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Abstract This paper gives a theoretical analysis for the algorithms to compute functional decomposi-

tion for multivariate polynomials based on differentiation and homogenization which were proposed by

Ye, Dai, and Lam (1999) and were developed by Faugère, Perret (2006, 2008, 2009). The authors show

that a degree proper functional decomposition for a set of randomly decomposable quartic homoge-

nous polynomials can be computed using the algorithm with high probability. This solves a conjecture

proposed by Ye, Dai, and Lam (1999). The authors also propose a conjecture which asserts that the

decomposition for a set of polynomials can be computed from that of its homogenization and show that

the conjecture is valid with high probability for quartic polynomials. Finally, the authors prove that

the right decomposition factors for a set of polynomials can be computed from its right decomposition

factor space.

Key words Cryptosystem analysis, functional decomposition, homogeneous polynomials, multivariate

polynomial, right factor space.

1 Introduction

A public key cryptosystem often relies on a hard mathematical problem. One of the hard
mathematical problems used in cryptosystems is the functional decomposition problem (FDP)
for multivariate polynomials[1]. The general FDP for multivariate polynomials has been proved
to be NP-hard by Dickerson[2]. Based on this fact, Patarin and Goubin[3] proposed the 2R
scheme which is based on the difficulty of decomposing a set of quartic polynomials. Let K be
a finite field with q elements. In the original design, the private key consists of

1) Three linear bijections r, s, t: Kn → Kn.
2) Two quadratic polynomial mappings ψ, φ: Kn → Kn.
The public key consists of
1) The field K and n.
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2) The composition of polynomial mapping π = t◦ψ ◦ s◦φ◦ r, which is a set of polynomials
of degree four.

In the encryption system, the quadratic polynomials are chosen from the given S-boxes,
which can be inverted easily. Given the composition of two quadratic polynomials, if we know
the private key, then we can obtain the plaintext. Otherwise, it is difficult to invert the poly-
nomials of degree four directly. So, attack on the 2R scheme is reduced to the functional
decomposition of quartic polynomials.

Efficient algorithms for several special forms of FDP are known. Polynomial-time algo-
rithms are proposed for univariate decomposition of multivariate polynomials and multivariate
decomposition of univariate polynomials[4−6]. Efficient algorithms for a kind of monomial de-
compositions of rational functions are proposed in [7], which is further extended to a complete
decomposition algorithm for rational parametrization of ruled-surfaces and other cases[8−10].

Ye, Dai, and Lam proposed an efficient algorithm for decomposing a set of n polynomials of
degree four into two sets of quadratic polynomials[11]. The key idea of computing the FDP is to
differentiate f to obtain a set of cubic polynomials and try to recover the right decomposition
factors from these cubic polynomials. The idea of differentiation introduced in [11] is a very
powerful technique in tackling FDP of multivariate polynomials. In a series of papers[12−14],
Faugère and Perret made significant contributions to this problem by integrating the idea of
differentiation and fast Gröbner basis computation. These algorithms are always running in
polynomial-time, but may fail in certain cases. Faugère and Perret proved that the algorithms
are valid for semi-regular multivariate polynomial sets. They also proved the correctness of
the algorithm for homogeneous polynomials when the polynomials have (2,2) decomposition
and (3,2) decomposition under a genericity assumption[15]. Note that their result on the (2,2)
decomposition is quite similar to the result presented in Section 4 of this paper, but the cor-
responding part of our work was independently finished and used a different method. As a
consequence, the current known schemes based on FDP of quartic homogenous multivariate
polynomials are considered broken.

As far as we know, the method based on differentiation and homogenization is the only
efficient approach to tackle some of the general FDP. But, these algorithms make strong as-
sumptions on the input polynomial sets and these assumptions are expected to be valid and
can be removed. This paper focuses on the theoretical analysis of the decomposition algorithm
based on differentiation and homogenization.

We prove that the algorithm can be used to compute a degree proper decomposition for
a set of randomly decomposable quartic homogeneous polynomials with probability one when
the base field is of characteristic zero, and with probability close to one when the base field
is a sufficiently large finite field. This solves a conjecture proposed by Ye, Dai, and Lam[11].
We also propose a conjecture such that the decomposition for a set of polynomials can be
computed from that of its homogenization, and when the polynomials are quartic we prove
that the conjecture holds with probability one when the base field is of characteristic zero, and
with probability close to one when the base field is a sufficiently large finite field. Finally, we
prove that the right decomposition factors for a set of polynomials can be computed from its
right decomposition factor space.

The rest of this paper is organized as follows. In Section 2, we give the main result. In
Sections 3, 4 and 5, we prove our results for the three major steps of the algorithm. In Section 6,
the algorithm is given and its complexity is analyzed. In Section 7, we conclude the paper by
proposing two open problems.
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2 Problem and Main Result

In this section, we will present the problem and give the main results of the paper.
Let K be a field and R = K[x1, · · · , xn] the polynomial ring in indeterminates x1, · · · , xn

over K. For natural numbers u and m, the functional composition of two sets of multivariate
polynomials g = (g1, · · · , gu)∈K[x1, · · · , xm]u and h = (h1, · · · , hm)∈Rm is a set of polynomials
in Ru:

(f1, · · · , fu) = (g1(h1, · · · , hm), · · · , gu(h1, · · · , hm)), (1)

that is,
f = g ◦ h.

We call g and h the left and right decomposition factors of f , respectively. The decomposition
is called nontrivial if both g and h contain nonlinear polynomials.

The functional decomposition problem (FDP) of multivariate polynomials is the inverse
of the above functional composition procedure. That is, given a set of u polynomials f =
(f1, · · · , fu)∈Ru and a positive number m, to find g = (g1, · · · , gu)∈ K[x1, · · · , xm]u and h =
(h1, · · · , hm)∈Rm such that f = g ◦ h.

It is shown that f always has a nontrivial decomposition when m > n, which is easy to
construct[2]. Then we assume that 1 ≤ m ≤ n. Moreover, note that in cryptosystems, the field
K is usually finite and we usually consider the case that m = n. So in the following paper,
assume that m = n.

A basic idea of the differentiation approach is to compute the linear space generated by the
right factors of f from the linear space generated by certain differentiations of the polynomials
in f . For a polynomial sequence f = (f1, · · · , fu) ∈ Ru with a decomposition like (1), let

R(f,h) = spanK{h1, · · · , hn}
be the linear space generated by hi over K, called a right factor space of f .

Another idea of the approach is to use homogenization. More precisely, we first compute a
decomposition for the homogenization of f and then try to recover a decomposition of f from
this decomposition. Let df = max(dfi), dg = max(dgi), dh = max(dhi). The homogenizations
of f , g, h are, respectively, defined as follows[11,13]:

f∗ =
(
x

df

0 , x
df

0 f1

(x1

x0
, · · · , xn

x0

)
, · · · , xdf

0 fu

(x1

x0
, · · · , xn

x0

))
,

g∗ =
(
x

dg

0 , x
dg

0 g1

(x1

x0
, · · · , xn

x0

)
, · · · , xdg

0 gu

(x1

x0
, · · · , xn

x0

))
,

h∗ =
(
xdh

0 , xdh
0 h1

(x1

x0
, · · · , xn

x0

)
, · · · , xdh

0 hn

(x1

x0
, · · · , xn

x0

))
.

