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ABSTRACT
For given multivariate functions specified by algebraic, differen-

tial or difference equations, the separability problem is to decide

whether they satisfy linear differential or difference equations in

one variable. In this paper, we will explain how separability prob-

lems arise naturally in creative telescoping and present some criteria

for testing the separability for several classes of special functions,

including rational functions, hyperexponential functions, hyperge-

ometric terms, and algebraic functions.
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1 INTRODUCTION
The method of separation of variables has been used widely in solv-

ing differential equations [23]. In order to solve the one-dimensional

heat equation

∂y

∂t
− c
∂2y

∂x2
= 0, where c ∈ C,
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together with the boundary conditions y (t , 0) = y (t ,L) = 0, where

L , 0, one can try to find a nonzero solution of the form

y = u (t )v (x ),

and then substitute this form into the equation to get

∂u (t )
∂t
u
= c

∂2v (x )
∂x 2

v
.

Since both sides only depend on one variable, there exits some

constant λ ∈ C such that

∂u

∂t
− λu = 0 and c

∂2v

∂x2
− λv = 0.

Note that the above two equations are also satisfied byy = u (t )v (x ),
which are linear differential equations in only one variable. After

solving these special equations by taking the boundary conditions

into account, a special solution of the heat equation can be given as

y (t ,x ) =
∞∑
n=1

dn sin

(nπx
L

)
exp

(
−
n2π 2ct

L2

)
, (1.1)

where dn ∈ C are coefficients determined by the initial conditions.

Motivated by this example, one can ask the following natural ques-

tion.

Problem 1.1 (Separability Problem). Given a multivariate
function specified by certain equations (e.g. algebraic, differential
or difference equations), decide whether this function satisfies linear
differential or difference equations in one of the arising variables.

To make the problem more tractable, we will consider some

special classes of functions, such as rational functions, algebraic

functions, hyperexponential functions and hypergeometric terms.

Our main contributions are separability criteria for these classes of

functions, especially the algebraic case is new.Wewill also show the

close connection between the separability problem and Zeilberger’s

method of creative telescoping [29, 30].

The remainder of this paper is organized as follows. We specify

the separability problem and the existence problem of telescopers

precisely in Section 2 together with the definition of orders and

(local) dispersions of rational functions. After this, we explain how

the separability problems arise naturally in creative telescoping

for rational functions in Section 3, hyperexponential functions and

hypergeometric terms in Section 4, and for algebraic functions

in Section 5. Separability criteria will be given for these classes of

special functions. We then conclude our paper with some comments

on the separability problem on D-finite functions and P-recursive

sequences.

https://doi.org/10.1145/3452143.3465514
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2 PRELIMINARIES
Let F be a field of characteristic zero and let E = F(t , x) be the field
of rational functions in t and x = (x1, . . . ,xm ) over F. Let δt ,δxi
be the usual partial derivations ∂/∂t , ∂/∂x with x ∈ {x1, . . . ,xm },
respectively. The shift operators σt and σxi on E are defined as the

F-automorphisms such that for any f ∈ E, σt ( f (t , x)) = f (t + 1, x)
and

σxi ( f (t , x)) = f (t ,x1, . . . ,xi−1,xi + 1,xi+1, . . . ,xm ).

The ring of linear functional operators in t and x over E is denoted
by E⟨∂t , ∂x⟩, where ∂x = (∂x1

, . . . , ∂xm ) and ∂v with v ∈ {t , x}
is either the derivation Dv such that Dv f = f Dv + δv ( f ) or the
shift operator Sv such that Sv f = σv ( f )Sv for any f ∈ E, and ∂t
and ∂xi commute. For v ∈ {t , x}, we let ∆v denote the difference

operator Sv − 1, where 1 stands for the identity map on E. Abusing
notation, we let δv and σv denote arbitrary extensions of δv and

σv to derivation and F-automorphism of E, the algebraic closure
of E. The functions we consider will be in certain differential or

difference extension of E, which is also an E⟨∂t , ∂x⟩-module via the

action defined by simply interpretingDv , Sv by δv ,σv , respectively,
for v ∈ {t , x}. The ring F(t )⟨∂t ⟩ is a subring of E⟨∂t , ∂x⟩ that is also
a left Euclidean domain. Efficient algorithms for basic operations in

F(t )⟨∂t ⟩, such as computing the least common left multiple (LCLM)

of operators, have been developed in [6, 10].

Definition 2.1 (Separable functions). LetM be an E⟨∂t , ∂x⟩-
module and f ∈ M. We say that f (t , x) is ∂t -separable if there exists
a nonzero L ∈ F(t )⟨∂t ⟩ such that L( f ) = 0.

As an example, the special solution (1.1) of the one-dimensional

heat equation is both Dt -separable and Dx -separable. We should

mention that the notion of separable functions in Definition 2.1 and

that of separable polynomials and extensions in Galois theory [20,

Chapter V] are not connected. The problem of separating variables

in bivariate polynomial ideals in [11] is somehow also irrelevant

to the separability problem studied in this paper. Note that ∂t -

separable functions are just the D-finite functions in the differential

case and the P-recursive sequences in the shift case, which are both

introduced in [28]. By the closure properties of D-finite functions

and P-recursive sequences, we have the same closure properties for

∂t -separable functions.

Proposition 2.2. LetM be an E⟨∂t , ∂x⟩-module. If f ,д ∈ M are
∂t -separable, so are f + д, f · д, and a · f for all a ∈ F(t ).

We will focus on the separability problem on functions in an

E⟨∂t , ∂x⟩-module.

Definition 2.3 (Creative telescoping). LetM be an E⟨∂t , ∂x⟩-
module and f ∈ M. A nonzero operator L ∈ F(t )⟨∂t ⟩ is called a
telescoper of type (∂t , ∂x) for f if there existQ1, . . . ,Qm ∈ E⟨∂t , ∂x⟩
such that

L(t , ∂t ) ( f ) = ∂x1
(Q1 ( f )) + · · · + ∂xm (Qm ( f )), (2.1)

where ∂t ∈ {Dt , St } and ∂xi ∈ {Dxi ,∆xi }.

