 0,

for all i, j with 1 ≤ i 6= j ≤ n. Hence b̃ij = 0 if i 6= j. In other word, B̃ is of diagonal form. This
contradicts to the irreducibility over k of the original system. �

Lemma 11. Let a ∈ k0\{0}, n be a positive integer andm > 0 be the least integer such that σ
m(a)
a =

σ n(b)
b

for some b ∈ k0. Then m|n.

Proof. Suppose that σ
m(a)
a =

σ n(b)
b with b ∈ k0. Then for each ` > 0,

σ `m(a)
a
=
σ n(c`)
c`

with c` ∈ k0.

Let n = `1m+ `2 where 0 ≤ `2 ≤ m− 1. Then

σ `2(a)
a
=
σ `1m+`2(a)

a
σ `2(a)

σ `1m+`2(a)
=
σ n(a)
a

c
σ n(c)

for some c ∈ k0. Hence `2 = 0 and som|n. �

Proposition 12. Assume that n is a prime number, the system

σ(Y ) = AY , δ(Y ) = BY
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with A ∈ GLn(k0) and B ∈ gln(k0) is irreducible over k and its Galois group over k0 has solvable identity
component. Then {σ n(Y ) = AnY , δ(Y ) = BY } is equivalent over k0 to{

σ n(Y ) = β(t)diag(α(x), . . . , α(x+ n− 1))Y

δ(Y ) =
(
δ(β(t))
nβ(t) xIn + diag(b̂1, . . . , b̂n)

)
Y

where α(x) and β(t) are as in Proposition 10 and b̂i ∈ C(t) for i = 1, . . . , n.

Proof. By Proposition 10, {σ n(Y ) = AnY , δ(Y ) = BY } is equivalent over k0 to the system

σ n(Y ) = β(t) · diag(α(x), . . . , α(x+ n− 1)) Y , δ(Y ) = B̄Y

with α(x) and β(t) as in Proposition 10 and B̄ ∈ gln(k0). Let B̄=(b̄ij)n×n. From σ nδ = δσ n, we have{
σ n(b̄ii)− b̄ii =

δ(β(t))
β(t) , i = 1, . . . , n,

σ n(b̄ij)− α(x+i)
α(x+j) b̄ij = 0, 1 ≤ i 6= j ≤ n.

Hence b̄ii =
δ(β(t))
nβ(t) x+ b̂i with b̂i ∈ C(t). Note that n is prime and α(x+1)

α(x) 6=
σ n(b)
b for any b ∈ C(x). Then

by Lemma 11, α(x+i)
α(x) 6=

σ n(b)
b for any 1 ≤ i ≤ n − 1 and b ∈ C(x). Hence b̄ij = 0 for i 6= j. This

concludes the proposition. �

3. A decision procedure for systems of prime order

Consider a system {σ(Y ) = AY , δ(Y ) = BY } of order n over k0. Assume that the order n is prime,
the system is irreducible over k0 and its Galois group over k0 has solvable identity component (or,
equivalently, the system has Liouvillian solutions). By Propositions 7 and 12, either the original sys-
tem has hypergeometric solutions over k or the system {σ n(Y ) = AnY , δ(Y ) = BY } has solutions
which are the interlacing of hypergeometric solutions over k0. In this section, we will give a decision
procedure to find solutions of systems of both forms when the order n is prime. Our procedure relies
on the following three facts in the ordinary cases:

(A1) we can compute all rational solutions in kn of an ordinary difference equation σ(Y ) = AY where
A ∈ GLn(k); ((Abramov and Barkatou , 1998; Abramov , 1995, 1989; van Hoeij, 1998));

(A2) we can compute all hypergeometric solutions over C(x) of an ordinary difference equa-
tion σ(Y ) = ÂY where Â ∈ GLn(C(x)) ((Hendriks and Singer, 1999; Labahn and Li, 2004; Wu,
2005; Li et al., 2006; Petkovšek, 1992; Petkovšek and Salvy, 1993; van Hoeij, 1999; Bomboy,
2002));

(A3) we can compute all hyperexponential solutions over C(t) of an ordinary differential equa-
tion δ(Y ) = B̂Y where B̂ ∈ GLn(C(t)) ((Kovacic, 1986; Labahn and Li, 2004; Wu, 2005; Li et al.,
2006; Singer, 1981; van Hoeij et al., 1999)).

In the following subsections, we will reduce the problem of finding solutions of {σ(Y ) = AY , δ(Y ) =
BY } or of {σ n(Y ) = AnY , δ(Y ) = BY } to that in the ordinary cases as indicated above.
We have two case distinctions according to the reducibility of {σ(Y ) = AY , δ(Y ) = BY } over k.