Then the approach proposed in [11–14] can be divided into three major steps which will be
explained later.

Algorithm FDPMP
1) Compute a right factor space R(f∗,h∗) for the homogenization f∗ of f .
2) Compute a right factor space R(f,h) from R(f∗,h∗).
3) Compute an FDP for f from R(f,h).
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We will show that there exists a complete polynomial time algorithm for Step 3, while for
Steps 1, 2, there exist probabilistic algorithms in certain cases. We will discuss Steps 1, 2, 3 in
the next three sections.

A decomposition f = g ◦ h satisfying the following condition

df = dg · dh (2)

is called a degree proper decomposition, where df , dg, and dh are the degrees of f , g, and h,
respectively. All decompositions in this paper are assumed to be degree proper unless mentioned
otherwise.

By a homogeneous decomposition f = g ◦ h, we mean that each component of f , g, and h
are homogeneous of the same degree df , dg, and dh, respectively. It is clear that a homogenous
decomposition is always degree proper.

Degree proper decompositions can be found by solving a set of nonlinear algebraic equations.
But, general equation solving algorithms are usually of exponential complexity. In this paper,
we will show that the scheme FDPMP can be developed into a polynomial time decomposition
algorithm for certain degree proper decompositions with high probability for random homoge-
neous polynomials. Here, a set of polynomials f is called random or randomly decomposable if
f = g ◦ h and g, h are random polynomials.

Before presenting the main results of the paper, we first make some explanation on what
the probability means in this paper.

Remark 1 LetN =
(
n+4

4

)−1. Denote the N -dimension projective space overK as P
N (K).

Fixed a monomial ranking, the coefficients of homogeneous polynomials with degree 4 can be
regarded as the points in P

N(K). Let V be the set of the points in P
N (K) corresponding to

homogeneous polynomials with a degree proper decomposition. Then V is a variety in P
N (K).

We will say a statement holds true with probability one if there is a nonempty open subset
U of V such that the statement is true for all polynomials corresponding to the points in U .
Here we consider the Zariski topology. Also note that a key step of the proof is to use concrete
examples to show that the open set is actually nonempty.

We now give the main results of the paper.
Theorem 1 Let f ∈ Rn be a set of quartic homogeneous polynomials, each polynomial is

of the same degree, for n ≥ 5, we have a polynomial time probabilistic algorithm to find a degree
proper decomposition f = g ◦ h for g, h ∈ Rn. For a randomly decomposable f , the algorithm
will give correct result with probability one when K is of characteristic zero, and with probability
close to one when K = Fq and q is a sufficiently large number.

In order to find the decomposition for a set of polynomials from that of its homogenization,
we propose the following conjecture.

Conjecture 1 For all homogeneous decompositions of f∗ = G ◦ H , we have xdH
0 ∈

spanK{H0, H1, · · · , Hn}, where f∗ is the homogenization of f .
We prove that Conjecture 1 holds with high probability when f,G,H are of degree 4, 2, 2,

respectively and when dG = 2 and dH > 2. Then we have the following theorem.
Theorem 2 Let f ∈ Rn be a set of polynomials with degree less than or equal to four, and

at least one polynomial has degree four. If we know one of the homogeneous decomposition of
f∗, then we can recover a degree proper decomposition of f with probability one when K is of
characteristic zero, and with probability close to one when K = Fq and q is a sufficiently large
number, where f∗ is the homogenization of f .

The main idea to prove the above results is to consider the generic FDP. A generic polynomial
of degree d in R is of the form

∑
ui1···inx

i1
1 · · ·xin

n (i1 + · · · + in ≤ d), where the ui1···in are
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algebraically independent over K. An FDP f = g ◦ h is called a generic decomposition if g and
h are generic polynomials of degrees greater than one.

We will show that if f = g ◦h is a generic FDP for two quadratic polynomials g and h, then
we can compute g and h with a polynomial number of arithmetic operations in the coefficients
fields of g and h. Furthermore, when the coefficients of g and h specialize to concrete values in
the base field K, the algorithm still works with probability close to one.

3 Compute an FDP from a Right Factor Space

In this section, we will show how to compute a decomposition for f from its right factor
space efficiently. We discuss this problem first, because the result in this section will be used
in Section 5. Also, among the three steps of the Algorithm FDPMP, this is the only step that
has a complete solution.

We first prove several basic properties for R(f,h).
Lemma 1 Two equivalent decompositions of f have the same right factor space.
Proof Suppose that f has two equivalent decompositions g◦h = g′◦h′. By the definition of

equivalent decompositions, there exists a nonsingular matrix A ∈ GLn(K) such that h′ = h ·A.
Therefore, spanK{h1, · · · , hn} = spanK{h′1, · · · , h′n}.

The following result shows that the FDP of a set of polynomials can be reduced to the FDP
of several single polynomials. Denote the set of all right factor spaces of F by SRF .

Lemma 2 If f = (f1, · · · , fu) ∈ Ru, then

SRf =
u⋂

i=1

SRfi . (3)

Proof It is clear that SRf ⊆ ⋂u
i=1 SRfi . Assume that W ∈ ⋂u

i=1 SRfi and h1, · · · , hm

be a basis of W . Then there are gi ∈ K[x1, · · · , xm] such that fi = gi(h1, · · · , hm). Hence,
W ∈ SRf .

Since computing the intersection of two linear spaces is easy, we may reduce the FDP of f
to the FDP of a single polynomial fi.

The approaches in [11–12] are based on the idea of right factor space. But, the power of
this idea is not fully explained in previous work. For instance, it is assumed that the rank of
R(f,h) is n in [13]. It is clear that this condition is not necessarily correct since h can be a set
of arbitrary polynomials. For instance, if h = (

∑n
i=1 x

2
i , x

2
2, · · · , x2

2) then the rank of R(f,h) is
always two for any decomposition f = g ◦ h.

The following result shows that we can recover a right decomposition factor for f from R(f,h)

under any condition.
Theorem 3 Let B = {b1, · · · , bk} be a basis of the right factor space R(f,h) = spanK{h1,

· · · , hn}. If dim(R(f,h)) = k = n, then B is a right decomposition factor of f . If dim(R(f,h)) =
k < n, then (b1, · · · , bk, b1, · · · , b1) is a right decomposition factor of f .

Proof Firstly, assume that dim(R(f,h)) = n. Since {h1, · · · , hn} ∈ R(f,h) and B is a
basis of R(f,h), each hi can be expressed as a linear combination of {b1, · · · , bn}, that is, there
exists an invertible matrix P ∈ GLn(K) such that (h1, · · · , hn) = (b1, · · · , bn) · P . Then
f = g ◦ h = g(X · P ) ◦ (h · P−1) = g(X · P ) ◦ (b1, · · · , bn), where X = (x1, · · · , xn). Therefore,
B is also a right decomposition factor of f .

