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Abstract

In this note, we give a remark on the proof of Lemma 3 by Lipshitz
in [1]. This remark is motivated by the observation that the statement
from line −8 to −3 on page 375 of [1] seems not completely correct.

1 An algebraic description of Lipshitz’s Lemma

Let K be a field of characteristic zero, and K(x, y) be the field of rational
functions in x and y over K. Denote by R2 the ring K(x, y)〈Dx,Dy〉 of
linear differential operators generated by Dx and Dy over K(x, y), whose
commutative rules are given by

Dxf = fDx +
∂f

∂x
and Dyf = fDy +

∂f

∂y
for all f ∈ K(x, y).

Lemma 3 in [1] is an easy consequence of the following proposition.

Proposition 1.1 Let I be a left ideal of R2. If R2/I is a finite-dimensional
(left) vector space over K(x, y), then there exists a nonzero element in the
intersection of I and K(x)〈Dx,Dy〉.

Before proving Lemma 1.1, we recall some basic facts about differential
operators. Let A2 be the Weyl algebra k[x, y]〈Dx,Dy〉, which is a subring
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of R2. Assume that A and B are two nonzero differential operators of the
form

A = LDm
x +Am−1D

m−1
x + · · ·+A0 and B = LDn

y +Bn−1D
n−1
x + · · ·+B0

(1)
where L,Ai, Bj are in K[x, y] with L 6= 0, and m,n are positive integers.
So A and B are in k[x, y]〈Dx〉 and k[x, y]〈Dy〉, respectively. These two
subrings are both contained in A2.

Leibniz’s formula for differentiation is translated into the language of
differential operators as: for all f ∈ K(x, y)

Dk
xf =

k
∑

ℓ=0

(

k

ℓ

)

∂ℓf

∂xℓ
Dk−ℓ

x (2)

and

fDk
x =

k
∑

ℓ=0

(−1)ℓ
(

k

ℓ

)

Dk−ℓ
x

∂ℓf

∂xℓ
. (3)

The relation (2) can be proved by a straightforward induction, while (3) can
be proved by applying the adjoint map to (2). Of course, both (2) and (3)
hold when x is replaced by y. In the sequel, we merely use the facts that,
for all f ∈ K[x, y],

Dk
xf = fDk

x + P and fDk
x = Dk

xf − P (4)

where P ∈ K[x, y]〈Dx〉 is of degree in Dx less than k and total degree in x, y
less than that of f .

Let D = Dβ
xD

γ
y . If β > m, Lipshitz claimed that one can always obtain

LD ≡
∑

PδDδ mod 〈A〉, (5)

where the sum on the right hand side is over Dδ = Dδ1
x Dδ2

y with δ1 < β and
δ2 ≤ γ. This claim seems not completely correct. In fact, when degx(L) >
0 and both β and γ are positive, multiplying one L is not sufficient to
obtain (5). For example, let D = Dm

x Dy. Write A = LDm
x − R0, where R0

is sum of lower order terms in Dx. Then

LDm
x ≡ R0 mod 〈A〉. (6)

Multiplying both sides of (6) by Dy yields

DyLD
m
x ≡ DyR0 mod 〈A〉, (7)

LDyD
m
x − LyD

m
x ≡ DyR0 mod 〈A〉, (8)

LDyD
m
x ≡ LyD

m
x +DyR0 mod 〈A〉. (9)

2



In order to reduce the order of LyD
m
x in (9), we multiply both sides of (9)

by L, then

L2Dm
x Dy ≡

∑

PδDδ mod 〈A〉,

where the sum on the right hand side is over Dδ = Dδ1
x Dδ2

y with δ1 < m and
δ2 ≤ 1. In contrast to the statement from line −8 to −3 on page 375 of [1],
we have

Lemma 1.2 Let A and B be given by (1), and J the left ideal generated
by A and B in A2. Assume that d is an upper bound for the total degrees
of L, Ai and Bj for all i, j with 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n − 1. Then,
for all α, β in N, we have

LDα
xD

β
y ≡

∑

i,j

R
(α,β)
i,j Di

xD
j
y mod J,

where Rij ∈ K[x, y], degR
(α,β)
i,j ≤ d, either 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1

or i+ j ≤ α+ β − 1.