3.1. The decision procedure for the reducible case

Assume that {σ(Y ) = AY , δ(Y ) = BY } is reducible over k. Proposition 7 implies that this system
has hypergeometric solutions of the formWihi for i = 1, . . . , n, whereWi ∈ kn and hi satisfies

σ(hi) = α(x)βi(t)hi and δ(hi) =
(
δ(βi(t))
βi(t)

x+ ci

)
hi
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with α(x) ∈ C(x) standard with respect to σ , βi(t) = gi(β1(t)) ∈ C(t) and ci = gi(c1) ∈ C(t)
for some gi in the Galois group of the original system over k0. Substituting eachWih into the original
system, we get

σ(Wi) =
A

α(x)βi(t)
Wi and δ(Wi) =

(
B−

δ(βi(t))
βi(t)

x− ci

)
Wi. (3)

So, to compute hypergeometric solutions of {σ(Y ) = AY , δ(Y ) = BY } it suffices to find α(x), βi(t), ci
andWi satisfying (3).

Remark 13. The equalities (3) still hold when replacing α(x) by σ(g)α(x)g andWi by
Wi
g for g ∈ C(x). So

in the sequel, we will compute a suitable σ(g)α(x)g instead of α(x).

Computing α(x): By Proposition 7, there exists G ∈ GLn(k) such that

σ(det(G))
det(G)

α(x)n
n∏
i=1

βi(t) = det(A).

Without loss of generality, we assume that the numerator and denominator of α(x) are monic.
Expanding the functions in the above equality as series at x = ∞, one can compute

∏n
i=1 βi(t) from

the series expansion of det(A) at x = ∞. Let ã = det(A)∏n
i=1 βi(t)

. Rewrite ã = σ(b)
b ā where b, ā ∈ k0 and ā

is standard with respect to σ . Then

ā =
σ(g)
g
α(x)n for some g ∈ k0. (4)

From Proposition 7, α(x) is standard with respect to σ and so is α(x)n. Proposition 15 below shows

that σ(g)g ∈ C(x) and thus ā ∈ C(x). Moreover, ā has the form
(
σ(ḡ)
ḡ α(x)

)n
for some ḡ ∈ C(x). To

prove Proposition 15, let us introduce a notation used in van der Put and Singer (1997, Section 2.1).

Definition 14. A divisor D on P1(C(t)) is defined to be a finite formal expression
∑
np[p] with p ∈

P1(C(t)) and np ∈ Z. The support of a divisor D, denoted supp(D), is the finite set of all pwith np 6= 0.
Let p ∈ supp(D). The Z-orbit E of p in supp(D) is defined to be

E(p, supp(D)) = {p+ i|i ∈ Z and p+ i ∈ supp(D)}.

As usual, the divisor div(f ) of a rational function f ∈ k \ {0} is given by div(f ) =
∑
ordp(f )[p], where

ordp(f ) denotes the order of f at the point p. It is clear that div(fg) = div(f )+ div(g). Moreover, if p
is in supp(div(f )) but not in supp(div(fg)), then p ∈ supp(div(f ))∩ supp(div(g)). By Definition 14, if
f ∈ k \ {0} is standard with respect to σ , then E(p, supp(div(f ))) = {p} for each p ∈ supp(div(f )).

Proposition 15. Assume that f , g ∈ k \ {0} and f is standard with respect to σ . If σ(g)g−1f is standard
with respect to σ , then

σ(g)
g
=

∏
i

(x+ ki − ci)mi

(x− ci)mi

with ki ∈ Z, mi ∈ Z>0, ci ∈ C(t) and disp(
∏
i(x− ci)) = 0.Moreover, for each i, either ordci(f ) = mi or

ordci−ki(f ) = −mi.

Proof. Let H = σ(g)g−1f , S1 = supp(div(f )), S2=supp(div(σ (g)g−1)) and S3 = supp(div(H)). By
Lemma 2.1 in van der Put and Singer (1997),∑

q∈E(p,S2)

ordq

(
σ(g)
g

)
= 0 for each p ∈ S2.

Then |E(p, S2)| ≥ 2 for each p ∈ supp(S2). Since H and f are standard,

|E(p, S2) ∩ S3| ≤ 1 and |E(p, S2) ∩ S1| ≤ 1
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thus |E(p, S2) ∩ (S1 ∪ S3)| ≤ 2. From S2 ⊆ S1 ∪ S3,we have |E(p, S2)| ≤ 2. Hence for each p ∈ S2,

|E(p, S2)| = 2, |E(p, S2) ∩ S1| = 1 and |E(p, S2) ∩ S3| = 1.