Secondly, let dim(R(f,h)) = k < n. For the decomposition of f = g ◦h, since {h1, · · · , hn} ∈
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R(f,h) and B is a basis of R(f,h), hi =
∑k

j=1 ai,jbj .
Therefore, we have

(h1, · · · , hn) = (b1, · · · , bk)

⎛
⎜⎝

a11 · · · an1

...
. . .

...
a1k · · · ank

⎞
⎟⎠ ,

and (aij)k×n contains a nonsingular k × k submatrix, or else dim(spanK{h1, · · · , hn}) < k, a
contradiction.

Suppose that

det

⎛
⎜⎝

a11 · · · ak1

...
. . .

...
a1k · · · akk

⎞
⎟⎠ 	= 0.

Then (h1, · · · , hn) = (b1, · · · , bk, hk+1, · · · , hn)A, where

A =

⎛
⎜⎜⎜⎝

a11 · · · ak1

...
. . .

...
a1k · · · akk

In−k

⎞
⎟⎟⎟⎠

is an n× n invertible matrix. Moreover, let

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−ak+1,1 + 1 −ak+2,1 + 1 · · · −an,1 + 1
−ak+1,2 −ak+2,2 · · · −an,2

Ik
...

...
. . .

...
−ak+1,k −ak+2,k · · · −an,k

In−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

be an n× n invertible matrix. It is easy to see that

(b1, · · · , bk, b1, · · · , b1) = (b1, · · · , bk, hk+1, · · · , hn)B.

Hence,
(h1, · · · , hn) = (b1, · · · , bk, b1, · · · , b1)B−1A.

Since B−1A is nonsingular, there exists a g′′ such that f = g′′ ◦ (b1, · · · , bk, b1, · · · , b1) which is
an equivalent form of f = g◦h. So we can choose (b1, · · · , bk, b1, · · · , b1) as a right decomposition
factor of f .

Note that the last n − k elements b1 in the right factor can be replaced with any bi in
Theorem 3.

Corollary 1 Corresponding to a given right factor space R(f,h), f has a unique decompo-
sition under the relation of equivalence.

Restricted to decomposition of quartic polynomials considered in Theorem 2, the following
result can be proved easily.

Theorem 4 Use the same assumption as Theorem 2. If R(f,h) is known, we can compute
g with O(n3ω) arithmetic operations in the field K, where 2 ≤ ω < 3.
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Proof Suppose R(f,h) = spanK(h1, · · · , hk) is known. Then a right decomposition factor of
f is also known by Theorem 3. To find g, we may simply by solving a system of linear equations
with the coefficients of g as indeterminates. Note that g has nC2

n = O(n3) coefficients. Then
we need O((n3)ω) = O(n3ω) arithmetic operations in K to find g, where ω is the matrix
exponent[16] to measure the complexity of solving linear equations.

4 Decomposition of a Set of Homogenous Polynomials

In this section, we consider the decomposition of f when each polynomial of it is homoge-
neous of the same degree. More precisely, we will consider the following problem: “Let f be a
set of quartic homogeneous polynomials. Find a decomposition f = g ◦ h where g, h are sets of
quadratic homogeneous polynomials.”

We may consider the problem in two steps. First, we compute the following linear space
over K

Ṽf = spanK

{
∂fi

∂xj
: 1 ≤ i ≤ u, 1 ≤ j ≤ n

}
. (4)

Since f = g ◦ h and g consists of quadratic polynomials, it is clear that Ṽf is contained in the
following linear space.

Vf,h = spanK{xihj : 1 ≤ i, j ≤ n}. (5)

The following example shows that Ṽf could be a proper subset of Vf,h.
Example 1 Let f = (xy2z, x2y2 + xy2z, xy2z + y2z2), g = (xz, x2 + xz, xz + z2), h =

(xy, y2, yz). It is easy to check that f = g◦h. We have Ṽf = spanK{xyz, y2z, yz2, xy2, x2y} and
Vf,h = spanK{xyz, y2z, yz2, xy2, x2y, y3}. Ṽf is a proper subset of Vf,h. Later in this section,
we will see that h cannot be recovered from its corresponding Ṽf in this example.

The idea of the algorithm is to compute Ṽf first, then try to recover Vf,h from Ṽf , and
finally compute R(f,h) from Vf,h. We will analyze the above procedure in the following two
subsections. The problem is divided into two cases: u = n or u < n.

4.1 The Case When u = n

We divide the procedure into two steps: to compute Vf,h from Ṽf and to recover R(f,h) from
Vf,h.

A. Compute Vf,h from Ṽf

When u = n, Ṽf is generated by n2 cubic polynomials, and dim(Ṽf ) ≤ dim(Vf,h) ≤ n2. In
the next theorem, we will show that the probability for Ṽf = Vf,h is close to one under some
conditions. The idea of the proof is to find a nonsingular matrix A in some indeterminates such
that if a set of specialization of these indeterminates does not vanish |A| then Ṽf = Vf,h.

The following lemma will be used.
Lemma 3[17] For f ∈ Fq[x1, · · · , xn] with degree deg(f) = d ≥ 0. Then the equation

f(x1, · · · , xn) = 0 has at most dqn−1 solutions in Fn
q .

Theorem 5 For randomly chosen g and h, let f = g ◦ h. Then
1) Ṽf = Vf,h with probability one when the field K is of characteristic zero.

2) Ṽf = Vf,h with probability close to one when K = Fq and q is sufficiently large.
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Proof Assume that
fi =

∑
1≤k,l≤n

a
(i)
k,lhkhl, 1 ≤ i ≤ n,

where a(i)
k,l = a

(i)
l,k for 1 ≤ k, l ≤ n, and

hi =
∑

1≤k≤l≤n

b
(i)
k,lxkxl, 1 ≤ i ≤ n.

Then
∂fi

∂xj
=

∑
1≤k,l≤n

a
(i)
k,l

(
hk
∂hl

∂xj
+ hl

∂hk

∂xj

)
.

Let

Ui =
(
∂f1
∂xi

,
∂f2
∂xi

, · · · , ∂fn

∂xi

)
, Vi = (xih1, xih2, · · · , xihn) , for i = 1, 2, · · · , n.

Let U = (U1, U2, · · · , Un)T and V = (V1, V2, · · · , Vn)T. Each ∂fi

∂xj
can be represented by a linear

combination of {xkhl, 1 ≤ k, l ≤ n} over K and the coefficients are expressions in a
(i)
k,l, b

(i)
k,l. So,

there exists an n2×n2 matrix A such that U = A·V , where the elements of A are polynomials in
a
(i)
k,l, b

(i)
k,l. We will prove the det(A) 	= 0. We make the following substitutions in A: a(i)

k,l = (k+l)i

and

b
(i)
k,l =

{
1, if i = k = l;
0, or else;

and denote the new matrix by Ā. After making these substitutions, one has fi =
∑
k,l

(k+ l)ix2
kx

2
l

and hi = x2
i for 1 ≤ k, l, i ≤ n. Now, we have

∂fi

∂xs
= 4

n∑
k=1

(s+ k)ixsx
2
k, for i, s = 1, 2, · · · , n,

which imples that for all s = 1, 2, · · · , n,
⎛
⎜⎜⎜⎜⎜⎜⎝

∂f1
∂xs

∂f2
∂xs

...
∂fn

∂xs

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

4(1 + s) 4(2 + s) · · · 4(n+ s)

4(1 + s)2 4(2 + s)2 · · · 4(n+ s)2

...
...

