A Note on Lipshitz's Lemma 3

Shaoshi Chen and Ziming Li^{*†}

Department of Mathematics, North Carolina State University, Raleigh KLMM, Academy of Mathematics and Systems Science, Beijing

November 5, 2011

Abstract

In this note, we give a remark on the proof of Lemma 3 by Lipshitz in [1]. This remark is motivated by the observation that the statement from line -8 to -3 on page 375 of [1] seems not completely correct.

1 An algebraic description of Lipshitz's Lemma

Let K be a field of characteristic zero, and K(x, y) be the field of rational functions in x and y over K. Denote by \mathcal{R}_2 the ring $K(x, y)\langle D_x, D_y\rangle$ of linear differential operators generated by D_x and D_y over K(x, y), whose commutative rules are given by

$$D_x f = f D_x + \frac{\partial f}{\partial x}$$
 and $D_y f = f D_y + \frac{\partial f}{\partial y}$ for all $f \in K(x, y)$.

Lemma 3 in [1] is an easy consequence of the following proposition.

Proposition 1.1 Let I be a left ideal of \mathcal{R}_2 . If \mathcal{R}_2/I is a finite-dimensional (left) vector space over K(x, y), then there exists a nonzero element in the intersection of I and $K(x)\langle D_x, D_y\rangle$.

Before proving Lemma 1.1, we recall some basic facts about differential operators. Let \mathcal{A}_2 be the Weyl algebra $k[x, y]\langle D_x, D_y\rangle$, which is a subring

^{*}S. Chen was supported by NFS grant CCF-1017217. Z. Li was supported by a grant of the National Natural Science Foundation of China (No. 60821002).

[†]*Emails:* schen21@ncsu.edu (Shaoshi Chen), zmli@mmrc.iss.ac.cn (Ziming Li).

of \mathcal{R}_2 . Assume that A and B are two nonzero differential operators of the form

$$A = LD_x^m + A_{m-1}D_x^{m-1} + \dots + A_0 \quad \text{and} \quad B = LD_y^n + B_{n-1}D_x^{n-1} + \dots + B_0$$
(1)

where L, A_i, B_j are in K[x, y] with $L \neq 0$, and m, n are positive integers. So A and B are in $k[x, y]\langle D_x \rangle$ and $k[x, y]\langle D_y \rangle$, respectively. These two subrings are both contained in \mathcal{A}_2 .

Leibniz's formula for differentiation is translated into the language of differential operators as: for all $f \in K(x, y)$

$$D_x^k f = \sum_{\ell=0}^k \binom{k}{\ell} \frac{\partial^\ell f}{\partial x^\ell} D_x^{k-\ell}$$
(2)

and

$$fD_x^k = \sum_{\ell=0}^k (-1)^\ell \binom{k}{\ell} D_x^{k-\ell} \frac{\partial^\ell f}{\partial x^\ell}.$$
(3)

The relation (2) can be proved by a straightforward induction, while (3) can be proved by applying the adjoint map to (2). Of course, both (2) and (3) hold when x is replaced by y. In the sequel, we merely use the facts that, for all $f \in K[x, y]$,

$$D_x^k f = f D_x^k + P \qquad \text{and} \quad f D_x^k = D_x^k f - P \tag{4}$$

where $P \in K[x, y] \langle D_x \rangle$ is of degree in D_x less than k and total degree in x, y less than that of f.

Let $D = D_x^{\beta} D_y^{\gamma}$. If $\beta > m$, Lipshitz claimed that one can always obtain

$$LD \equiv \sum P_{\delta} D_{\delta} \mod \langle A \rangle, \tag{5}$$

where the sum on the right hand side is over $D_{\delta} = D_x^{\delta_1} D_y^{\delta_2}$ with $\delta_1 < \beta$ and $\delta_2 \leq \gamma$. This claim seems not completely correct. In fact, when $\deg_x(L) > 0$ and both β and γ are positive, multiplying one L is not sufficient to obtain (5). For example, let $D = D_x^m D_y$. Write $A = L D_x^m - R_0$, where R_0 is sum of lower order terms in D_x . Then

$$LD_x^m \equiv R_0 \mod \langle A \rangle. \tag{6}$$

Multiplying both sides of (6) by D_y yields

$$D_y L D_x^m \equiv D_y R_0 \mod \langle A \rangle, \tag{7}$$

$$LD_y D_x^m - L_y D_x^m \equiv D_y R_0 \mod \langle A \rangle, \tag{8}$$

$$LD_y D_x^m \equiv L_y D_x^m + D_y R_0 \mod \langle A \rangle.$$
(9)