From |E(p, S2)| = 2 and |E(p, S2) ∩ S3| = 1, either

ordp(σ (g)g−1) = −ordp(f ) or ordp+j0(σ (g)g
−1) = −ordp+j0(f )

with p+ j0 ∈ E(p, S2). The proposition holds. �

Let g be as in (4). Since α(x) ∈ C(x), g can be chosen in C(x) according to Proposition 15. Then
ā ∈ C(x). Moreover,

σ(g)
g
=

∏
i

(x+ ki − ci)mi

(x− ci)mi

where mi has the form m̄in for some m̄i ∈ Z>0 since mi is either ordci(α(x)
n) or−ordci−ki(α(x)

n). Let
ḡ =

∏
i
∏ki−1
j=0 (x+ j− ci)

m̄i . Then(
σ(ḡ)
ḡ

)n
=
σ(g)
g

and ā =
(
σ(ḡ)
ḡ
α(x)

)n
.

Note that the numerator and the denominator of α(x) are monic, so we can compute σ(ḡ)ḡ α(x) from ā.

Example 16. Consider the integrable system

σ(Y ) = AY , δ(Y ) = BY

where

A =

− t(x2+1)(t2+1−x)t2−x−1
−

x2+1
t2−x−1

(x2+1)(t4+t2−x2−x)
t2−x−1

t(x2+1)(t2−x)
t2−x−1

 ,
B =

(
−
−2xt3−t4−t2+t5+3t3+2t+x2t+t2x+x

(t2−x)(t2+1)
−

t2

(t2−x)(t2+1)
−t2x2+t6+2t4+t2−x2+2t2x+x

(t2−x)(t2+1)
−x2t−t2x−x+t5+2t3−xt+t4+t2

(t2−x)(t2+1)

)
.

We have

det(A) = −
(x2 + 1)2(t4 − t2x+ t2 − x)

t2 − x− 1
= −(t2 + 1)x4 + (t2 + 1)x3 + · · · .

Thus β1(t)β2(t) = −(t2 + 1). Let ã = − det(A)t2+1
and write

ã =
t2 − x

t2 − (x+ 1)
(x2 + 1)2.

Then α(x) = x2 + 1.

Computing βi(t):We first prove the following

Lemma 17. Either β1(t) = · · · = βn(t) ∈ C(t) or β1(t), . . . , βn(t) are the conjugate roots of an irre-
ducible polynomial of degree n with coefficients in C(t).

Proof. Let R0 be a σδ-PV extension of k0 for {σ(Y ) = AY , δ(Y )=BY } and P =
∏n
i=1(X − βi(t)). From

the proof of Theorem 1, one sees that Gal(R0/k0) permutes the βi(t). Furthermore, the orbits of the
βi(t) under this group action all have the same size. Therefore, P is a polynomial with coefficients in
C(t). Since n is prime, either P is irreducible or all the factors of P in C(t)[X] are of degree one. This
concludes the lemma. �

The following two notions can be found in Barkatou and Chen (2001) and Barkatou (1991).
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Definition 18. Let H = (hij)n×n ∈ GLn(k0). The order of H at∞ is defined as

ord∞(H) = min{ord∞(hij)}

where ord∞(hij) is the order of hij at∞.

We rewrite H into the form

H =
(
1
x

)ord∞(H) (
H0 + H1

1
x
+ · · ·

)
where Hi ∈ gln(C(t)) and H0 6= 0.

Definition 19. The rational number

m(H) =

{
−ord∞(H)+

rank(H0)
n ord∞(H) ≤ 0,

0 ord∞(H) > 0

is called the first Moser order of H . And

µ(H) = min{m(σ (G)HG−1)|G ∈ GLn(k)}

is called the Moser invariant of H . A matrix H is said to be irreducible ifm(H) = µ(H), otherwise it is
said to be reducible.

Given H ∈ GLn(k0), one can use the algorithm in Barkatou and Chen (2001) and Barkatou (1991) to
compute G ∈ GLn(k0) such that H̃ := σ(G)HG−1 is irreducible. So we can assume that A

α(x) is irre-
ducible where A and α(x) are as in (3). Under this assumption, we will show that

A
α(x)
= Ã0 + Ã1

1
x
+ · · ·

with Ãi ∈ gln(C(t)) for each i and that all the βi(t)’s are eigenvalues of Ã0. The following lemma can be
deduced from the results in Barkatou (1991). We will present a self-contained proof due to Reinhart
Shaefke.

Lemma 20. Let G ∈ GLn(k) and assume that ord∞(σ (G−1)G) = 0. Then all the eigenvalues of σ(G−1)
G|x=∞ are 1.