. . .
...

4(1 + s)n 4(2 + s)n · · · 4(n+ s)n

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

xsx
2
1

xsx
2
2

...

xsx
2
n

⎞
⎟⎟⎟⎟⎟⎟⎠
. (6)

Therefore, det(Ā) is the products of a constant and n Vandermonde determinants, which is
nonzero. Hence det(A) 	= 0. One can easily see that the total degree of det(A) in a

(i)
k,l, b

(i)
k,l

equals 2n2.
When g and h specialize to concrete polynomials in Rn, if A is invertible then each element

of Vf,h can be represented by a linear combination of the elements of Ṽf . So, Vf,h = Ṽf . When
K is of characteristic zero, det(A) 	= 0 with probability one in the sense explained in Remark 1.
When K = Fq, by Lemma 3, det(A) 	= 0 with probability at least q−d

q = q−2n2

q which is close
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to one when q is sufficiently large, where d is the degree of the equation. These conclude the
theorem.

When Ṽf 	= Vf,h, Ye, et al.[11] proposed a heuristic method to enlarge Ṽf , but there is no
theoretical guarantee that the enlarged Ṽf is equal to Vf,h.

B. Recover R(f,h) from Vf,h

In this subsection, we assume that the space Vf,h is known and show how to recover R(f,h)

from Vf,h. Given a vector space V ⊆ K[x1, · · · , xn] and a set S ⊆ K[x1, · · · , xn], we define
(V : S) = {h|∀s ∈ S, sh ∈ V }.

By the definition of Vf,h, xihj ∈ Vf,h for all i, j. Hence, hj ∈ (Vf,h : xi), and then
R(f,h) ⊆ (Vf,h : xi), for all i. So we have

R(f,h) ⊆ ∩i(Vf,h : xi) = (Vf,h : L),

where L is the linear space generated by the variables x1, · · · , xn.
Note that R(f,h) ⊆ (Ṽf : L) does not always hold. In Example 1, (Ṽf : L) = {yz, xy} while

R(f,h) = {yz, xy, y2}. (Ṽf : L) is a proper subset of R(f,h). However, by Theorem 5, in the
general case, R(f,h) ⊆ (Vf,h : L) = (Ṽf : L) with probability one when K is of characteristic
zero and close to one when K = Fq and q is sufficiently large.

One may ask that whether R(f,h) = (Vf,h : L). It is not always true as shown by the
following example.

Example 2 Let f = (x2y2, x4 + y4), g = (xy, x2 + y2) and h = (x2, y2). (Vf,h : L) =
spanK{xy, x2, y2}. R(f,h) is a proper subset of (Vf,h : L).

Ye, et al.[11] proposed a conjecture which suggests that for random R(f,h), the two spaces
are equal with probability close to one no matter whether dim(R(f,h)) = n or dim(R(f,h)) < n.
The conjecture is as follows:

Conjecture Y[11] Let W be a linear space of dimension ≤ n consisting of quadratic forms
in n variables x1, · · · , xn, and L be the linear space generated by x1, · · · , xn, V =

∑
1≤i≤n

xiW .

For randomly chosen W , the probability ρ that (V : L) = W is very close to one when n > 2.
It is one of the theoretical foundations of the differentiation approach. Ye, et al.[11] did not

prove it and just gave a justification with some heuristic arguments. The work of Faugère and
Perret is also based on this basic fact. When the number of basis for (Vf,h : L) equals n, they
regarded (Vf,h : L) as R(f,h) in their algorithm[12−13].

We will give a proof of the conjecture when n ≥ 5. Actually, we will extend the conjecture
into a more general case that W and L are linear spaces consisting of homogeneous polynomials
with higher degree and give a proof for this extension of the conjecture. The assumption n ≥ 5
is not a strict limitation since in practical usages, n is much larger than five. The number q is
always large in 2R or 2R− scheme[12−13]. Before proving the conjecture, we need a technical
lemma. Let P = (p1, · · · , pn) ∈ N

n. In the following, we will always use XP to denote the
monomial xp1

1 · · ·xpn
n and M(d′, x1, · · · , xn) to denote the set of all monomials in x1, · · · , xn

with degree d′.

Lemma 4 Assume that hi =
∑

|P |=d

a
(i)
P XP ∈ K[a(i)

P ][x1, · · · , xn] are homogeneous polyno-

mials in x1, · · · , xn with degree d, where i = 1, 2, · · · , n+ 1 and a(i)
P ∈ K. Assume that d′ < d

and n ≥ 2d. Then if {mhi|m ∈ M(d′, x1, · · · , xn), i = 1, 2, · · · , n + 1} are linearly dependent
over K, then

(
a
(i)
P

)
will vanish a set of nonzero polynomials with total degree at most n

(
n+d′−1

d′
)
.

Proof Let us consider a(i)
P as indeterminates for a moment. Assume that H =

∑
cm,imhi



338 SHANGWEI ZHAO · RUYONG FENG · XIAO-SHAN GAO

where cm,i are indeterminates. Regarding H as a polynomial in x1, · · · , xn, one can see that
H is a polynomial with

(
n+d+d′−1

d+d′
)

monomials whose coefficients are polynomials in cm,i, a
(i)
P .

Setting H = 0, one can get a system of the equations as follows: A�c = 0, where A is a
(
n+d+d′−1

d+d′
)

by n
(
n+d′−1

d′
)

matrix with entries linearly in the a(i)
P , and �c = (cm1,1, · · · , cmj ,i, · · · )T. By the

computation, one can show that
(
n+d+d′−1

d+d′
)
> n

(
n+d′−1

d′
)
. Hence, A is of full rank if and only

if {mhi|m ∈ M(d′, x1, · · · , xn), i = 1, 2, · · · , n+ 1}, are linearly independent. To prove A is of
full rank, one only need to prove this for a specialization of A. Since n ≥ 2d, let h1 = xd

1 , h2 =
xd

2, · · · , hn = xd
n, hn+1 = x1x2 · · ·xd+xd+1xd+2 · · ·x2d. It leads to a specialization of the matrix

A. Denote this specialization by Ā. We claim that Ā is of full rank, which is equivalent to claim
that the polynomials mxd

j ,m(x1 · · ·xd + xd+1 · · ·x2d),m ∈ M(d′, x1, · · · , xn), j = 1, 2, · · · , n,
are linearly independent. Assume that

H̄ =
∑
m,i

c̄m,imx
d
i +

∑
m

b̄mm(x1 · · ·xd + xd+1 · · ·x2d) = 0,

where c̄m,i, b̄m ∈ K. For convenience, denote ∂xq1
1 · · · ∂xqn

n by ∂m where m = xq1
1 · · ·xqn

n . When
d′ < d and n ≥ 2d, one can see that

∂d+d′
(H̄)

∂mxd
i

=
{ ∗c̄m,i, ∀ m′ ∈M,m′x1 · · ·xd 	= mxd

i and m′xd+1 · · ·x2d 	= mxd
i ;