The central problem in the Wilf-Zeilberger theory of automatic

proving of special-function identities is related to the existence

and the computation of telescopers for special functions. In the

next sections, we will show that this central problem of creative

telescoping is closely connected to the separability problem on the

corresponding class of special functions.

Let V = (V1, . . . ,Vs ) be any set partition of the variables v =
{t ,x1, . . . ,xm }. A rational function f ∈ F(t , x) is called a split func-
tion with respect to the partition V if f = f1 · · · fs with fi ∈ F(Vi )
and a semi-split function with respect to V if there are split func-

tions дj ∈ F(t , x) such that f = д1 + · · · + дn . By definition, we

have f = p/q with p,q ∈ F[t , x] and gcd(p,q) = 1 is semi-split with

respect to the partition V if and only if the denominator q is a split

polynomial with respect to the partition V . Split rational functions

will be used to describe the separability of given functions.

Let K = F(x) and p ∈ K[t] be an irreducible polynomial in t . For
any f ∈ K(t ), we can write f = pma/b, wherem ∈ Z,a,b ∈ K[t]
with gcd(a,b) = 1 and p ∤ ab. The integerm is called the order of
f at p, denoted by νp ( f ). Conventionally, we set νp (0) = +∞. We

collect some basic properties of valuations as follows and refer to [9,

Chapter 4] for their proofs.

Proposition 2.4. Let f ,д ∈ K(t ) and p ∈ K[t] be an irreducible
polynomial. Then,

(i ) νp ( f д) = νp ( f ) + νp (д).
(ii ) νp ( f + д) ≥ min{νp ( f ),νp (д)} and equality holds if νp ( f ) ,

νp (д).
(iii ) If νp ( f ) , 0, then νp (Dt ( f )) = νp ( f ) − 1. In particular, for

any i ∈ N, νp (Di
t ( f )) = νp ( f ) − i if νp ( f ) < 0.

The dispersion introduced by Abramov in [1] can be viewed as

a shift analogue of the order. For any polynomial u ∈ K[t] with
degt (u) ≥ 1, the dispersion of u, denoted by dis(u), is defined as

max{k ∈ N | gcd(u,σkt (u)) , 1}, which is the maximal integer root-

distance |α − β | with α , β being roots of u in K̄ . Define dis(u) = 0 if

u ∈ K \ {0} and dis(0) = +∞. For a rational function f = a/b ∈ K(t )
with a,b ∈ K[t] and gcd(a,b) = 1, define dis( f ) = dis(b). For later
use, we introduce a local version of Abramov’s dispersion. Let

p ∈ K[t] be an irreducible polynomial. If σ it (p) | u for some i ∈ Z,
the local dispersion of u at p, denoted by disp (u), is defined as the

maximal integer distance |i − j | with i, j ∈ Z satisfying σ it (p) | u

and σ
j
t (p) | u; otherwise we define disp (u) = 0. Conventionally,

we set disp (0) = +∞. For a rational function f = a/b ∈ K(t ) with
a,b ∈ K[t] and gcd(a,b) = 1, we also define disp ( f ) = disp (b). By
definition, we have

dis(u) = max{disp (u) | p is an irreducible factor of u}.

The set {σ it (p) | i ∈ Z} is called the σt -orbit at p, denoted by [p]σt .

Note that disp (u) = disq (u) if q ∈ [p]σt . So we can define the local

dispersion of a rational function f at a σt -orbit at p, denoted by

dis
[p]σt

( f ).

Example 2.5. Letu = x (x +1) (x −5) (x2+1) (x2+4x +5) ∈ Q[x].
Then we have disx (u) = 6 and disx 2+1

(u) = 2. Abramov’s dispersion
of u is then equal to 6.

We now show how the local dispersions change under the ac-

tion of linear recurrence operators, which was first proved for

Abramov’s dispersion in [1, 2] and [25, Section 3.1].

Lemma 2.6. Let f = a/b ∈ K(t ) with a,b ∈ K[t] and gcd(a,b) =
1 and let p ∈ K[t] be an irreducible factor of b. Let L =

∑ρ
i=0
ℓiS

i
t ∈

K[t]⟨St ⟩ be such that ℓρℓ0 , 0 and σ it (p) does not divide ℓρℓ0 for any
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i ∈ Z. Then disp (L( f )) = disp ( f ) + ρ. In particular, disp (∆t ( f )) =
disp ( f ) + 1.

Proof. Let d = disp (b). Without loss of generality, we may

assume that p | b but σ it (p) ∤ b for any i < 0. Since gcd(a,b) = 1

and σt is aK-automorphism ofK[t], we have gcd(σ it (a),σ
i
t (b)) = 1

for any i ∈ Z. Applying L to f yields

L( f ) =

ρ∑
i=0

ℓiσ
i
t

(a
b

)
=

∑ρ
i=0
ℓiσ

i
t (a)ui

u
,

where u = bσt (b) · · ·σ
ρ
t (b) and ui = u/σ it (b). Write L( f ) = A/B

with A,B ∈ K[t] and gcd(A,B) = 1. Then B | u and disp (L( f )) =

disp (B) by definition. Since σ it (p) ∤ ℓ0 and σ it (p) ∤ ℓρ for any i ∈ Z,

we have both p and σ
d+ρ
t (p) do not divide the sum

∑ρ
i=0
ℓiσ

i
t (a)ui ,

but they divide u. So p | B and σ
d+ρ
t (p) | B, which implies that

disp (B) ≥ d + ρ. Since B | u, we have disp (B) ≤ disp (u) = d + ρ.
Therefore, disp (L( f )) = d + ρ.

