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D-finiteness, rationality, and height

Jason Bell1, Shaoshi Chen2, Khoa Nguyen3, Umberto Zannier4 [jpbell@uwaterloo.ca]

1 Department of Pure Mathematics, University of Waterloo, Waterloo, Canada
2 KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing, China
3 Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
4 Classe di Scienze Matematiche e Naturali, Scuola Normale Superiore, Pisa, Italy

We discuss the growth of heights of coefficients of a D-finite series, showing that under
conditions that ensure sufficiently slow growth, a D-finite series is necessarily rational.

Keywords
Heights, Pólya-Carlson theorem, Growth, Gap theorems
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Shift equivalence testing of polynomials and
symbolic summation of multivariate rational

functions

Shaoshi Chen1,2, Lixin Du1,2,3, Hanqian Fang4 [lx.du@hotmail.com]

1KLMM, AMSS, Chinese Academy of Sciences, Beijing, China
2School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing,
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4School of Mathematical Sciences, Beihang University, Beijing, China

The Shift Equivalence Testing (SET) of polynomials is deciding whether two polynomials
p(x1, . . . , xn) and q(x1, . . . , xn) satisfy the relation p(x1+a1, . . . , xn+an) = q(x1, . . . , xn)
for some a1, . . . , an in the coefficient field. The SET problem is one of basic computational



problems in computer algebra and algebraic complexity theory, which was reduced by Dvir,
Oliverira and Shpilka in 2014 to the Polynomial Identity Testing (PIT) problem [1]. In this
talk, we presents a general scheme for designing algorithms to solve the SET problem which
includes Dvir-Oliverira-Shpilka’s algorithm as a special case. With the algorithms for the
SET problem over integers, we give complete solutions to two challenging problems in sym-
bolic summation of multivariate rational functions, namely the rational summability problem
and the existence problem of telescopers for multivariate rational functions. Our approach is
based on the structure of isotropy groups of polynomials introduced by Sato in 1960s [2]. Our
results can be used to detect the applicability of the Wilf-Zeilberger method to multivariate
rational functions.

Keywords
Summability, Telescopers, Isotropy Groups, Shift Equivalences
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Galois groups of linear difference-differential
equations

Ruyong Feng1,2, Wei Lu1,2 [ryfeng@amss.ac.cn]
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We consider the following σδ-linear system{
σ(Y ) = AY

δ(Y ) = BY
, A ∈ GLn(k0(x)), B ∈ gln(k0(x))

where A,B satisfy the integrability condition: σ(B)A = δ(A) + AB. Here (k0, δ) is a
differential field with algebraically cosed C = kδ0, k0(x) is a σδ-field with shift operator
σ(x) = x + 1. With respect to the above system, there are three algebraic subgroups of
GLn(C): the σδ-Galois group G of the above system over k0(x), the σ-Galois group Gσ,c1
of σ(Y ) = Ac1Y over C(x), and the δ-Galois group Gδ,c2 of δ(Y ) = Bc2Y over k0, where
Ac1 ∈ GLn(C(x)) and Bc2 ∈ gln(k0) are specializations of A and B respectively.

We show that both Gσ,c1 and Gδ,c2 are algebraic subgroups of G under certain conditions
on c1, c2, and G = Gσ,c1Gδ,c2 for suitable c1, c2. These results enable us to reduce the
problem of determining σδ-Galois groups to the problems of determining σ-Galois groups
and δ-Galois groups. We also give a criterion for testing linear dependence of elements in a
simple σδ-ring, which generalizes the classic results for elements in a σ-field or a δ-field and
a result for hypexponential elements given by Li et al. 2007.



Keywords
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Symbolic-Numeric Factorization of Differential
Operators

Frédéric Chyzak1, Alexandre Goyer1, Marc Mezzarobba2 [alexandre.goyer@inria.fr]

1 Inria, France
2 CNRS, France

I am going to present a symbolic-numeric Las Vegas algorithm for factoring Fuchsian ordi-
nary differential operators with rational function coefficients. The new algorithm combines
ideas of van Hoeij’s “local-to-global” method and of the “analytic” approach proposed by
van der Hoeven. It essentially reduces to the former in “easy” cases where the local-to-global
method succeeds, and to an optimized variant of the latter in the “hardest” cases, while han-
dling intermediate cases more efficiently than both.

Keywords
Linear differential equations, Monodromy, Rigorous Numerics
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Efficient q-integer linear decomposition of
multivariate polynomials
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We present two new algorithms for the computation of the q-integer linear decomposition
of a multivariate polynomial. Such a decomposition is essential for the treatment of q-
hypergeometric symbolic summation via creative telescoping and also for describing the q-
counterpart of Ore-Sato theory. Both of our algorithms require only basic integer and polyno-
mial arithmetic and work for any unique factorization domain containing the ring of integers.
Complete complexity analyses are conducted for both our algorithms and two previous al-
gorithms in the case of multivariate integer polynomials, showing that our algorithms have
better theoretical performances. A Maple implementation is also included which suggests
that our algorithms are much faster in practice than previous algorithms.

https://www.issac-conference.org/2022/


Keywords
q-Analogue, Integer-linear polynomials, Polynomial decomposition, Newton polytope,
Creative telescoping, Ore-Sato theory

Working with DD-finite functions automatically
on SageMath

Antonio Jiménez-Pastor1 [jimenezpastor@lix.polytechnique.fr]

1 LIX, CNRS, École Polytechnique, Institute Polytechnique de Paris, Palaiseau, France

In this talk we are going to present the SageMath [5] package dd_functions and its latest
features concerning DD-finite functions.