∗c̄m,i + ∗b̄m′, ∃ m′ ∈M s.t. m′x1 · · ·xd = mxd
i or m′xd+1 · · ·x2d = mxd

i ;

∂d+d′
(H̄)

∂mh
=

{ ∗b̄m, h = x1 · · ·xd and ∀ m′ ∈M ∀ i, mx1 · · ·xd 	= m′xd
i ;

∗c̄m′,i + ∗b̄m, h = xd+1 · · ·x2d and ∃ m′ ∈M ∃ i s.t. mx1 · · ·xd = m′xd
i ;

where ∗ denote positive integers. Since ∂d+d′
(H̄)

∂m̃ = 0 for all monomials m̃, the claim is proved.
Therefore, A is of full rank. Now, consider the a

(i)
P as the elements in K. If {mhi|m ∈

M(d′, x1, · · · , xn), i = 1, 2, · · · , n + 1} are linearly dependent, which implies that A�c = 0 has
a nontrivial solution, then

(
a
(i)
P

)
must vanish the determinants of all n

(
n+d′−1

d′
)

by n
(
n+d′−1

d′
)

submatrices of A. This completes the proof.
Let h = (h1, h2, · · · , hn), where the hi are homogeneous polynomials with the same degree

in K[x1, x2, · · · , xn] and let dh be the degree of hi. Denote

U(h, d′) = spanK{mhi|m ∈M(d′, x1, · · · , xn), i = 1, 2, · · · , n}.
Let W = spanK{h1, h2, · · · , hn}. Then we have

Theorem 6 For randomly chosen h1, h2, · · · , hn, if d′ < dh and n > 2dh, then the
probability ρ that (U(h, d′) : xd′

i ) = W is one when the field K is of characteristic zero and
close to one when K = Fq with q sufficiently large, where i = 1, 2, · · · , n.

Proof It suffices to prove the theorem for the case i = 1. The other cases can be proved
by the similar way.

Assume that hi =
∑

|P |=dh

a
(i)
P XP ∈ K[x1, · · · , xn], where the a(i)

P ∈ K. Denote U = {H ∈

U(h, d′)| xd′
1 |H}. For

∑
i

Gihi ∈ U , let

Gi = G̃0,ix
d′
1 + G̃1,ix

d′−1
1 + · · · + G̃d′−2,ix

2
1 + G̃d′−1,ix1 + G̃d′,i

and
hi = h̃0,ix

dh
1 + h̃1,ix

dh−1
1 + · · · + h̃dh−2,ix

2
1 + h̃dh−1,ix1 + h̃dh,i,
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where G̃0,i, G̃1,i, · · · , G̃d′,i are homogeneous polynomials in x2, · · · , xn with degrees 0, 1, · · · , d′,
respectively and h̃0,i, h̃1,i, · · · , h̃dh,i are homogeneous polynomials in x2, · · · , xn with degrees
0, 1, · · · , dh, respectively. Since

∑
i

Gihi ≡ 0 mod xd′
1 , we have

∑
i

Gihi ≡
∑

i

(
xd′−1

1

(
G̃1,ih̃dh,i + G̃2,ih̃dh−1,i + · · · + G̃d′,ih̃dh−d′+1,i

)

+xd′−2
1

(
G̃2,ih̃dh,i + G̃3,ih̃dh−1,i + · · · + G̃d′,ih̃dh−d′+2,i

)
+ · · ·

+x2
1

(
G̃d′−2,ih̃dh,i + G̃d′−1,ih̃dh−1,i + G̃d′,ih̃dh−2,i

)

+x1

(
G̃d′−1,ih̃dh,i + G̃d′,ih̃dh−1,i

)
+ G̃d′,ih̃dh,i

)

≡ 0 mod xd′
1 .

Therefore,
∑

i

(
G̃1,ih̃dh,i + G̃2,ih̃dh−1,i + · · · + G̃d′,ih̃dh−d′+1,i

)
= 0, (7)

∑
i

(
G̃2,ih̃dh,i + G̃3,ih̃dh−1,i + · · · + G̃d′,ih̃dh−d′+2,i

)
= 0, (8)

...∑
i

(
G̃d′−2,ih̃dh,i + G̃d′−1,ih̃dh−1,i + G̃d′,ih̃dh−2,i

)
= 0, (9)

∑
i

(
G̃d′−1,ih̃dh,i + G̃d′,ih̃dh−1,i

)
= 0, (10)

∑
i

G̃d′,ih̃dh,i = 0. (11)

Assume that for each 1 ≤ k ≤ d′, {mh̃dh,i|m ∈ M(k, x2, · · · , xn), i = 2, · · · , n} are linearly
independent. Then by the equalities (7)–(11), one has G̃j,i = 0 for j = 1, 2, · · · , d′ and i =
1, 2, · · · , n. Therefore U = {∑i G̃0,ihi} ⊆W . Note that (U(h, d′) : xd′

1 ) = U . Hence (U(h, d′) :
xd′

1 ) = W . By Lemma 4, the a(i)
P such that for some k ≤ d′, {mhi|m ∈ M(k, x2, · · · , xn), i =

1, 2, · · · , n} are linearly dependent are the zeroes of some polynomials with degree at most
(n− 1)

(
n+d+k−2

d+k

)( ≤ (n− 1)
(
n+d+d′−2

d+d′
)

� N
)
.

Hence, when K is of characteristic zero, the probability that (U(h, d′) : xd′
1 ) = W is one;

when K = Fq , by Lemma 3 the probability that (U(h, d′) : xd′
1 ) = W is at least q−N

q which is
close to one when q is sufficiently large[17].

Remark 2 In general, when K is algebraically closed, Theorem 6 does not hold for suf-
ficiently large integer d′. For randomly chosen h1, · · · , hn, the set of zeroes of {h1, · · · , hn} in
P(K)n−1 is empty, where P(K)n−1 is n − 1 dimension projective space over K. Then by the
Projective Weak Nullstellensatz Theorem[18], there is some integer r such that 〈x1, · · · , xn〉r ⊆
〈U(h, r − dh)〉. Let d′ = r − dh. Then M(r, x1, · · · , xn) ⊆ U(h, d′), which implies that
M(dh, x1, · · · , xn) ⊆ (U(h, d′) : xd′

1 ). However, in general, W 	= spanK(M(dh, x1, · · · , xn)).
Corollary 2 Conjecture Y is correct over K when n ≥ 5, where K is of characteristic

zero or is a finite field consisting of a sufficiently large number of elements.
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As a consequence of Theorem 5 and Corollary 2, we have the following result.
Theorem 7 If f is a randomly decomposable and n ≥ 5, then (Ṽf : L) = R(f,h) with

probability one when K is of characteristic zero and with probability close to one when q is
sufficiently large where K = Fq.

Therefore, we can recover R(f,h) from Ṽf directly with high probability if the FDP of f is
randomly chosen.

Faugère and Perret assumed that Ṽf = Vf,h in their papers, since they assumed that the
decomposition is random, the dimension of R(f,h) spanned by h1, · · · , hn is n, and dim(Ṽf ) ≥
dim(Vf,h)[12].