3 THE RATIONAL CASE
We first explain how the existence problem of telescopers for ratio-

nal functions is naturally connected to the separability problem on

this class of functions. Let f (t ,x ) be a bivariate rational function
in F(t ,x ). By the Ostrogradsky-Hermite reduction [19, 24], we can

decompose f into the form

f = Dx (д) +
a

b
,

where д ∈ F(t ,x ) and a,b ∈ F(t )[x] with gcd(a,b) = 1, degx (a) <
degx (b) andb being squarefree in x over F(t ). Moreover, f = Dx (h)
for some h ∈ F(t ,x ) if and only if a = 0. Then f has a telescoper of

type (St ,Dx ) if and only if a/b does. Applying a nonzero operator

L =
∑ρ
i=0
ℓiS

i
t ∈ F(t )⟨St ⟩ to a/b yields

L
(a
b

)
=

ρ∑
i=0

ℓi (t )σ
i
t

(a
b

)
=

ρ∑
i=0

ℓi (t )a(t + i,x )

b (t + i,x )
=
p

q
,

where p,q ∈ F[t ,x] with gcd(p,q) = 1. Since the shift operator

St is an F(x )-automorphism and preserves the degrees in t and
x , we have b (t + i,x ) is squarefree in x over F(t ) for any i ∈ N
and degx (a(t + i,x )) < degx (b (t + i,x )). So degx (p) < degx (q)
and q is also squarefree in x over F(t ). This implies the operator

L is a telescoper of type (St ,Dx ) for a/b, i.e., L(a/b) = Dx (д) for
some д ∈ F(t ,x ) if and only if p = 0, i.e., L(a/b) = 0. Therefore, we

conclude that f has a telescoper of type (St ,Dx ) if and only if a/b
is St -separable.

We can also consider telescopers of type (Dt , Sx ). By Abramov’s

reduction [3, 4], we can decompose f ∈ F(t ,x ) into the form

f = ∆x (д) +
a

b
,

where д ∈ F(t ,x ) and a,b ∈ F(t )[x] with gcd(a,b) = 1, degx (a) <

degx (b) and b being shift-free in x over F(t ), i.e., gcd(b,σ ix (b)) = 1

for all nonzero i ∈ Z. Applying a nonzero operatorL =
∑ρ
i=0
ℓi (t )D

i
t

in F(t )⟨Dt ⟩ to a/b yields

L
(a
b

)
=

ρ∑
i=0

ℓiδ
i
t

(a
b

)
=

ρ∑
i=0

ℓi (t )ai
bi+1

=
p

q
,

where ai ,p,q ∈ F[t ,x] with gcd(p,q) = 1 and degx (ai ) < (i +

1) degx (b). Since b is shift-free in x , so is bi for any i ∈ N. Note
that any factor of a shift-free polynomial is still shift-free. So q is

shift-free and degx (p) < degx (q). This implies that the operator

L is a telescoper of type (Dt , Sx ) for a/b, i.e., L(a/b) = ∆x (д) for
some д ∈ F(t ,x ) if and only if p = 0, i.e., L(a/b) = 0. Then we

also have that f has a telescoper of type (Dt , Sx ) if and only a/b is

Dt -separable.

The next theorem characterizes all possible separable rational

functions in terms of semi-split rational functions, which was im-

plicitly used in [16, Theorem 4.6].

Theorem 3.1. A rational function f ∈ F(t , x) is ∂t -separable if
and only if f is semi-split in t and x.

Proof. Assume that f is semi-split in t and x. Then f = a1b1 +

· · · + anbn , where ai ∈ F(t ) and bi ∈ F(x) for all i with 1 ≤

i ≤ n. Since each aibi is annihilated by the operator Li := ∂t −

∂t (ai )/ai ∈ F(t )⟨∂t ⟩, the rational function f is annihilated by

LCLM(L1, . . . ,Ln ). So f is ∂t -separable.

For the necessity we assume that f = a/b with a,b ∈ F[t , x] and

gcd(a,b) = 1 is ∂t -separable, i.e., there exists a nonzero operator

L =
∑ρ
i=0
ℓi∂

i
t ∈ F(t )⟨∂t ⟩ with ℓρ , 0 such that L( f ) = 0. It

suffices to show that the denominator b is split with respect to

t and x. Suppose for the sake of contradiction that b is not split.

Then b has at least one irreducible factor p such that p is not split.

Now we proceed by a case distinction according to the type of

∂t . In the case when ∂t = Dt , we have νp (ℓiD
i
t ( f )) = νp ( f ) − i

for each i with ℓi , 0, since νp ( f ) < 0 and νp (ℓi ) = 0, which

implies further that νp (L( f )) = νp ( f ) − ρ by Proposition 2.4. But

νp (L( f )) = νp (0) = +∞, which leads to an contradiction. In the

case when ∂t = St , we may always assume that ℓi ∈ F[t] and
ℓ0 , 0 since σt is an F(x)-automorphism of F(t , x). Since ℓ0 and ℓρ
are free of x , we have σ it (p) ∤ ℓ0ℓρ for any i ∈ Z. By Lemma 2.6,

we get disp (L( f )) = disp ( f ) + ρ < ∞, which contradicts with

disp (L( f )) = disp (0) = +∞.

Remark 3.2. With the above theorem, we can detect easily the
∂t -separability of rational functions by the computation of contents
and derivatives of multivariate polynomials in t .

4 THE HYPEREXPONENTIAL AND
HYPERGEOMETRIC CASES

The separability problem on hyperexponential functions and hyper-

geometric terms was first studied in [21], which was later connected

to the existence of parallel telescopers for hyperexponential func-

tions [14]. We motivate this problem by revisiting Zeilberger’s

algorithm which computes telescopers for hypergeometric terms

(see [26, Chapter 6]).