In order to reduce the order of $L_y D_x^m$ in (9), we multiply both sides of (9) by L, then

$$L^2 D_x^m D_y \equiv \sum P_\delta D_\delta \mod \langle A \rangle,$$

where the sum on the right hand side is over $D_{\delta} = D_x^{\delta_1} D_y^{\delta_2}$ with $\delta_1 < m$ and $\delta_2 \leq 1$. In contrast to the statement from line -8 to -3 on page 375 of [1], we have

Lemma 1.2 Let A and B be given by (1), and J the left ideal generated by A and B in A_2 . Assume that d is an upper bound for the total degrees of L, A_i and B_j for all i, j with $0 \le i \le m - 1$ and $0 \le j \le n - 1$. Then, for all α, β in \mathbb{N} , we have

$$LD_x^{\alpha}D_y^{\beta} \equiv \sum_{i,j} R_{i,j}^{(\alpha,\beta)} D_x^i D_y^j \mod J,$$

where $R_{ij} \in K[x, y]$, deg $R_{i,j}^{(\alpha,\beta)} \leq d$, either $0 \leq i \leq m-1$ and $0 \leq j \leq n-1$ or $i+j \leq \alpha+\beta-1$.

Proof. If $\alpha < m$ and $\beta < n$, the claim holds. Assume that $\beta \ge n$. We compute

$$\begin{split} LD_x^{\alpha}D_y^{\beta} &= (LD_x^{\alpha}) D_y^{\beta} = (D_x^{\alpha}L + P_{\alpha}) D_y^{\beta} \quad (\text{by } (4)) \\ &= D_x^{\alpha}LD_y^{\beta} + P_{\alpha}D_y^{\beta} = D_x^{\alpha} \left(LD_y^{\beta-n}\right) D_y^{n} + P_{\alpha}D_y^{\beta} \\ &= D_x^{\alpha} \left(D_y^{\beta-n}L + Q_{\beta}\right) D_y^{n} + P_{\alpha}D_y^{\beta} \quad (\text{by } (4)) \\ &= D_x^{\alpha}D_y^{\beta-n} \left(LD_y^{n}\right) + D_x^{\alpha}Q_{\beta}D_y^{n} + P_{\alpha}D_y^{\beta} \\ &= D_x^{\alpha}D_y^{\beta-n} \left(B - \sum_{j=0}^{n-1}B_jD_y^{j}\right) + D_x^{\alpha}Q_{\beta}D_y^{n} + P_{\alpha}D_y^{\beta} \\ &\equiv -D_x^{\alpha}D_y^{\beta-n} \left(\sum_{j=0}^{n-1}B_jD_y^{j}\right) + D_x^{\alpha}Q_{\beta}D_y^{n} + P_{\alpha}D_y^{\beta} \quad \text{mod } J. \end{split}$$

It follows from the degree constraints on P_{α} and Q_{β} that the lemma holds for $\beta \geq n$. Likewise, the lemma holds $\alpha \geq m$.

Similar to the statement made in line 2 on page 376 in [1], we have

Lemma 1.3 Let A and B be given by (1), and J the left ideal generated by A and B in A_2 . Assume that d is an upper bound for the total degrees of L, A_i and B_j for all i, j with $0 \le i \le m - 1$ and $0 \le j \le n - 1$. Then, for all α, β in \mathbb{N} , we have

$$L^{\alpha+\beta+1-\min(m,n)}D_{x}^{\alpha}D_{y}^{\beta} \equiv \sum_{i=0}^{m-1}\sum_{j=0}^{n-1}R_{i,j}^{(\alpha,\beta)}D_{x}^{i}D_{y}^{j} \mod J,$$

where $R_{ij} \in K[x, y]$ and $\deg R_{i,j}^{(\alpha, \beta)} \le (\alpha + \beta + 1 - \min(m, n)) d$.