Proof. Let H = σ(G−1)G. Then H = H0 + H1 1x + · · · with Hi ∈ gln(C(t)) and H0 6= 0. We now show
that H0 − In is nilpotent. For a positive integerm, consider a map Lm : gln(k)→ gln(k) given by U 7→
σ(U)−σm(H)U for any U ∈ gln(k). Set Pm = Lm ◦ Lm−1 ◦ · · · ◦ L0(In)where ◦ denotes the composition
of maps. Then Pm|x=∞ = (In − H0)m+1. On the other hand, Lm(σm(G−1)V ) = σm+1(G−1)∆(V )where
∆ = σ − 1 is a difference operator and V ∈ gln(k). Hence Pm = σm+1(G−1)∆m+1(G). Note that when
m increases, ord∞(∆m+1(G)) increases but ord∞(σm+1(G−1)) is invariant. Then for a sufficiently large
m, Pm|x=∞ = 0. This concludes the lemma. �

Now we can prove the following

Proposition 21. ord∞
(
A
α(x)

)
= 0 and β1(t), . . . , βn(t) are eigenvalues of A

α(x) |x=∞.

Proof. By Proposition 7, there exists G ∈ GLn(k) such that

σ(G)
A
α(x)

G−1 = diag(β1(t), . . . , βn(t)).

This implies that ord∞
(
det

(
A
α(x)

))
= 0 andm

(
A
α(x)

)
= µ

(
A
α(x)

)
≤ 1. By the property of orders,

ord∞

(
A
α(x)

)
≤
1
n
ord∞

(
det

(
A
α(x)

))
= 0.
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Sincem
(
A
α(x)

)
≤ 1, ord∞

(
A
α(x)

)
= 0 by the definition of the first Moser orders. Therefore,

A
α(x)
= Ã0 + Ã1

1
x
+ . . .

where Ãi ∈ gln(C(t)) and Ã0 6= 0. From (3), σ(Y ) = A
α(x)βi(t)

Y has a rational solutionWi in kn. Suppose
that

Wi =
(
1
x

)ord∞(Wi) (
Wi0 +

1
x
Wi1 + · · ·

)
whereWij ∈ C(t)

n
andWi0 6= 0. ThenWi0 =

Ã0
βi(t)
Wi0. SinceWi0 6= 0, det

(
In −

Ã0
βi(t)

)
=0. Hence all

the βi(t) are the eigenvalues of Ã0. If the βi(t) are the conjugate roots of some irreducible polynomial
with degree n, then they are clearly eigenvalues of Ã0. Thus by Lemma 17 we only need to consider
the case β1(t) = · · · = βn(t) ∈ C(x). In this case, A

α(x) = β1(t)σ (G
−1)G. Since ord∞

(
A
α(x)

)
= 0, we

have ord∞(σ (G−1)G) = 0. By Lemma 20, all the eigenvalues of σ(G−1)G|x=∞ equal 1. Hence all the
eigenvalues of Ã0 equal β1(t). �

Example 22. (Continued) Let Ā = A
x2+1
. From the process in Barkatou (1991), we can find an irre-

ducible matrix of the form

Ã =

− (x+1)t(t2+1−x)
(t2−x−1)x

−
x+1
t2−x−1

t4+t2−x2−x
(t2−x−1)x

t(t2−x)
t2−x−1


which is equivalent to Ā. Write Ã = Ã0 + Ã1 1x + · · · where

Ã0 =
(
−t 1
1 t

)
and Ã1 =

(
t t2

t2 −t

)
.

The eigenvalues of Ã0 are±
√
t2 + 1. So β1(t)=

√
t2 + 1 and β2(t)=−

√
t2 + 1.

Computing ci andWi: Let Λ(t)= diag(β1(t), . . . , βn(t)). From (A1) we can find a matrix G∈ GLn(k)
such that σ(G)α(x)Λ(t) = AG. Let B̄ = G−1BG − G−1δ(G). Then B̄ ∈ gln(k), and the system {σ(Y )
=AY , δ(Y )=BY } is equivalent over k to

σ(Y ) = α(x)Λ(t)Y , δ(Y ) = B̄Y . (5)

Note thatGmaynot be the required transformationmatrix in Proposition 7, so B̄maynot be of diagonal
form. Since σδ = δσ , the same argument as in the proof of Proposition 10 implies the following
conclusions:

(i) If βi(t) 6= βj(t) for all i, jwith 1 ≤ i 6= j ≤ n, then

B̄ = diag
(
δ(β1(t))
β1(t)

x+ c1, . . . ,
δ(βn(t))
βn(t)

x+ cn

)
with ci ∈ C(t);

(ii) If β1(t) = · · · = βn(t) ∈ C(t), then by Proposition 9, G can be chosen in GLn(k0). Thus

B̄ = B̂+
δ(β1(t))
β1(t)

xIn

with B̂ ∈ gln(C(t)).
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In the case (i), the ci’s are obtained from B̄ directly and theWi’s are just the columns of G. For the case
(ii), since (5) is equivalent over k to (2), there exists Ĝ ∈ GLn(k) such that{

σ(Ĝ) = Ĝ,

δ(Ĝ)+ Ĝ
(
δ(β1(t))
β1(t)

xIn + diag(c1, . . . , cn)
)
=

(
B̂+ δ(β1(t))

β1(t)
xIn
)
Ĝ.