Let H (t ,x ) be a nonzero hypergeometric term over F(t ,x ), i.e.,
both σt (H )/H and σx (H )/H are in F(t ,x ). If telescopers of type
(St , Sx ) exist for H , Zeilberger’s algorithm starts from an ansatz:

for fixed ρ ∈ N, set L =
∑ρ
i=0
ℓiS

i
t ∈ F(t )⟨St ⟩ with the ℓi ’s being

undetermined coefficients. Applying L to H yields

T := L(H ) =

ρ∑
i=0

ℓiσ
i
t (H ) =

ρ∑
i=0

ℓiaiH =

∑ρ
i=0
ℓiPi

Q
H ,
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where ai = σ it (H )/H = Pi/Q ∈ F(t ,x ) with Pi ,Q ∈ F[t ,x]. The

second step of Zeilberger’s algorithm is computing the Gosper form

of L(H ) that gives

σx (L(H ))

L(H )
=

σx
(∑ρ

i=0
ℓiPi

)
∑ρ
i=0
ℓiPi

σx (p)

p

q

r
,

where (p,q, r ) ∈ F(t )[x]
3
is a Gosper form of the rational function

Qσx (H )/(σx (Q )H ) satisfying that gcd(q,σ ix (r )) = 1 for all i ∈ N.
The last step is finding ℓ0, . . . , ℓρ ∈ F(t ), not all zero, such that the

equation

*
,

ρ∑
i=0

ℓiPi+
-
p = qσx (z) − σ

−1

x (r )z.

has a polynomial solution in F(t )[x]. If so, then L =
∑ρ
i=0
ℓiS

i
t is a

telescoper for H . It may happen that the final choice of the ℓi ’s sat-

isfies that

∑ρ
i=0
ℓiPi = 0. This means division by zero may happen

in the second step. To avoid this, we should first detect whether

L(H ) = 0 for some L ∈ F(t )⟨St ⟩, i.e., the separability problem on hy-

pergeometric terms. In this special situation, Zeilberger’s algorithm

still works and returns z = 0.

The following theorem characterizes all possible separable hy-

perexponential functions and hypergeometric terms, whose proof

was given in [21, Lemma 4] or in [14, Proposition 10].

Theorem 4.1. LetM be an E⟨∂t , ∂x⟩-module and let H ∈ M be
such that

∂t (H ) = aH and ∂xi (H ) = biH with a,bi ∈ F(t , x).

Then the following holds,
(i ) Hyperexponential case: H is Dt -separable if and only if there

exist p ∈ F(x)[t] and r ∈ F(t ) such that

a =
δt (p)

p
+ r .

(ii ) Hypergeometric case: H is St -separable if and only if there
exist p ∈ F(x)[t] and r ∈ F(t ) such that

a =
σt (p)

p
· r .

Remark 4.2. The above form for ∂t (H )/H can be detected by
algorithms for computing the Gosper form and its differential analogue
in [7, 18].

5 THE ALGEBRAIC CASE
In this section, we solve the separability problem on algebraic func-

tions. We first explain the connection between this problem and the

following existence problem of telescopers for rational functions in

three variables.

Problem 5.1. Given f ∈ F(t ,x ,y), decide whether there exists a
nonzero operator L ∈ F(t )⟨Dt ⟩ such that L( f ) = ∆x (д) + Dy (h) for
some д,h ∈ F(t ,x ,y).

By applying first the Ostrogradsky-Hermite reduction in y and

then Abramov’s reduction in x to f ∈ F(t ,x ,y), we get

f = ∆x (u) + Dy (v ) + r with r =
I∑
i=1

αi
y − βi

where u,v, r ∈ F(t ,x ,y), αi , βi ∈ F(t ,x ) and the βi ’s are in distinct

σx -orbits. Then f has a telescoper of type (Dt , Sx ,Dy ) if and only

if r does. By Theorem 4.21 in [13] or Theorem 4.43 in [12], we have

that r has a telescoper of type (Dt , Sx ,Dy ) if and only if for each i

with 1 ≤ i ≤ I , either αi is Dt -separable in F(t ,x ) or βi ∈ F(t ) and
αi ∈ F(t ,x ) (βi ) has a telescoper of type (Dt , Sx ). The existence

problem of telescopers of type (Dt , Sx ) in F(t ,x ) (β ) with β ∈ F(t )
has been solved in [16]. To completely solve Problem 5.1, it remains

to solve the following separability problem.

Problem 5.2. Given an algebraic function f (t , x) over F(t , x),
decide whether f (t , x) is Dt -separable.

We assume that F is an algebraically closed and computable

subfield of C in the remaining part of this section.

5.1 A descent theorem
We first recall some basic notions and results from the theory of

algebraic functions of one variable [17]. Let k be a field of character-

istic zero and k (x ,y) be an algebraic function field of one variable

over k , i.e., the transcendence degree of k (x ,y) over k is one. This

means there exists a nonzero polynomial f ∈ k[X ,Y ] such that

f (x ,y) = 0. The field of constants of k (x ,y) is defined as the set

of elements of k (x ,y) which are algebraic over k . A subring R of

k (x ,y) is called a valuation ring if k ⊂ R ⫋ k (x ,y) and for any

a ∈ k (x ,y) nonzero, either a ∈ R or a−1 ∈ R. Any valuation ring R
of k (x ,y) is a local ring, whose unique maximal ideal p is called a

place of k (x ,y) and the quotient field R/p is called the residue field
of the place p, denoted by Σp .

Lemma 5.3. Let k (x ,y) and f ∈ k[X ,Y ] be as above. Assume that
(x̄ , ȳ) ∈ k2 satisfies that f (x̄ , ȳ) = 0 and ∂f

∂Y (x̄ , ȳ) , 0. Then there is
a unique placep of k (x ,y) containing x−x̄ andy−ȳ. Furthermore, the
residue field Σp of p is isomorphic to k and k is the field of constants
of k (x ,y).

Proof. By Corollary 2 of [17, page 8], there is a place of k (x ,y)
containing x − x̄ and y − ȳ, say p. Let a be the discrete valuation
ring (DVR) with respect to p. It is easy to see that the ring k[x ,y] is

contained in a. Let m be the ideal in k[x ,y] generated by x − x̄ and

y − ȳ. Then m is a maximal ideal. Denote by R the localization of

k[x ,y] at m and we still use m to denote the unique maximal ideal

of R. Rewriting f (X ,Y ) as a polynomial in X − x̄ ,Y − ȳ yields that(
∂ f

∂Y
(x̄ , ȳ) + (Y − ȳ)A

)
(Y − ȳ) + (X − x̄ )B

for some A,B ∈ k[X − x̄ ,Y − ȳ]. Since
∂f
∂Y (x̄ , ȳ) , 0, one has

that
∂f
∂Y (x̄ , ȳ) + (y − ȳ)A(x − x̄ ,y − ȳ) is invertible in R and so

y − ȳ ∈ (x − x̄ )R. It implies that R is a regular local ring, i.e., a DVR.