Theorem 8 Under the same assumptions as Theorem 7. If Ṽf is known, we can compute
R(f,h) with complexity O(n3ω) arithmetic operations in K with probability one when K is of
characteristic zero and with probability close to one when q is sufficiently large when K = Fq.

Proof It suffices to randomly choose a linear polynomial l in x1, x2, · · · , xn and compute
(Ṽf : l) to obtain R(f,h). Without loss of generality, assume that l = x1 + c2x2 + · · · + cnxn.
Let y1 = l, yi = xi, i = 2, 3, · · · , n, that is,

⎛
⎜⎜⎜⎝
y1
y2
...
yn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 c2 · · · cn
1

. . .
1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎟⎠ . (12)

Then there exists a matrix Ml ∈ GLK(n) such that

⎛
⎜⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎟⎠ = Ml ·

⎛
⎜⎜⎜⎝
y1
y2
...
yn

⎞
⎟⎟⎟⎠ , (13)

where

Ml =

⎛
⎜⎜⎜⎝

1 −c2 · · · −cn
1

. . .
1

⎞
⎟⎟⎟⎠ . (14)

Denote it by X = Ml · Y .
For all f ∈ R, define Ml(f) = f |X=Ml·Y , M

−1
l (g) = g|Y =M−1

l ·X , where g ∈ K[y1, · · · , yn].

Then M−1
l Ml(f) = f , and Ml(f1f2) = Ml(f1)Ml(f2). So Ml(l) = l|X=Ml·Y = y1. Let

Ml(Ṽf ) = {p|X=Ml·Y : for all p ∈ Ṽf}.
Then we have r ∈ (Ṽf : l) ⇔ rl ∈ Ṽf ⇔ Ml(rl) ∈ Ml(Ṽf ) ⇔ Ml(r)Ml(l) ∈ Ml(Ṽf ) ⇔

Ml(r) ∈ (Ml(Ṽf ) : Ml(l)) ⇔ Ml(r) ∈ (Ml(Ṽf ) : y1) ⇔ r ∈ M−1
l (Ml(Ṽf ) : y1), that is,

(Ṽf : l) = M−1
l (Ml(Ṽf ) : y1).

So in order to compute (Ṽf : l), we can first transform the polynomials in Ṽf by a nonsingular
coordinate substitution X = Ml ·Y to obtain Ml(Ṽf ), and then compute (Ml(Ṽf ) : y1). Finally,
transform (Ml(Ṽf ) : y1) to (Ṽf : l) by the inverse transformation Y = M−1

l · X . The main
arithmetic complexity relies on the computation of (Ml(Ṽf ) : y1).
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We construct a matrix S to represent the polynomials of Ml(Ṽf ) in a basis of monomials
of degree three. Each row of S corresponds to the coefficients of each polynomial of Ml(Ṽf )
with respect to the monomials of degree three. Suppose that the monomials are sorted so that
the last n(n + 1)/2 columns of S correspond to monomials which can be divided by y1. Then
perform linear elimination to S, we can obtain polynomials which can be divided by y1, denoted
by ti, i = 1, 2, · · · , k, if n ≥ 5, then k ≤ n[14]. Then (Ml(Ṽf ) : y1) = {ti/y1, i = 1, 2, · · · , k}.
Note that S is an n2×C3

n+2 matrix. Then we need O((n3)ω) = O(n3ω) arithmetic operations to
compute (Ml(Ṽf ) : y1). The whole arithmetic complexity of computing (Ṽf : l) is also O(n3ω).

4.2 The Case when u < n

We now consider the case of u < n. In this case, Faugère and Perret extended Ṽf and Vf,h

to new linear spaces Ṽfd and Vfd:

Ṽfd = spanK

{
m
∂fi

∂xj
: m ∈M(d), 1 ≤ i ≤ u, 1 ≤ j ≤ n

}
, (15)

Vfd = spanK

{
m′hj : m′ ∈M(d+ 1), 1 ≤ i, j ≤ n

}
, (16)

where M(d) represents the set of monomials of degree d. It is obvious that Ṽfd ⊆ Vfd. Faugère
and Perret[12−13] required dim(Ṽfd) ≥ dim(Vfd) by choosing a proper integer d, which means
Ṽfd = Vfd.

Assume that Vfd is known, and we try to recover R(f,h) from Vfd. By the definition of Vfd,
mhj ∈ Vfd for allm ∈M(d+1) and j. Hence, hj ∈ (Vfd : xd+1

i ), and then R(f,h) ⊆ (Vfd : xd+1
i ),

for all i. Hence, R(f,h) ⊆ ∩i(Vfd : xd+1
i ). The approach in [12–14] makes use of this property,

and recoversR(f,h) by computing the quotient (Vfd : xd+1
i ) for some i. Faugère and Perret[12−14]

chose that i = n.
In the case that dg = dh = 2, Theorem 6 fails if u < n.
However, in the general case, if the degrees of g and h are more than 2, then from Theorem6,

we can obtain R(f,h) by computing the quotient (Vfd : xd+1
i ) when d+ 1 < dh.

From the above discussion, we can see that the results listed above provide a theoretical
guarantee for the previous work [11–14] in certain sense.

5 Recover the Decomposition of f from f∗

In this section, we study the relationship between the FDPs of a set of polynomials f and
that of its homogenization f∗. We will show that with high probability, we can recover a
decomposition for f from a decomposition of f∗.

For a general FDP f = g ◦ h, the following result gives the connection between the FDP of
f and the FDP of its homogenization f∗.

Lemma 5 If f = g ◦ h, then x
dgdh−df

0 f∗ = g∗ ◦ h∗, where dg, dh, df are the degrees of g,
h, f , respectively.

Proof If f = g ◦ h, we have dg · dh ≥ df . Hence,

fi

(x1

x0
, · · · , xn

x0

)
= gi

(
h1

(x1

x0
, · · · , xn

x0

)
, · · · , hn

(x1

x0
, · · · , xn

x0

))
.
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Then

g∗ ◦ h∗ =
(
x

dgdh

0 , x
dgdh

0 g1

(
h1

(
x1

x0
, · · · , xn

x0

)
, · · · , xdgdh

0 hn

(
x1

x0
, · · · , xn

x0

))
,

· · · , xdgdh

0 gu

(
h1

(
x1

x0
, · · · , xn

x0

)
, · · · , hn

(
x1

x0
, · · · , xn

x0

)))

=
(
x

dgdh

0 , x
dgdh

0 f1

(
x1

x0
, · · · , xn

x0

)
, · · · , xdgdh

0 fu

(
x1

x0
, · · · , xn

x0

))

= x
dgdh−df

0

(
x

df

0 , x
df

0 f1

(
x1

x0
, · · · , xn

x0

)
, · · · , xdf

0 fu

(
x1

x0
, · · · , xn

x0

))

= x
dgdh−df

0 f∗.