Hence Ĝ ∈ GLn(C(t)), and δ(Y ) = B̂Y is equivalent over C(t) to

δ(Y ) = diag(c1, . . . , cn)Y .

Then the ci’s are obtained by solving the system δ(Y ) = B̂Y by (A3) and theWi are the columns of GĜ.

Example 23. (Continued) LetΛ(t)=diag(
√
t2 + 1,−

√
t2 + 1). From (A1), we can obtain G∈GL2(k)

such that σ(G)(x2 + 1)Λ(t) = AGwhere

G =

 t−
√
t2+1

2(t2−x)
t+
√
t2+1

2(t2−x)
−x+t
√
t2+1

2(t2−x)
−
x+t
√
t2+1

2(t2−x)

 .
Then

B̄ = G−1BG− G−1δ(G)

=

(
xt
t2+1
+
√
t2 + 1+ 1 0
0 xt

t2+1
−
√
t2 + 1+ 1

)
.

Hence c1 =
√
t2 + 1+ 1, c2 = −

√
t2 + 1+ 1 andWi is the ith column of G for i = 1, 2. Furthermore,

a basis of the solution space is

h(
√
t2 + 1)xet+

∫√
t2+1dt

 t−
√
t2+1

2(t2−x)
t
√
t2+1−x
2(t2−x)

 , h(−
√
t2 + 1)xet−

∫√
t2+1dt

 t+
√
t2+1

2(t2−x)
x+t
√
t2+1

2(x−t2)


where h satisfies that σ(h) = (x2 + 1)h and δ(h) = 0.

3.2. The decision procedure for the irreducible case

Assume that {σ(Y ) = AY , δ(Y ) = BY } with A ∈ GLn(k0) and B ∈ gln(k0) is an irreducible system
over k and its Galois group over k0 has solvable identity component. By Proposition 12, the system
{σ n(Y ) = AnY , δ(Y ) = BY } has solutions of the form Wihi for i = 1, . . . , n, where Wi ∈ kn0 and hi
satisfies

σ n(hi) = α(x+ i− 1)β(t)hi, δ(hi) =
(
δ(β(t))
nβ(t)

x+ b̂i

)
hi

with α(x), β(t) and b̂i as in Proposition 12. Substituting Y = Wihi into {σ n(Y ) = AnY , δ(Y ) = BY },
we have

σ n(Wi) =
An

β(t)α(x+ i− 1)
Wi and δ(Wi) =

(
B−

δ(β(t))
nβ(t)

x− b̂i

)
Wi. (6)

To compute Wihi, it suffices to compute α(x), β(t),Wi and b̂i which satisfy (6). Without loss of
generality, we assume that the numerator and denominator of α(x) are monic. By Proposition 10,
there exists G ∈ GLn(k0) such that

σ(det(G))
det(G)

(−1)n−1α(x)β(t) = det(A).
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Expanding det(A) as a series in 1x , we get that (−1)
n−1β(t) is the leading coefficient of the series.

Hence we can obtain β(t) from det(A). In this case, we cannot find α(x) by the method used in
Section 3.1. However we can reduce this problem to working with difference equations over C(x).
By Proposition 12, there exists G ∈ GLn(k0) (the same as that in Proposition 10) such that

σ n(G) · diag(α(x), . . . , α(x+ n− 1)) =
An
β(t)

G.

Assume that t = p is not a pole of the entries of An
β(t) and such that det

(
An
β(t) |t=p

)
6= 0. Let An

β(t) =

Ā0 + (t − p)Ā1 + · · · where Āi ∈ gln(C(x)). We will show that α(x) can be found by examining the
hypergeometric solutions of σ n(Y ) = Ā0Y . This will follow from the next proposition.

Proposition 24. Some factor of σ n(Y ) = Ā0Y is equivalent over C(x) to some factor of σ n(Y ) = diag
(α(x), α(x+ 1), . . . , α(x+ n− 1))Y .

Proof. Let G be as above and letΨ (x) = diag(α(x), . . . , α(x+n−1)). Wemaymultiply G by a power
of t − p and assume that G = Ḡ0 + (t − p)Ḡ1 + · · · where Ḡ0 6= 0 and Ḡi ∈ gln(C(x)). Then

σ n(Ḡ0 + (t − p)Ḡ1 + · · · )Ψ (x) = (Ā0 + · · · )(Ḡ0 + (t − p)Ḡ1 + · · · ).