Therefore R = a, since R ⊂ a. This concludes that p is unique.
We have that Σp = R/m = k[x ,y]/m � k . Since the field of

constants of k (x ,y) is a subfield of Σp under the natural homomor-

phism, it coincides with k .

Remark 5.4. Let k (x ,y) and (x̄ , ȳ) be as in Lemma 5.3. The above
proof implies that k (x ,y) can be embedded into the field of formal
Laurent series k ((x − x̄ )).
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Theorem 5.5. Let F ⊆ k ⊆ C be fields with F being algebraically
closed. Let f (t ,Y ) be an irreducible polynomial in k[t ,Y ]. Let k (t ,y)
be the quotient field of k[t ,Y ]/⟨f ⟩. Assume that

(1) the places of k (t ) that ramify in k (t ,y) are defined over F, i.e.,
their uniformizing parameters can be chosen to be 1/t or t − c
with c ∈ F.

(2) there exists a solution (a,α ) of the system

f (a,α ) = 0,

∂ f

∂Y
(a,α ) , 0,

where a ∈ F and α ∈ k .
Then there exists β ∈ F(t ) such that k (t ,y) = k (t , β ).

Proof. Since (a,α ) is a simple point of f (t ,Y ) = 0 in k2
, by

[27], f (t ,Y ) is absolutely irreducible over k . This implies that f is

irreducible over C, i.e., C[t ,Y ]/⟨f ⟩ is an integral domain. Let C(t ,y)
be the quotient field of C[t ,Y ]/⟨f ⟩. Then k (t ,y) can be considered

as a subfield of C(t ,y) under the natural homomorphism. From

Theorem 3 in [17, page 92], none of places of C(t ,y) is ramified

with respect to k (t ,y). Therefore the condition 1 holds for C(t ,y).

Proposition 2.1 in [22, page 10] states that there is β ∈ F(t ) such
thatC(t ,y) = C(t , β ). Now there areд0 (t ), · · · ,дn−1 (t ) ∈ C(t ) such
that

β =
n−1∑
i=0

дi (t )y
i , (5.1)

where n = [C(t ,y) : C(t )]. For each i , let дi = qi/q with qi ,q ∈
C[t] and let s = maxi {degt qi , degt q}. Equation (5.1) implies that

qβ =
∑n−1

i=0
qiy

i
and therefore the set

{
t jβ , t jyi

}
j=0, ...s,i=0, ...n−1

is linearly dependent over C. This set lies in k (t ,y, β ) and, since
it is linearly dependent over Dt -constants in a larger differential

field, it is linearly dependent over Dt -constants in k (t ,y, β ). Denote

by
˜k the set of Dt -constants of k (t ,y, β ). If ˜k = k , then β ∈ k (t ,y),

which will conclude the proposition. Therefore it suffices to prove

that
˜k = k . It is easy to verify that

˜k coincides with the field of

constants of k (t ,y, β ). In the following, we will show that the field

of constants of k (t ,y, β ) is equal to k .
From Remark 5.4, k (t ,y) and C(t ,y) can be embedded into k ((t −

a)) and C((t − a)) respectively. We will consider them as the sub-

fields ofk ((t−a)) andC((t−a)) respectively. Since β ∈ C(t ,y)∩F(t ),
F is algebraically closed and a ∈ F, β ∈ F((t − a)). Therefore,
k (t ,y, β ) ⊆ k ((t − a)). Since k is algebraically closed in k ((t − a)),
the field of constants of k (t ,y, β ) is equal to k . This completes the

proof.

5.2 Separability criteria
Throughout this section, assume that F ⊆ C with F being alge-

braically closed. Let P =
∑n
i=0

AiY
i ∈ F(t , x)[Y ] be the minimal

polynomial of y ∈ F(t , x). We can always pick (a,α ) ∈ F × F(x)
such that

An (x,a) , 0, P (x,a,α ) = 0 and

∂P

∂Y
(x,a,α ) , 0. (5.2)

Let K = F(x,α ) and ℓ = [K (t ,y) : K (t )].

Lemma 5.1. Asume that z ∈ F(t , x) satisfies P (z) = 0. Then y is
Dt -separable if and only if z is also Dt -separable.

Proof. Note that z and y are conjugated over F(t , x). By Theo-

rem 3.2.4 in [9], any field automorphism of the splitting field of P
commutes with the derivationDt . So for any L ∈ F(t )⟨Dt ⟩, L(z) = 0

if and only if L(y) = 0.

The above lemma implies that to detect if there is a nonzero L ∈
F(t )⟨Dt ⟩ such that L(y) = 0, it suffices to detect if there exists such

operator for z. In the following, we will characterize all possible Dt -

separable algebraic functions. Let us firstly prove that the function

field over F(x,α , t ) generated by a Dt -separable algebraic function

satisfies the condition 1 of Theorem 5.5.

Proposition 5.6. Let K be as above. If y is Dt -separable then
K (t ,y) satisfies the condition 1 of Theorem 5.5.

Proof. Assume thaty isDt -separable, i.e., there exists a nonzero

L ∈ F(t )⟨Dt ⟩ such that L(y) = 0. Let p be a place of K (t ) and q a
place of K (t ,y) that is ramified with respect to p. Suppose that p
and q are uniformizing parameters of p and q respectively, and e
is the corresponding ramification index. Then p = aqe for some

invertible a in the DVR with respect to q. If p = c/t for some c ∈ K
then there is nothing to prove. In the following, assume that p is

an irreducible polynomial in K[t]. Let ℘ be a place of C(t ,y) lying
above q. Then by Theorem 3 in [17, page 92]), ℘ is not ramified

with respect to q and so q is a uniformizing parameter of ℘. Since

p ∈ ℘, the uniformizing parameter of ℘ ∩ C(t ) can be selected as a

factor of p, say t − c for some c ∈ C. It is easy to see that p/(t − c )
is an invertible element in the DVR with respect to ℘. It implies

that t − c = āqe for some invertible element ā and thus K (t ,y) can

be embedded into C((t − c )1/e ). Therefore y ∈ C((t − c )1/e )) and
c is a singular point of L. Note that the singular points of L lie in

the algebraically closed field F. So c ∈ F and then p = b (t − c ) for
some b ∈ K . In other words, t − c is a uniformizing parameter of p.

