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ABSTRACT
Creative telescoping is the core in the algorithmic proof theory
of combinatorial identities developed by Wilf and Zeilberger in
the early 1990s. For multivariate functions, the process of creative
telescoping constructs linear differential or recurrence operators in
one variable. Such operators are called telescopers. Four classes of
algorithms have been developed for creative telescoping according
to different algorithmic techniques that they are based on. The
fourth and most recent one is the reduction-based telescoping al-
gorithms that are based on the Ostrogradsky-Hermite reduction
and its variants. Algorithms in this class share the common feature
that they separate the computation of telescopers from the costly
computation of certificates. This idea was first worked out for bi-
variate rational functions in 2010. It has since been extended to
more general classes of functions, such as hyperexponential func-
tions, hypergeometric terms, algebraic functions and most recently
D-finite functions. In this tutorial, we will overview several reduc-
tion algorithms in symbolic integration and summation, explain the
idea of creative telescoping via reductions, and present intriguing
applications of this new approach.
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1 CREATIVE TELESCOPING
In the 1990s, Zeilberger formulated the method of creative tele-
scoping as an algorithmic tool for proving special-function iden-
tities [67–69]. A large class of special-function identities in math-
ematical handbooks [8, 55] involve integrals or sums with free
parameters. The main idea of proving such identities is showing
that both sides of such an identity satisfy the same linear differential
or recurrence equations with respect to the parameters and some
initial conditions. Algorithms for creative telescoping have been
widely used for finding linear differential or recurrence equations
satisfied by parameterized definite integrals and sums [56]. Linear
differential and recurrence equations provide a nice data structure
for representing and manipulating functions and sequences [59].

Creative telescoping is an algorithmic process that constructs,
for a given function f (x,y1, . . . ,yn ), a nonzero linear differential
or recurrence operator L in x such that

L(f ) = ∂y1 (д1) + · · · + ∂yn (дn ),

where ∂yi can be the derivation or difference operator in the vari-
able yi and the дi ’s are in the same class of functions as f . The
operator L is called a telescoper for f , and the дi ’s are called the cer-
tificates of L. The extensive work overviewed in the surveys [35, 48]
on creative telescoping mainly concerns the existence and con-
struction problems of telescopers. The existence problem asks for
a decision procedure for checking whether a given function has
a telescoper or not. If telescopers exist for a given function, the
construction problem asks for efficient algorithms for computing
telescopers. In this tutorial, we will explain how reduction algo-
rithms of the next section play a crucial role in solving the existence
and construction problems of telescopers.

2 REDUCTION ALGORITHMS
The first reduction algorithm was presented by Ostrogradsky [51]
in 1845 and later by Hermite [43] in 1872, which is now a classical
technique in symbolic integration [17]. Let F be a field of charac-
teristic zero and F(y) be the field of rational functions in y over F,
on which the usual derivation in y is denoted by Dy . For a given
rational function f ∈ F(y), the Ostrogradsky-Hermite reduction,
also called rational reduction below, decomposes f into the form

f = Dy (д) + r with r =
a

b
, (2.1)

where д ∈ F(y) and a,b ∈ F[y] are such that degy (a) < degy (b)
and b is squrefree in y. The remainder r obtained by the reduction
satisfies two properties: firstly, it is minimal in the sense that b has
the smallest degree in y among all possible such decompositions;
secondly, it is a normal form for the quotient space F(y)/Dy (F(y))
since f ∈ Dy (F(y)) if and only if a = 0. The Ostrogradsky-Hermite
reduction has been generalized in different directions.
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(1) From rational functions to elementary functions. The case
of transcendental elementary extensions was studied by Risch [57],
Rothstein [58], and Davenport [38]. Trager extended the rational
reduction to the case of algebraic functions [63], which was re-
fined in [27] with the normal form property. The general case of
elementary extension was studied by Bronstein [16, 17]. Recently,
we improved the reduction algorithm from [17] with the normal
form property for special primitive extensions in [19]
(2) From rational functions to D-finite functions. The case of
hyperexponential functions was studied by Davenport [38] and by
Geddes, Le and Li in [42] with a refined version in [12] satisfying
the normal-form property. Trager’s reduction for algebraic was
extended to fuchsian D-finite functions in [27, 31]. Recently, the
case of general D-finite functions that satisfy arbitrary order linear
differential equations with polynomial coefficients was handled
in [13, 64].
(3) From univariate to multivariate. The rational reduction was
extended to the bivariate case in [28] via residues that is equivalent
to the univariate algebraic case and then to the multivariate case
in [15, 49] using the Griffiths–Dwork method.
(4) From continuous to discrete. The discrete analogue for ratio-
nal functions was presented by Abramov in [1, 2] and also by Paule
via greatest factorial factorizations in [52]; Abramov’s redution has
been extended to the bivariate case in [21]; the hypergeometric
case was studied by Abramov and Petkovšek in [5, 6] and modi-
fied in [23] with the normal-form property. The q-analogue of the
modified Abramov-Petkovšek reduction was presented in [40]. The
general P-recursive case (in terms of linear difference systems) has
been given in [65].