Therefore σ n(Ḡ0)Ψ (x) = Ā0Ḡ0. Let r = rank(Ḡ0). Then r > 0 because Ḡ0 6=0. There exist P ∈ GLn
(C(x)) and Q which is a product of some permutation matrices such that

G̃ = PḠ0Q =
(
0 0
G̃21 G̃22

)
where G̃22 ∈ GLr(C(x)). Then

σ n(G̃)diag(α(x+ k1), . . . , α(x+ kn)) = σ n(P)Ā0P−1G̃ (7)

where k1, . . . , kn are a permutation of {0, 1, . . . , n− 1}. Now let

Ã = σ n(P)Ā0P−1 =
(
Ã11 Ã12
Ã21 Ã22

)
where Ã22 ∈ glr(C(x)),

and D2 = diag(α(x+ kn−r+1), . . . , α(x+ kn)). From (7), we have σ n(G̃22)D2 = Ã22G̃22 and Ã12G̃22=0.
Since G̃22 ∈ GLr(C(x)), we have Ã12 = 0. Therefore σ n(Z) = Ã22Z is a factor of σ n(Y ) = Ā0Y , which is
equivalent over C(x) to σ n(Z) = D2Z . �

Remark 25. For almost all of p ∈ C, σ n(Y ) = An
β(t) |t=pY is equivalent over C(x) to

σ n(Y ) = diag(α(x), α(x+ 1), . . . , α(x+ n− 1))Y .

Since G|t=p is invertible.

The same argument as in Remark 13 implies that it suffices to compute σ
n(g)α(x)
g for some suitable

g ∈ C(x) instead of α(x). We can use Proposition 24 to find σ n(g)α(x+k)
g with k ∈ Z and g ∈ C(x)

as follows. From Theorem 3 in Bronstein et al. (2005), if (z1, . . . , zr)T is a solution of σ n(Z) = Ã22Z ,
then (0, . . . , 0, z1, . . . , zr)T is a solution of σ n(Y ) = ÃY . So σ n(Y ) = Ā0Y has at least r solutions
W 1h̄1, . . . ,W r h̄r , where W i ∈ C(x)n and h̄i satisfies σ n(h̄i) = α(x + kn−r+i)h̄i. By (A2), we can find
all hypergeometric solutions of σ(Z) = Ā0(nx)Z where Ā0(nx) means replacing x by nx in Ā0. Then
by interlacing, we can find all solutions of σ n(Y ) = Ā0Y of the form W̃jh̃j where W̃j ∈ C(x)n and h̃j
satisfies σ n(h̃j) = ãjh̃j for some ãj ∈ C(x). Then there exists h̃j0 such that h̃j0 = gh̄1 for some g ∈ C(x)
and

α̂(x+ kn−r+1) =
σ n(h̃j0)

h̃j0
=
σ n(g)
g

α(x+ kn−r+1).
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After finding α̂(x+ kn−r+1), we can compute a matrix Ĝ ∈ GLn(k0) in a finite number of steps by (A1),
such that

σ n(Ĝ−1)AnĜ = β(t)diag(α̂(x), . . . , α̂(x+ n− 1)).

Let B̄ = Ĝ−1BĜ− Ĝ−1δ(Ĝ). Then we get a new system

σ n(Y ) = β(t)diag(α̂(x), . . . , α̂(x+ n− 1))Y , δ(Y ) = B̄Y

which is equivalent to the original one under the transformation Y → Ĝ−1Y . Since σ n and δ commute
and α(x+1)

α(x) 6=
σ n(b)
b for any b ∈ C(x), the same argument as in the proof of Proposition 12 implies that

B̄ is of diagonal form, that is

B̄ = diag
(
δ(β(t))
nβ(t)

x+ b̂1, . . . ,
δ(β(t))
nβ(t)

x+ b̂n

)
.

We then get the b̂i, and theWi are just the ith columns of Ĝ.

Example 26. Consider an integrable system:

σ(Y ) = AY , δ(Y ) = BY

where

A =


x3t4+2x2t4+xt4−x−1

t2+x+1
t2(tx4+2tx3+tx2+1)

t2+x+1
t(t−x−1)
t2+x+1

−
t(x2t4+xt4−1)
t2+x+1

−
t(t3x3+t3x2−1)
t2+x+1

t(1+t)
t2+x+1

t6x2+t6x+x+1
t(t2+x+1)

t(t3x3+t3x2−1)
t2+x+1

−
t−x−1
t2+x+1

 ,

B =


t4+t2x+x2+t4x−t2

t(t2+x)
−
x(−t2+t3−1)

t2+x
xt3(−1+t)
t2+x

−
−t2+t4+1
t2+x

2t2x+x2+t5−t2

t(t2+x)
−
t4(−1+t)
t2+x

−t2+t4+1
t2+x

x(−t2+t3−1)
t(t2+x)

x2+xt3+t2x+t6−x−t2

t(t2+x)

 .
We have

det(A) =
xt3(t2x+ t2 + x2 + x)

x+ 1+ t2
=
(x+ 1)(t2 + x)
x(t2 + x+ 1)

x2t3.