Hence K (t ,y) satisfies the condition 1 of Theorem 5.5.

By Proposition 5.6 and Theorem 5.5, if y is Dt -separable, then

there is β ∈ F(t ) such that K (t ,y) = K (t , β ). We now characterize

separable algebraic functions as follows.

Proposition 5.7. Let P =
∑n
i=0

AiY
i ∈ F[t , x][Y ] with An , 0

be the minimal polynomial of y ∈ F(t , x). Suppose that y is Dt -
separable. Let K = F(x,α ) with α ∈ F(x) be as in (5.2) and β ∈ F(t )
be such that K (t ,y) = K (t , β ). Then

(1) An (x, t ) is split, i.e., An (x, t ) = a(x)b (t ), where a(x) ∈ F[x],
b (t ) ∈ F[t], and

(2) there are ai (t ) ∈ K[t] such that

y =
1

b (t )q(t )

ℓ−1∑
i=0

ai (t )β
i , (5.3)

where b is as in (1), ℓ = [K (t ,y) : K (t )] and q(t ) is the
discriminant of the base {1, β, · · · , βℓ−1}.

Proof. Let ri = Ai/An = pi/qi ∈ F(t , x) with 0 ≤ i ≤ n,
pi ,qi ∈ F[t , x] and gcd(pi ,qi ) = 1. Since y is Dt -separable, so are

all of the conjugate roots of P (Y ) = 0. By Vieta’s formulas, the
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ri ’s are polynomials of these roots, which therefore are also Dt -

separable by Proposition 2.2. By Theorem 3.1, qi is split for all i
with 0 ≤ i ≤ n. Since An is the LCM of the qi ’s, we have An (x, t )
is also split.

Let S be the integral closure ofK[t] inK (t ,y). ThenAn (x, t )y ∈ S .
Since {1, β , · · · , βℓ−1} is a base of K (t ,y) over K (t ), one has that

An (x, t )y =
1

q(t )

ℓ−1∑
i=0

дi (t )β
i ,

where дi (t ) ∈ K[t]. Setting ai (t ) = дi (t )/a(x), we obtain the re-

quired expression for y.

Recall that K = F(x,α ) and ℓ = [K (t ,y) : K (t )]. Since the

derivative of y is also in K (t ,y) for any i ∈ N, we have that Y =

(1,y,y2, · · · ,yℓ−1)t satisfies a linear differential system of the form

Y ′ = AY , where A ∈ Matℓ (K (t )). (5.4)

We will call (5.4) the associated differential equation of y over K (t ).
The following proposition will allow us to design an algorithm for

testing the separability of algebraic functions.

Proposition 5.8. Lety andK be as above. Assume that (5.4) is the
associated differential equation of y over K (t ). Then y is Dt -separable
if and only if there is an invertible matrixG with entries in K[t] such
that

G−1G ′ −G−1AG ∈ Matℓ (F(t )).

Furthermore, if y is Dt -separable then

G−1G ′ −G−1AG =
(bℓ−1q)′

bℓ−1q
− B

whereb,q, ℓ are as in (5.3) and B is the associated differential equation
of β over F(t ) with β being as in (5.3).

Proof. Assume that there exists a nonzero L ∈ F(t )⟨Dt ⟩ such

that L(y) = 0. Then by Proposition 5.7, y has the form (5.3). Let E
be the Galois closure of K (t , β ) over K (t ). Let β1 = β , β2, · · · , βℓ
be the conjugates of β and σi ∈ Gal(E/K (t )) such that σi (β ) = βi .
Then σ1 (y), · · · ,σℓ (y) are all zeroes of P (x, t ,y). We will denote

the Vandermonde matrix generated by σ1 (y), · · · ,σℓ (y) by U (y)
and the one generated by β1, · · · , βℓ byU (β ). ThenU (y) is a funda-
mental matrix of the system (5.4) andU (β ) is a fundamental matrix

of a system Y ′ = BY with B ∈ Matℓ (F(t )). Using the argument

similar to that in the proof of Proposition 5.8, we have that for all j
with 1 ≤ j ≤ ℓ − 1,

y j =
1

b (t ) jq(t )

ℓ−1∑
i=0

ai, j (t )β
i , (5.5)

where ai, j (t ) ∈ K[t] and b (t ),q(t ) are as in Proposition 5.7. Apply-

ing σl to both sides of the equalities (5.5) implies that

σl (y)
j =

1

b (t ) jq(t )

ℓ−1∑
i=0

ai, j (t )β
i
l , (5.6)

where j = 1, · · · , ℓ − 1, l = 1, · · · , ℓ. Let ãi, j = ai, jb
ℓ−1−j

and

G =

*.....
,

b (t )ℓ−1q(t ) 0 · · · 0

ã0,1 (t ) ã1,1 (t ) · · · ãℓ−1,1 (t )
...

...
...

...

ã
0, ℓ−1

(t ) ã
1, ℓ−1

(t ) · · · ãℓ−1, ℓ−1
(t )

+/////
-

that is an element in Matℓ (K[t]). Then the equations (5.6) can be

rewritten as U (y) = (GU (β ))/(b (t )ℓ−1q(t )). Hence G is invertible

and an easy calculation yields that

U (β )′ = (bℓ−1qG−1U (y))′

=
(
(bℓ−1q)′ − bℓ−1qG−1G ′ + bℓ−1qG−1AG

)
G−1U (y)

= BU (β ) = bℓ−1qBG−1U (y).

This implies that

G−1AG −G−1G ′ = B −
(bℓ−1q)′

bℓ−1q
∈ Matℓ (F(t )).