3 EXISTENCE VIA REDUCTION
Zeilberger’s algorithm [69] is the first fast algorithm for creative
telescoping, which has been implemented in most of computer
algebra systems. The termination problem of Zeilberger’s algorithm
is equivalent to the existence problem of telescopers.

The first celebrated result on the existence of telescopers is Zeil-
berger’s theorem that telescopers always exist for holonomic func-
tions using Bernstein’s theory of algebraic D-modules [68]. With
an elementary dimensional counting, Wilf and Zeilberger in [67]
proved that telescopers also exist for proper hypergeometric terms
that are products of polynomials, geometric sequences and factori-
als. Actually, holonomicity is equivalent to properness for hyperge-
ometric terms via the Wilf and Zeilberger conjecture, which has
been proved [7, 29, 44, 53]. The above work only provides sufficient
conditions for the existence of telescopers.

Telescopers may still exist for non-holonomic functions or non-
proper terms [33, 36]. So holonomicity and properness are not neces-
sary conditions. The first necessary and sufficient condition on the
existence of telescopers was given by Abramov and Le [4] for ratio-
nal functions in two discrete variables. In 2003, Abramov presented
the existence criterion for the bivariate hypergeometric case [3].
Abramov’s criterion was soon extended to the q-hypergeometric
case in [32], and more recently to the mixed rational and hyperge-
ometric case in [18, 30]. In the bivariate case, all of the existence
criteria state that a bivariate (q-)hypergeometric term or mixed
hypergeometric term has a telescoper if and only if the remainder

in the additive decomposition obtained by reduction as in (2.1) is
proper. But this pattern is not preserved when one go beyond the
bivariate case in which the situation becomes more complicated.
The existence problem of telescopers for rational functions in three
variables was studied in [20, 22] using variants of the Ostrogradsky–
Hermite reduction.

4 CONSTRUCTION VIA REDUCTION
The available algorithms for constructing telescopers can be di-
vided into four generations. Algorithms of the first generation
are based on the noncommutative elimination theory for operator
ideals [37, 41, 54, 61, 62, 66]. Zeilberger’s algorithm [68] and its
generalizations [9, 34, 46, 60] form the second generation. The third
generation is inspired by complexity analysis of creative telescoping
algorithms with the first work by Apagodu and Zeilberger [10, 50]
with generalizations in [24–26, 47]. The fourth and most recent
generation of creative telescoping algorithms are called reduction-
based algorithms. They were first introduced in 2010 for bivariate
rational functions using the Ostrogradsky–Hermite reduction [11].
The basic idea is explained as follows. Let f ∈ K(x,y) with K being
a field of characteristic zero. Applying the Ostrogradsky–Hermite
reduction to the successive derivatives Di

x (f ) yields

Di
x (f ) = Dy (дi ) + ri with ri =

ai
bi

where дi ∈ K(x,y) and ai ,bi ∈ K[x,y] with degy (ai ) < degy (bi )
and gcd(ai ,bi ) = 1. Moreover, all of the bi ’s are squarefree and di-
vide the squarefree part b ∈ K[x,y] of the denominator of f as poly-
nomials in y over K(x). So we can write ri = ui/b with degy (ui ) <
degy (b), which implies that the K(x)-subspace of K(x,y) spanned
by the remainders r0, r1, . . . is of finite dimension. Assume that d
is the dimension. Then we can find c0, . . . , cd ∈ K(x), not all zero,
such that c0r0 + · · · + cdrd = 0. For these c0, . . . , cd , we then have

c0 f + c1Dx (f ) + · · · + cdD
d
x (f ) = Dy (д0 + д1 + · · · + дd ),

this means that L = c0 + c1Dx + · · · cdD
d
x is a telescoper for f . The

first linear dependency between the ri ’s leads to the telescoper for
f of minimal order due to the normal-form property.

The approach is not limited to bivariate rational functions and
has been generalized to bivariate hyperexponential functions [12],
hypergeometric terms [23, 45], algebraic functions [27], and fuch-
sian D-finite functions [31]. It has also been worked out for the
mixed hyperexponential-hypergeometric case in [14], and it is be-
ing worked out in the ongoing work [39] in the q-case. The most
general D-finite case has been also studied in [64, 65]. Beyond the bi-
variate case, the first extension is for the differential case in [15, 49]
and then recently for the trivariate rational case in [21]. The signi-
ficate advantage of this approach is that these algorithms separate
the computation of telescopers from that of certificates which is
often more costly and not needed for many applications.
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