Then the proof is completed.
As a consequence, we have (f ◦ g)∗ = f∗ ◦ g∗ if df · dg = dh

[11,13].
The following result gives a necessary and sufficient condition for f to have an FDP in terms

of its homogenization f∗.
Theorem 9 Let f = (f1, · · · , fu) ∈ Ru. Then, f has a decomposition if and only if

there exist natural numbers s, t such that xs
0f

∗ = g′ ◦ h′ is a homogeneous decomposition and
xt

0 ∈ spanK{h′0, · · · , h′n}.
Proof If f has a decomposition f = g ◦ h, let s = x

dgdh−df

0 , g′ = g∗, h′ = h∗, t = dh in
Lemma 5. Then the conclusion holds.

We now prove the other direction. If there are natural numbers s, t such that xs
0f

∗ = g′◦h′ is
a homogeneous decomposition and xt

0 ∈ spanK{h′0, · · · , h′n}, then deg(h′) = t, deg(g′) = s+df

t ,
and we can choose g′, h′ such that xs

0f
∗ has the following homogeneous decomposition form by

Theorem 3:

xs
0f

∗ =
(
x

s+df

0 , x
s+df

0 f1

(
x1

x0
, · · · , xn

x0

)
, · · · , xs+df

0 fu

(
x1

x0
, · · · , xn

x0

))

=
(
x

s+df
t

0 , g′1, · · · , g′n
)
◦

(
xt

0, h
′
1, · · · , h′n

))

and deg(g′i) = s+df

t , deg(h′i) = t. Let x0 = 1. We have

f = (f1, · · · , fu)
= (g′1(1, x1, · · · , xn), · · · , g′u(1, x1, · · · , xn)) ◦ (h′1(1, x1, · · · , xn), · · · , h′n(1, x1, · · · , xn)),

which is a decomposition of f .
As a consequence of Lemma 5 and Theorem 9, we have
Corollary 3 Let f = (f1, · · · , fu) ∈ Ru. Then, f has a degree proper decomposition if and

only if there is a natural number t such that f∗ has a homogeneous decomposition f∗ = g′ ◦ h′
and xt

0 ∈ spanK{h′0, · · · , h′n}.
In order to use the idea of homogenization, we need to solve the following problem.
Problem 1 For all homogeneous decompositions of f∗ = G◦H , whether xdH

0 ∈ spanK{H0,
· · · , Hn}.

Then we propose Conjecture 1, which means that the problem has a positive answer.
If the conjecture is true, we may conclude that to compute a degree proper decomposition

of f is equivalent to compute a homogeneous decomposition of f∗. Therefore, we can obtain a
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right factor space R(f,h) of f from R(f∗,h∗) in the same way with the method in the proofs of
Theorem 9.

First, we show that Conjecture 1 is valid in a very special case.
Theorem 10 Conjecture 1 has a positive answer in the field of complex numbers if the

degrees of f∗, G and H are 4, 2, 2 respectively and n = 2.
Proof In the field K = C, if G is nondegenerate, we can assume that G has the following

standard form G = x2
0 + x2

1 + x2
2 by nonsingular linear substitution[19] (If G is degenerate, then

we can assume that G = x2
0 +x2

1 or G = x2
0, it is easy to see that the Conjecture holds in either

case).
Firstly, we claim that we can assume H0 = x2

0 + c0, H1 = b1x0 + c1, and H2 = b2x0 + c2,
where ci are quadratic homogeneous polynomials and bi are linear homogeneous polynomials
in variables x1 and x2. Since we consider the decomposition over the field of complex numbers,
we may assume that Hk = akx

2
0 + Gk(k = 0, 1, 2), where Gk does not contain x2

0. Since
x4

0 = H2
0 +H2

1 +H2
2 , a2

0 + a2
1 + a2

2 = 1. Without loss of generality, we may assume a2
0 + a2

1 	= 0.
Let H ′

0 = a1H1√
a2
0+a2

1

+ a0H0√
a2
0+a2

1

and H ′
1 = a0H1√

a2
0+a2

1

− a1H0√
a2
0+a2

1

. We have

H2
0 +H2

1 = (H ′
0)

2 + (H ′
1)

2

and H ′
1 does not contain the term x2

0. Repeat the above procedure one more time, we obtain
three new polynomials H ′′

0 , H
′′
1 , H

′′
2 such that H ′′

1 and H ′′
2 do not contain x2

0. Since x4
0 =

H2
0 +H2

1 +H2
2 , we have H ′′

0 = x2
0 + b0x0 + c0. Comparing the coefficients of x3

0, we have b0 = 0.
Thus, the claim is proved.

Since x4
0 = H2

0 +H2
1 +H2

2 , we have −c0(c0 + 2x2
0) = H2

1 +H2
2 = (H1 + iH2)(H1 − iH2). We

will discuss it in the following two cases.
1) When c0 + 2x2

0 is irreducible, then there exist constants α, β ∈ K such that H1 + iH2 =
α(c0 + 2x2

0), H1 − iH2 = βc0, or H1 − iH2 = α(c0 + 2x2
0), H1 + iH2 = βc0. In either case, we

have x2
0 ∈ spanK{H1, H2}.

2) When c0 + 2x2
0 is reducible, then there exists a linear polynomial p in variables x1, x2

such that c0 + 2x2
0 = (

√
2x0 + p)(

√
2x0 − p), where c0 = −p2.

If H1 + iH2 has a factor
√

2x0 + p or
√

2x0 − p, without loss of generality, assume
√

2x0 + p
is a factor of H1 +iH2, then there exist constants α, β ∈ K such that H1 +iH2 = αp(

√
2x0 +p)

and H1 − iH2 = βp(
√

2x0 − p). Then p2 ∈ spanK{H1, H2}. Since H0 = x2
0 + c0 = x2

0 − p2, then
p2 ∈ spanK{H0, H1, H2}.

If c0 + 2x2
0 is a factor of H1 + iH2, then the same as the case 1), x2

0 ∈ spanK{H1, H2}.
The above discussion shows that x2

0 ∈ spanK{H0, H1, H2}.
We now show that Conjecture 1 is valid with high probability in more general cases.
Lemma 6 If f∗ = G◦H is homogeneous decomposition and the degrees of f,G,H are 4, 2,

2, respectively, then x2
0 ∈ span{H0, · · · , Hn} with probability one when K is of character zero,

and with probability close to one when K = Fq and q is sufficiently large. Moreover, it is also
correct when dG = 2, dH > 2.

Proof Since the first element of f∗ is x4
0, by the definition in Section 4, we know that x3

0 ∈
Ṽf∗ ⊆ Vf∗,H , and hence x2

0 ∈ (Vf∗,H : x0). By Theorem 6, (Vf∗,H : x0) = span{H0, H1, · · · ,
Hn} with probability one when K is of characteristic zero, and with probability close to
one when K = Fq and q is a sufficiently large number. As a consequence, we have x2

0 ∈
span{H0, H1, · · · , Hn} with probability one when K is of characteristic zero, and with proba-
bility close to one when K = Fq and q is a sufficiently large number. It also holds for the case
when dG = 2, dH > 2 because of the same reason.
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By Corollary 3 and Lemma 6, we can prove Theorem 2.
For a set of non-homogeneous polynomials f , we then can compute a degree proper de-

composition of its homogenization f∗ and then recover a decomposition of f from that of f∗.
Unfortunately, the method based on differentiation dose not work for the computation of func-
tional decomposition of f∗ directly. One of key steps of the method presented in Section 4 is
that one could compute Vf,h from Ṽf . In general, as proved in the following theorem, f∗ does
not satisfy the condition of Theorem 5.