By (4), if the Galois group over k0 of the given system has solvable identity component, then this
system have no hypergeometric solutions over k. Therefore we consider the system

σ 3(Y ) = A3Y , δ(Y ) = BY

where

A3 =


t3(t2x2+t2x+21x+x3+8x2+18)

t2+x+3
−
t4(x+1)(5x+6)
t2+x+3

2t4(x+2)(x+3)
t2+x+3

−
2t4(2x+3)
t2+x+3

(x+1)t3(x2+t2x+2t2)
t2+x+3

−
2t5(x+2)
t2+x+3

2t4(2x+3)
t2+x+3

(x+1)t3(5x+6)
t2+x+3

(x+2)(x+3)t3(x+1+t2)
t2+x+3

 .
We can compute β(t) = t3 from det(A). Let Ã = A3

t3
. Then

Ã|t=0 =

(x+ 2)(x+ 3) 0 0
0 (x+1)x2

x+3 0
0 (x+1)(5x+6)

x+3 (x+ 1)(x+ 2)

 .
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By (A2), all hypergeometric solutions of σ 3(Y ) = Ã|t=0Y are

9
x
3Γ

( x+2
3

)
Γ
( x+3
3

) (1
0
0

)
, 9

x
3Γ

( x+1
3

)
Γ
( x+2
3

) (0
0
1

)
, 9

x
3Γ

( x
3

)
Γ
( x+1
3

) 0− 3x
3
x

 ,
where Γ (x) satisfies Γ (x + 1) = xΓ (x). By (A1), we can compute a rational solution of σ 3(Y ) =
A3

x(x+1)t3
Y . Moreover, we can compute a matrix G ∈ GL3(C(x, t)) such that

σ 3(G)diag(x(x+ 1)t3, (x+ 1)(x+ 2)t3, (x+ 2)(x+ 3)t3) = A3G
where

G =


t
t2+x

−
x
t2+x

x
t2+x

1
t2+x

t
t2+x

−
t
t2+x

−
1
t2+x

x
t(t2+x)

t
t2+x

 .
Let B̄ = G−1BG− G−1δ(G). Then B̄ = diag

( x
t + t,

x
t + t

2, xt + t
3
)
. Hence a basis of the solution space

of {σ 3(Y ) = A3Y , δ(Y ) = BY } is

V1(x) := 9
x
3Γ

( x
3

)
Γ
( x+1
3

)
txe

t2
2


t
t2+x
1
t2+x

−
1
t2+x

 ,

V2(x) := 9
x
3Γ

( x+1
3

)
Γ
( x+2
3

)
txe

t3
3


−

x
t2+x
t
t2+x
x

t(t2+x)

 ,

V3(x) := 9
x
3Γ

( x+2
3

)
Γ
( x+3
3

)
txe

t4
4


x
t2+x

−
t
t2+x
t
t2+x

 .
Clearly, Vi(1) 6= 0 for i = 1, 2, 3, A(j) and B(j) are well defined and det(A(j)) 6= 0 for j ≥ 1. By the
results in Section 2 of Feng et al. (2009), we get a basis of the solution space of the original system:

W1 = 9
1
3Γ

( 1
3

)
Γ
( 2
3

)
te
t2
2


(
0, t
t2+1

, 4t
3

t2+2
,− 6t3

t2+3
, · · ·

)
(
0, 1
t2+1

,− 2t4

t2+2
, 2t

4

t2+3
, · · ·

)
(
0,− 1

t2+1
, 2t

4

t2+2
, 6t

2

t2+3
, · · ·

)
 ,

W2 = 9
1
3Γ

( 2
3

)
Γ (1)te

t3
3


(
0,− 1

t2+1
, t
t2+2

, 18t
3

t2+3
, · · ·

)
(
0, t
t2+1

, 1
t2+2

,− 6t4

t2+3
, · · ·

)
(
0, 1
t(t2+1)

,− 1
t2+2

, 6t
4

t2+3
, · · ·

)


and

W3 = 9
1
3Γ (1)Γ

( 4
3

)
te
t4
4


(
0, 1
t2+1

,− 2
t2+2

, t
t2+3

, · · ·
)

(
0,− t

t2+1
, t
t2+2

, 1
t2+3

, · · ·
)

(
0, t
t2+1

, 2
t(t2+2)

,− 1
t2+3

, · · ·
)
 .

Note that all theWi are Liouvillian.
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3.3. Summary

Consider two systems

σ(Y ) = AY , δ(Y ) = BY (8)

and

σ n(Y ) = AnY , δ(Y ) = BY (9)

where A ∈ GLn(k0), B ∈ gln(k0) and n is a prime number. Assume that (8) is irreducible over k0. From
the results in Sections 3.1 and 3.2, if (8) has a Liouvillian solution over k, then either the solution space
of (8) has a basis consisting of hypergeometric solutions over k or the solution space of (9) has a basis
each of whose members is the interlacing of hypergeometric vectors over k0. Let us summarize the
previous decision procedure as follows.