Now we prove the converse. Assume that there is an invertible

matrix G ∈ Matℓ (K[t]) such that

B̃ = G−1AG −G−1G ′ ∈ Matℓ (F(t )).

ThenU (y) = GF , where F is a fundamental matrix of Y ′ = B̃Y with

entries in some differential extension field of K (t ). Obviously, the
entries of both G and F are annihilated by nonzero operators in

F(t )⟨Dt ⟩ and thus so are the sum of products of entries of G and F ,
in particular, so is y.

Remark 5.9. Once β is computed, one can obtain the linear differ-
ential equations Y ′ = BY satisfied byU (β ).

5.3 An algorithm for testing separability
All arguments presented in this section are summarized in Al-

gorithm 5.11 which decides whether a given algebraic function

y ∈ F(t , x) is Dt -separable or not. For the sake of simplicity, we

may take F = ¯Q, the field of all algebraic numbers over Q. Let
P =

∑n
i=0

AiY
i ∈ F[t , x][Y ] be the minimal polynomial of y. We

may assume thatAn is split, otherwise we can conclude with Propo-

sition 5.7 that y is not Dt -separable. Under this assumption, y is

Dt -separable if and only if Any is Dt -separable. Therefore without

loss of generality, we may assume that

P (x, t ,Y ) = Yn +An−1 (x, t )Yn−1 + · · · +A0 (x, t ), (5.7)

where Ai ∈ F[x, t]. Let (a,α ) ∈ F × F(x) satisfy

P (x,a,α ) = 0,
∂P

∂Y
(x,a,α ) , 0, (5.8)

and letK = F(x,α ). Then P (x, t ,Y )may be factorized into a product

of irreducible polynomials in K[t ,Y ]. There is a unique factor of

P (x, t ,Y ) in K[t ,Y ] vanishing at (a,α ), denoted by P̄ (x,α , t ,Y ). Let
K (t ,y) be the quotient field of K[t ,Y ]/⟨P̄ (x,α , t ,Y )⟩. Now suppose

that y is Dt -separable. Then Proposition 5.6 and Theorem 5.5 imply

that there is β ∈ F(t ) such that K (t ,y) = K (t , β ). We shall show

how to find such β .
Let R = F(t )[x] and S the integral closure of R in K (t ,y). Then

α ,y ∈ S . Suppose that

P̄ (x,α , t ,Y ) = BℓY
ℓ + Bℓ−1

Y ℓ−1 + · · · + B0, (5.9)
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where Bℓ ∈ F[x],Bi ∈ F[x,α , t] with i = 0, · · · , ℓ − 1. Note that

[K (t ,y) : F(x, t )] = [K (t ,y) : K (t )][K (t ) : F(x, t )]

= [K (t ,y) : K (t )][K : F(x)] = ℓ[K : F(x)].

The set

{
α iy j |i = 0, · · · , [K : F(x)] − 1, j = 0, · · · , ℓ − 1

}

is a base ofK (t ,y) over F(x, t ). LetD (x, t ) be the discriminant of the

above base and let F (x,Y ) be an irreducible polynomial in F[x,Y ]

such that F (x,α ) = 0. Then we have

Lemma 5.10. Let (c,b) ∈ Fm+1 be such that F (c,b) = 0 and
D (c, t )Bℓ (c) , 0. Then P̄ (c,b, t ,Y ) is irreducible in F[t ,Y ] and for
any root Y = γ of P̄ (c,b, t ,Y ) = 0, we have that K (t ,y) is isomorphic
over K (t ) to K (t ,γ ).

Proof. Let β ∈ K (t ,y) be such that K (t ,y) = K (t , β ). Since β
is algebraic over F(t ) we have that β is integral over R = F(t )[x].

Therefore we may write

β =
1

D (x, t )

∑
bi, jα

iy j ,

where the bi, j ∈ R. Let (c,b) satisfy the hypothesis of the lemma

and consider the ideal

p = ⟨x1 − c1, . . . ,xm − cm ,α − b⟩ ◁ R[α].

Note that p is a maximal ideal. The Going Up Theorem implies

that there is a maximal ideal q ◁ S such that q ∩ R[α] = p. In

particular, D (x, t ) < q. There is a natural map ϕ : S → S/q. We

will let M denote the field S/q. The element γ = ϕ (y) is a root of
P̄ (c,b, t ,γ ) = 0. Since the minimal polynomial Q (t ,Y ) of β lies in

F[t ,Y ], it remains unchanged when we apply ϕ to its coefficients.

Therefore ϕ (β ) satisfies Q (t ,ϕ (β )) = 0. In particular, the degree of

ϕ (β ) over F(t ) is equal to ℓ, the degree of K (t , β ) over K (t ). Since

ϕ (β ) =
1

D (c, t )

∑
ϕ (bi, j )ϕ (α )

iγ j

we have thatϕ (β ) ∈ F(t ) (γ ). Note that P̄ (c,b, t ,Y ) , 0. The element

γ satisfies P̄ (c,b, t ,γ ) = 0 and so it has degree at most ℓ over F(t ).
Since ϕ (β ) ∈ F(t ,γ ), we have that

ℓ ≥ [F(t ,γ ) : F(t )] ≥ [F(t ,ϕ (β )) : F(t )] = [K (t , β ) : K (t )]

= [K (t ,y) : K (t )] = ℓ

and so [F(t ,γ ) : F(t )] = ℓ . Therefore P̄ (c,b, t ,Y ) is irreducible.
Furthermore F(t , β ) is isomorphic over F(t ) to F(t ,ϕ (β )) = F(t ,γ ).
This implies that K (t ,y) is isomorphic over K (t ) to K (t ,γ ).