Proof. By Lemma 1.2, there are P_{ij} , Q_{ij} and R_{ij} in K[x, y] with total degree no more than d such that

$$LD_x^{\alpha}D_y^{\beta} \equiv \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} P_{ij}D_x^i D_y^j + \sum_{i\geq m, 0\leq i+j\leq \alpha+\beta-1} Q_{ij}D_x^i D_y^j + \sum_{j\geq n, 0\leq i+j\leq \alpha+\beta-1} R_{ij}D_x^i D_y^j \mod J.$$

It follows that

$$L^{2}D_{x}^{\alpha}D_{y}^{\beta} \equiv \sum_{i=0}^{m-1}\sum_{j=0}^{n-1}LP_{ij}D_{x}^{i}D_{y}^{j} + \sum_{i\geq m, 0\leq i+j\leq \alpha+\beta-1}Q_{ij}\left(LD_{x}^{i}D_{y}^{j}\right) + \sum_{j\geq n, 0\leq i+j\leq \alpha+\beta-1}R_{ij}\left(LD_{x}^{i}D_{y}^{j}\right) \mod J.$$

Applying Lemma 1.2 to each $LD_x^i D_y^j$ appearing in the second and third summations yields that

$$L^2 D_x^{\alpha} D_y^{\beta} \equiv \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} P'_{ij} D_x^i D_y^j + \sum_{i \ge m, \ 0 \le i+j \le \alpha+\beta-2} Q'_{ij} D_x^i D_y^j + \sum_{j \ge n, \ 0 \le i+j \le \alpha+\beta-2} R'_{ij} D_x^i D_y^j \mod J$$

for some P'_{ij} , Q'_{ij} and R'_{ij} in K[x, y] with total degrees no more than 2d. A straightforward induction shows that

$$\begin{split} L^k D^{\alpha}_x D^{\beta}_y &\equiv \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} P^*_{ij} D^i_x D^j_y \\ &+ \sum_{i \geq m, \, 0 \leq i+j \leq \alpha+\beta-k} Q^*_{ij} D^i_x D^j_y \\ &+ \sum_{j \geq n, \, 0 \leq i+j \leq \alpha+\beta-k} R^*_{ij} D^i_x D^j_y \mod J \end{split}$$

for some P_{ij}^* , Q_{ij}^* and R_{ij}^* in K[x, y] with total degrees no more than kd.

Setting $k = \alpha + \beta + 1 - \min(m, n)$ yields the lemma.

We are ready to prove Proposition 1.1. Assume further that I is nontrivial. Then I contains two differential operators A and B given by (1). Assume that J is the left ideal generated by A and B in A_2 , It suffices to show that there is a nonzero element in the intersection of J and $K[x]\langle D_x, D_y\rangle$.

We apply the same counting argument used in [1]. Assume that d is an upper bound for all coefficients A_i and B_j Let N a positive integer, and let

$$V_N = \left\{ L^N x^{\gamma} D_x^{\alpha} D_y^{\beta} \, | \, \gamma, \alpha, \beta \in \mathbb{N}, \, \gamma + \alpha + \beta \le N \right\}$$

and

$$W_N = \left\{ x^s y^t D_x^i D_y^j \, | \, s, t, i, j \in \mathbb{N}, s+t \le N(d+1), i < m, j < n \right\}.$$

By Lemma 1.3, $L^N x^{\gamma} D_x^{\alpha} D_y^{\beta}$ is congruent a K-linear combination of the elements in W_N modulo J. Since $|V_N| = O(N^3)$ and $|W_N| = O(N^2)$. there must be a nontrivial K-linear combination of the elements in V_N lying in J when N is sufficiently large.

References

[1] L. Lipshitz, The diagonal of a D-Finite power series is D-Finite, Journal of Algebra, Vol. 113(1988), pp. 373-378.