Decision Procedure 1 Compute a fundamental matrix of (8) whose entries are hypergeometric over
k if it exists.

(a) Write det(A) = σ(g)
g a where g, a ∈ k0 and a is standard with respect to σ . If a 6= α(x)

nβ(t) for
any α(x) ∈ C(x) and β(t) ∈ C(t), then by the results in Section 6.1, exit [(8) has no required
fundamental matrix].

(b) Assume that a = α(x)nβ(t) for some α(x) ∈ C(x) and β(t) ∈ C(t). By the algorithms in
Barkatou and Chen (2001) and Barkatou (1991), compute an irreducible matrix Ã such that Ã =
σ(G̃) A

α(x) G̃
−1 for some G̃ ∈ GLn(k0). If ord∞(Ã) 6= 0, then by Proposition 21, exit [(8) has no re-

quired fundamental matrix]. Otherwise, let Ã0 = Ã|x=∞ and β1(t), . . . , βn(t) be the eigenvalues
of Ã0.

(c) Goto Step (d1) if the βi(t) are conjugate and goto Step (d2) if β1(t) = · · · = βn(t) ∈ C(t). In
other cases, by Lemma 17 and Proposition 21, exit [(8) has no required fundamental matrix].

(d1) If (A1) yields no rational solutions, then exit [(8) has no required fundamental matrix]. Other-
wise, suppose that we find G ∈ GLn(k) such that

σ(G)α(x)diag(β1(t), . . . , βn(t)) = AG.

Then B̄ := G−1BG− G−1δ(G) is of diagonal form. Compute a fundamental matrix H of

σ(Y ) = α(x)diag(β1(t), . . . , βn(t))Y , δ(Y ) = B̄Y .

Return [GH is a required fundamental matrix of (8)].
(d2) If we can compute a matrix G ∈ GLn(k0) such that σ(G)α(x)β1(t) = AG then let

B̂ = G−1BG− G−1δ(G)−
δ(β1(t))
β1(t)

xIn ∈ gln(C(t)),

else exit [(8) has no required fundamental matrix]. If we can find a fundamental matrix H of
δ(Y ) = B̂Y whose entries are hyperexponential over C(t), then return [GHhβ1(t)x is a required
fundamental matrix of (8)] where h satisfies σ(h) = α(x)h and δ(h) = 0. Otherwise, exit [(8)
has no required fundamental matrix].

Decision Procedure 2 Compute a fundamental matrix of (9) whose entries are the interlacing of
hypergeometric vectors over k0 if it exists.

(a) If det(A) 6= (−1)n−1 σ(g)g α(x)β(t) holds for any g ∈ k, β(t) ∈ C(t) and α(x) ∈ C(x) that is standard
with respect to σ n, then exit [(9) has no required fundamental matrix].

(b)Expand det(A) as a series at x = ∞ :

det(A) = (−1)n−1β(t)xm + β1(t)xm−1 + · · ·

where β(t), βi(t) ∈ C(t) and m ∈ Z. Suppose that x = p is not a pole of the entries of A
β(t) and

that det(Ã0) 6= 0 where Ã0 = A
β(t) |x=p. Use (A2) to find all hypergeometric solutions of σ(Z) =
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Ã0(nx)Z . By interlacing, we get all solutions of σ n(Y ) = Ã0Y of the form Wihi. Denote these so-
lutions by W1h1, . . . ,Wdhd where Wi ∈ C(x)n and hi satisfies σ n(hi) = ãihi for some ãi ∈ C(x).
If there is i0 ∈ {1, . . . , d} such that σ n(Y ) =

hi0A
σ n(hi0 )β(t)

Y has a rational solution in kn0, then let

λ(x) =
σ n(hi0 )
hi0
, else exit [(9) has no required fundamental matrix]. Let j0 be the least integer such

that σ n(Y ) = A
λ(x+j0)β(t)

Y has a rational solution in kn0. If we can compute G ∈ GLn(k0) such that

σ(Y )β(t)diag(λ(x+ j0), . . . , λ(x+ j0 + n− 1)) = AG,

then let B̄ = G−1BG − G−1δ(G). So B̄ is of diagonal form and by the same process as in Step (d1)
of Decision Procedure 1, we can compute a required fundamental matrix of (9). Otherwise, by the
results in Section 3.2, exit [(9) has no required fundamental matrix].

We can decide whether (8) has Liouvillian solutions or not as follows. If we can compute
hypergeometric solutions over k of (8) by Decision Procedure 1, thenwe are done. Otherwise, consider
the system (9). If we can compute Liouvillian solutions over k0 of (9) by Decision Procedure 2, then by
the results in Section 2 of Feng et al. (2009) we can compute Liouvillian solutions over k0 of (8) and
we are done. Otherwise (8) has no Liouvillian solutions.
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