Lemma 7 Let h1, · · · , hn be polynomials in R and (h̃1, · · · , h̃n) = (h1, · · · , hn)A, where A
is an invertible matrix with order n over K. If the polynomials xihj , i, j = 1, 2, · · · , n are linearly
independent over K, then the polynomials xih̃j, i, j = 1, 2, · · · , n are also linearly independent
over K.

Proof Assume that there are n2 elements bi,j in K such that
∑
i,j

bi,jxih̃j = 0. Let A = (ai,j).

Then we have
n∑

i,j=1

bi,jxi

n∑
k=1

ak,jhk =
n∑

i,k=1

( n∑
j=1

ak,jbi,j

)
xihk = 0.

Therefore
∑n

j=1 ak,jbi,j = 0 for all i, k = 1, 2, · · · , n. Since A is invertible, bi,j = 0 for all
i, j = 1, 2, · · · , n.

Theorem 11 Let f∗ = (x4
0, f

∗
1 , · · · , f∗

n) where the f∗
i are quartic homogeneous polynomials.

Assume that f∗ = G ◦H is a homogeneous decomposition of f∗. Then Ṽf∗ � Vf∗,H with high
probability.

Proof Obviously, dim(Ṽf∗) < (n+1)2. Then it suffices to prove that dim(Vf∗,H) = (n+1)2

with high probability. Assume that H = (H0, H1, · · · , Hn). By Lemma 6, x2
0 ∈ spanK{H0, H1,

· · · , Hn} with probability one when K is of character zero, and with probability close to one
when K = Fq, q is sufficiently large. Now assume that x2

0 ∈ span{H0, H1, · · · , Hn}. Then x2
0

can be extended into a basis of spanK{H0, H1, · · · , Hn}, say H̃0 = x2
0, H̃1, · · · , H̃n. Then we

have
f∗ = G̃ ◦ (H̃0, H̃1, · · · , H̃n). (17)

By Lemma 7, it suffices to prove that Vf∗,H̃ = (n+ 1)2 with high probability. Furthermore, it

suffices to prove that the polynomials xix
2
0, xihj are linearly independent over K(b(j)k,l ) where

hj =
∑

1≤k≤l≤n

b
(j)
k,lxkxl are generic polynomials.

Assume that ∑
i

ti,0xix
2
0 +

∑
i,j

ti,jxihj = 0.

Combine the same terms, and let the coefficients of each monomials equal to 0, then we can
get a set of equations with ti,j as variables and b(j)k,l as coefficients, that is,

MT = 0,

where M is an n2 × n2 matrix whose entries are polynomials in b
(j)
k,l and T is the vector

(· · · , ti,0, · · · , ti,j , · · · )T. We will show that det(M) 	= 0. Consider the specialization of b(j)k,l .

We specialize b(j)k,l to 1 for j = k = l and to 0 for other cases. Then hj becomes x2
j under

this specialization. Assume that M becomes M̃ under the above specialization. Since the
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polynomials xix
2
j , i, j = 0, 1, · · · , n are linearly independent over K, det(M̃) 	= 0. Therefore,

det(M) 	= 0, which implies the conclusion.

6 Algorithm and Complexity

Let f ∈ Rn be a set of quartic homogeneous polynomials, each polynomial is of the same
degree. We now give the algorithm to find a degree proper decomposition of f . We prove that
it is a polynomial time algorithm with high successful probability. Note that the algorithm is
essentially the same as that given in [11]. Our main contribution is the analysis of the algorithm.

Algorithm FDPMPH4
Input Let f ∈ Rn be a set of quartic homogeneous polynomials, each polynomial is of the

same degree.
Output g, h ∈ Rn such that f = g◦h is a degree proper decomposition of f . The algorithm

may fail even if such a decomposition exists.
Step 1 Compute Ṽf := spanK{ ∂fi

∂xj
: i, j = 0, 1, · · · , n}.

Step 2 Compute R(f,h) := (Ṽf : l) as stated in the proof of Theorem 8.
Step 3 Perform a linear elimination to the generators of R(f,h) to obtain a basis (h1, · · · ,

hk) of R(f,h). If k = n, then h = (h1, · · · , hn); if k < n, then h = (h1, · · · , hk, h1, · · · , h1); if
k > n, then the algorithm terminates without finding a result.

Step 4 Compute the coefficients of g by solving a system of linear equations as shown in
Theorem 4.

The following result shows that Theorem 1 is valid.
Theorem 12 Algorithm FDPMPH4 needs O(n3ω) arithmetic operations in the field K,

where 2 ≤ ω < 3. For a randomly decomposable f , the algorithm computes the decomposition
with probability one when K is of characteristic zero, and with probability close to one when
K = Fq · q is a sufficiently large number.

Proof The complexity of the whole algorithm depends on Steps 2 and 4, both of them cost
O(n3ω) arithmetic operations by Theorems 4 and 8. Then we have a polynomial time algorithm
to find a degree proper decomposition f = g ◦ h for g, h ∈ Rn with probability one when K is
of characteristic zero, and with probability close to one when K = Fq q is a sufficiently large
number.

7 Conclusion and Problems

In this paper, we give a theoretical analysis for the approaches of computing functional de-
composition for multivariate polynomials based on differentiation and homogenization proposed
in [11–14]. We show that a degree proper functional decomposition for a set of quartic homoge-
nous polynomials can be computed using the algorithm with high probability for randomly
decomposable polynomials. We propose a conjecture asserting that the decomposition for a set
of polynomials can be computed from the decomposition of its homogenization, and show that
the conjecture is valid in several cases with high probability. Finally, we prove that the right
decomposition factors for a set of polynomials can be computed from its right decomposition
factor space.
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Despite of the significant progresses, the general FDP for multivariate polynomials is widely
open. Some of the basic problems related to FDP of multivariate polynomials are not resolved.
We will give two basic open problems below.

The first problem is about the existence of an algorithm for FDP.
Problem 2 Given f ∈ Rn, to find an FDP for f is decidable or not.
Note that in a decomposition f = g ◦ h, the degrees of g and h could be arbitrarily high.

Consider the following two transformations:

T1 : (x1, · · · , xn) ⇒ (x1 + p, x2 · · · , xn),
T2 : (x1, · · · , xn) ⇒ (x1 − p, x2 · · · , xn),

where p is a polynomial in x2, · · · , xn of any degree. Then T1 ◦ T2 = (x1, · · · , xn). For any
decomposition f = g ◦h, f = (g ◦T1)◦ (T2 ◦h) is also a decomposition of f . Therefore, one way
to solve Problem 2 is to find the smallest possible degrees of g and h if a decomposition exists.

The second problem is about the computational complexity of FDP. In this aspect, even the
simplest case is not resolved.

Problem 3 Let f ∈ Rn be a set of quartic polynomials. Estimate the complexity of
computing a degree proper FDP of f over a finite field K = Fq. In particular, does there exist
a polynomial-time algorithm for Boolean polynomials?
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