Proof. If α < m and β < n, the claim holds. Assume that β ≥ n. We
compute

LDα
xD

β
y = (LDα

x )D
β
y = (Dα

xL+ Pα)D
β
y (by (4))

= Dα
xLD

β
y + PαD

β
y = Dα

x

(

LDβ−n
y

)

Dn
y + PαD

β
y

= Dα
x

(

Dβ−n
y L+Qβ

)

Dn
y + PαD

β
y (by (4))

= Dα
xD

β−n
y

(

LDn
y

)

+Dα
xQβD

n
y + PαD

β
y

= Dα
xD

β−n
y

(

B −
∑n−1

j=0 BjD
j
y

)

+Dα
xQβD

n
y + PαD

β
y

≡ −Dα
xD

β−n
y

(

∑n−1
j=0 BjD

j
y

)

+Dα
xQβD

n
y + PαD

β
y mod J.

It follows from the degree constraints on Pα and Qβ that the lemma holds
for β ≥ n. Likewise, the lemma holds α ≥ m. �

Similar to the statement made in line 2 on page 376 in [1], we have

Lemma 1.3 Let A and B be given by (1), and J the left ideal generated
by A and B in A2. Assume that d is an upper bound for the total degrees
of L, Ai and Bj for all i, j with 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n − 1. Then,
for all α, β in N, we have

Lα+β+1−min(m,n)Dα
xD

β
y ≡

m−1
∑

i=0

n−1
∑

j=0

R
(α,β)
i,j Di

xD
j
y mod J,

where Rij ∈ K[x, y] and degR
(α,β)
i,j ≤ (α+ β + 1−min(m,n)) d.
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Proof. By Lemma 1.2, there are Pij , Qij and Rij in K[x, y] with total
degree no more than d such that

LDα
xD

β
y ≡

∑m−1
i=0

∑n−1
j=0 PijD

i
xD

j
y

+
∑

i≥m, 0≤i+j≤α+β−1 QijD
i
xD

j
y

+
∑

j≥n,0≤i+j≤α+β−1RijD
i
xD

j
y mod J.

It follows that

L2Dα
xD

β
y ≡

∑m−1
i=0

∑n−1
j=0 LPijD

i
xD

j
y

+
∑

i≥m, 0≤i+j≤α+β−1Qij

(

LDi
xD

j
y

)

+
∑

j≥n, 0≤i+j≤α+β−1Rij

(

LDi
xD

j
y

)

mod J.

Applying Lemma 1.2 to each LDi
xD

j
y appearing in the second and third

summations yields that

L2Dα
xD

β
y ≡

∑m−1
i=0

∑n−1
j=0 P

′
ijD

i
xD

j
y

+
∑

i≥m, 0≤i+j≤α+β−2Q
′
ijD

i
xD

j
y

+
∑

j≥n, 0≤i+j≤α+β−2R
′
ijD

i
xD

j
y mod J

for some P ′
ij , Q

′
ij and R′

ij in K[x, y] with total degrees no more than 2d. A
straightforward induction shows that

LkDα
xD

β
y ≡

∑m−1
i=0

∑n−1
j=0 P

∗
ijD

i
xD

j
y

+
∑

i≥m, 0≤i+j≤α+β−k Q
∗
ijD

i
xD

j
y

+
∑

j≥n, 0≤i+j≤α+β−k R
∗
ijD

i
xD

j
y mod J

for some P ∗
ij , Q

∗
ij and R∗

ij in K[x, y] with total degrees no more than kd.
Setting k = α+ β + 1−min(m,n) yields the lemma. �

We are ready to prove Proposition 1.1. Assume further that I is nontriv-
ial. Then I contains two differential operators A and B given by (1). Assume
that J is the left ideal generated by A and B in A2, It suffices to show that
there is a nonzero element in the intersection of J and K[x]〈Dx,Dy〉.

We apply the same counting argument used in [1]. Assume that d is an
upper bound for all coefficients Ai and Bj Let N a positive integer, and let

VN =
{

LNxγDα
xD

β
y | γ, α, β ∈ N, γ + α+ β ≤ N

}

and

WN =
{

xsytDi
xD

j
y | s, t, i, j ∈ N, s+ t ≤ N(d+ 1), i < m, j < n

}

.
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By Lemma 1.3, LNxγDα
xD

β
y is congruent a K-linear combination of the

elements in WN modulo J . Since |VN | = O(N3) and |WN | = O(N2). there
must be a nontrivial K-linear combination of the elements in VN lying in J
when N is sufficiently large. �
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