Let P̄ (x,α , t ,Y ) be as above. Lemma 5.10 implies that if y is Dt -

separable then one can compute (c,b) ∈ Fm+1
such that P̄ (c,b, t ,Y )

is irreducible over F(t ). Furthermore, β can be taken to be a zero

of P̄ (c,b, t ,Y ). To see this, let φ be the isomorphism map over K (t )

from K (t ,γ ) to K (t ,y) where γ is a zero of P̄ (c,b, t ,Y ) = 0 in F(t ).
Set β = φ (γ ). Then one has that K (t , β ) = K (t ,y) and P̄ (c,b, t , β ) =
0. From P̄ (c,b, t ,Y ), we can construct the associated differential

equation of β over F(t ). Denote this associated differential equation
by Y ′ = BY with B ∈ Matℓ (F(t )). The proof of Proposition 5.8

implies that if y is Dt -separable then there is an invertible matrix

G with entries in K[t] such that

G ′ = AG −G

(
B −

q′(t )

q(t )

)
,

where q(t ) is the discriminant of {1, β, · · · , βℓ−1} and Y ′ = AY
is the associated differential equation of y over K (t ). Here the

polynomial b (t ) in (5.5) disappears because we assume that P is

monic in Y . Note that G is a polynomial solution of the linear

differential equation Y ′ = AY − Y (B − q(t )′/q(t )), which can be

computed by algorithms developed in [5, 8].

We summarize the above results as the following algorithm.

Algorithm 5.11. Input: An irreducible polynomial

P (t , x,Y ) = AnY
n +An−1Y

n−1 + · · · +A0 ∈ F[t , x,Y ].

Output: “Yes" if y is Dt -separable, otherwise “No", where y ∈ k (x, t )
is a root of P (Y ) = 0.

(1) If An is not split, then y is not Dt -separable and return “No".
(2) Transform P (x, t ,Y ) into a monic polynomial by replacing Y

by Y/An and clear the denominators.
(3) Compute β :
(3.a) Find (a,α ) ∈ F × F(x) satisfying the conditions (5.8).
(3.b) Decompose P into a product of irreducible polynomials over

F(x,α ). Let P̄ (x,α , t ,Y ) be the irreducible factor satisfying
that P̄ (x,α ,a,α ) = 0.

(3.c ) Compute D (x, t ), the discriminant of the base {α iȳ j }, where
ȳ is a zero of P̄ (x,α , t ,Y ) in F(t , x).

(3.d ) Compute a point (c,b) ∈ Fm+1 such that

D (c, t )Bℓ (c) , 0 and F (c,b) = 0,

where F is the minimal polynomial of α over F(x) and Bℓ (x)
is the leading coefficient of P̄ (x,α , t ,Y ).

(3.e ) Let β be a zero of P̄ (c,b, t ,Y ) = 0 in F(t ).
(4) Compute G:
(4.a) Computeq(t ), the discriminant of the base {β j |j = 0, · · · , ℓ−

1} and compute the associated differential equations ofy and
β , which are denoted by Y ′ = AY and Y ′ = BY respectively.

(4.b) By algorithms developed in [5, 8], compute a base of poly-
nomial solutions of Z ′ = AZ − Z (B − q(t )′/q(t )), where
Z = (zi j ) with indeterminate entries, say {Q1, · · · ,Qs }.

(4.c ) ComputeC = det(z1Q1 + · · ·+zsQs ) with z1, · · · , zs being
indeterminates. If C = 0 then return “No", otherwise return
“Yes".

We now show an example to illustrate the main steps of the

above algorithm.

Example 5.12. Let E = ¯Q(t ,x ) and y be the algebraic function
over E defined by

P (x , t ,Y ) := Y 2 − 2(xt + 1)Y + (xt + 1)2 − t .

We are going to decide whether y is Dt -separable or not. We will
follow the above algorithm step by step. Since P (x , t ,Y ) is monic in
Y . We begin with the third step, i.e., computing β .

(3) Compute β =
√
t + 1:
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(3.a) Set (a,α ) = (1,x ). One sees that P (x , 1,x ) = 0 and
∂P

∂Y
(x , 1,x ) = −2 , 0.

So ¯Q(x ,α ) = ¯Q(x ).
(3.b) Since P (x , t ,Y ) is irreducible over ¯Q(x ), we take P̄ (x ,α , t ,Y )

to be P (x , t ,Y ).
(3.c) Set D (x , t ) = 4t , which is the discriminant of the base {1, ȳ}

with P (x , t , ȳ) = 0.
(3.d) One sees that B2 (x ) = 1 and F = z − x . So the point (0, 0)

satisfies D (0, t )B2 (0) , 0 and F (0, 0) = 0.
(3.e) Set β =

√
t +1 which is a zero of P (0, t ,Y ) = Y 2−2Y +1−t .

(4) Compute G:
(4.a) Set q(t ) = 4t , which is the discriminant of the base {1, β },

and set

A =

(
0 0

x
2
− 1

2t
1

2t

)
, B =

(
0 0

− 1

2t
1

2t

)
.

Then Y ′ = AY and Y ′ = BY are the associated differential
equations of y and β respectively.

(4.b) Set Z = (zi j )1≤i, j≤2, and compute a base of the polynomial
solutions of the system Z ′ = AZ −Z (B − 1/t ). One has that{

Q1 :=

(
t 0

xt2 + t 0

)
, Q2 :=

(
0 0

−t t

)}
is a required base.

(4.c) One has that det(z1Q1 + z2Q2) = z1z2t
2 , 0. So y is Dt -

separable.

6 CONCLUSION AND FUTUREWORK
We present a connection between the separability problems and the

existence problems in creative telescoping. Separability criteria are

given for rational functions, hyperexponential functions, hypergeo-

metric terms and algebraic functions. Some results in the algebraic

case have been generalized to the case of D-finite functions whose
annihilating operators of minimal order are completely reducible

in [15]. Moreover in [15], for a D-finite function y, a nonzero oper-

ator L ∈ F(t )⟨Dt ⟩ such that L(y) = 0 is also computed if it exists.

The existence problems of telescopers for rational functions in

three variables are now completely settled by combining the results

in [12] with the separability criteria in this paper.

In terms of future research, the first natural direction is to design

efficient algorithms for computing minimal annihilators of sepa-

rable functions. The second direction is to solve the separability

problem for P-recursive sequences, which may have applications

in solving the general termination problem of Zeilberger’s algo-

rithms beyond the hypergeometric case. We can also try to develop

more symbolic computational tools for the method of separation of

variables for partial differential equations as in [23].
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