DD-finite functions are a natural extension of the holonomic framework. Holonomic (or
D-finite) functions are formal power series (f(x) ∈ K[[x]]) that satisfy linear differential
equations with polynomials coefficients. These functions form a computable differential ring,
namely, the elements can be represented on the computer, and all the ring operations and the
derivative can be automatically executed [4]. Hence, they can be use again as coefficients for
new differential equations leading to the definition of DD-finite functions.

Definition. [DD-finite] Let f(x) ∈ K[[x]]. We say that f(x) is DD-finite if and only if there
is a natural number d > 0 and D-finite functions r0(x), . . . , rd(x) (rd(x) 6= 0) such that

rd(x)f
(d)(x) + . . .+ r0(x)f(x) = 0.

This definition allows representing DD-finite functions with a finite amount of data since we
only need to store the coefficients of the defining differential equation and some initial values
f(0), f ′(0), . . . , f (r)(0).

It was shown in [2] that the set of DD-finite functions is also a computable differential ring
(as it happened with the D-finite case). In fact, we can extend these results to the case were
the coefficients are in a computable differential ring.

Definition. [Differentially definable] Let R ⊂ K[[x]] be a differential subring and f(x) ∈
K[[x]]. We say that f(x) is differentially definable overR if there is d > 0 and r0, . . . , rd ∈ R
(with rd 6= 0) such that

rdf
(d)(x) + . . .+ r0f(x) = 0.

Theorem [3]. Let R ⊂ K[[x]] be a differential subring and let D(R) be the set of all
differentially definable functions over R. Then D(R) ⊂ K[[x]] is a computable differential
ring.

With this result, we can observe that the differentially definable construction can be iterated,
obtaining a chain of computable differential rings within K[[x]]:

R ⊂ D(R) ⊂ D2(R) ⊂ . . . ⊂ Dn(R) ⊂ . . . ,



and, in this context, is clear that DD-finite functions are D2(K[x]).

These results were implemented in the SageMath [5] package dd_functions that we
present in this talk. This software allows to construct any differentially definable ring and
manipulate symbolically their elements in an automatic fashion.

This software is publicly available on GitHub∗, and it is constantly updated with the new
results concerning DD-finite and differentially functions [1]. It includes:

Structures

• Definition of any differentially definable ring.
• The possibility of working in the chain of Dn(R).
• Create any differentially definable function giving the coefficients for the differential

equation and some initial conditions.
• Use an always increasing library of examples coming from special functions.

Operations

• All closure properties are included.
• Composition of differentially definable functions f(g(x)) when g(0) = 0.
• Computing closure properties keeping the singularities of the differential equations.
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d-finite; dd-finite; formal power series; SageMath; special functions
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Computing Logarithmic Parts by
Evaluation Homomorphisms

Hao Du 1, Yiman Gao2, Jing Guo2, Ziming Li2 [zmli@mmrc.iss.ac.cn]

1 School of Sciences, Beijing University of Posts and Telecommunications, Beijing, China
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Let (K, ′) be a differential field of characteristic zero, t be transcendental over K and t′ be-
long to K[t]. Assume that K and K(t) have the same subfield C of constants. A polynomial
p in K[t] is said to be normal if gcd(p, p′) = 1. A rational function f in K(t) is said to be
simple if it is proper and has a normal denominator.

Let f ∈ K(t) be simple. Then f has an elementary integral if and only if∫
f = c1 log g1 + · · ·+ cm log gm

for some c1, . . . , cm in the algebraic closure of C and g1, . . . , gm in K(c1, . . . , cm)(t). We
call {(c1, g1), . . . , (cm, gm)} a logarithmic part of f when the above equality holds.

Given a simple function f , known algorithms for determining its logarithmic parts are based
on either resultants [1, 6, 7], or subresultants [1, 3, 4], or Gröbner bases [1, 2, 5]. These
algorithms need to find a polynomial r ∈ K[z], where z is a constant indeterminate and
r is either the Rothstein-Trager resultant of f [1,6,7] or its squarefree part. Then f has a
logarithmic part if and only if the monic associate p of r belongs toC[z]. It is time-consuming
to compute r when K is a field of multivariate rational functions over C.

We present a new algorithm that computes a candidate q ∈ C[z] for the monic associate
p by evaluation homomorphisms, and attempts to construct a logarithmic part of f using q
by algebraic gcd-computation. By a property of residue multiplicities, the algorithm either
confirms the non-existence of logarithmic parts or finds a logarithmic part of f . Empirical
results illustrate that the algorithm is more efficient than the known algorithms.
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Decision Problems for Second-Order Holonomic
Recurrences

Eike Neumann1, Joël Ouaknine2, James Worrell3 [neumaef1@gmail.com]
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We study decision problems for sequences which obey a second-order holonomic recurrence
of the form f(n + 2) = P (n)f(n + 1) + Q(n)f(n) with rational polynomial coefficients,
where P is non-constant, Q is non-zero, and the degree of Q is smaller than or equal to
that of P . We show that existence of infinitely many zeroes is decidable. We give partial
algorithms for deciding the existence of a zero, positivity of all sequence terms, and positivity
of all but finitely many sequence terms. If Q does not have a positive integer zero then our
algorithms halt on almost all initial values (f(1), f(2)) for the recurrence. We identify a class
of recurrences for which our algorithms halt for all initial values. We further identify a class
of recurrences for which our algorithms can be extended to total ones.

Keywords
Holonomic sequences, Positivity Problem, Skolem Problem

C2-finite Sequences: A Computational Approach

Philipp Nuspl1 [philipp.nuspl@jku.at]

1 Doctoral Program Computational Mathematics, Johannes Kepler University Linz, Austria

We define a class of sequences which satisfy a linear recurrence with coefficients that, in
turn, satisfy a linear recurrence with constant coefficients themselves, i.e., are C-finite. These
C2-finite sequences are a natural generalization of P -finite sequences, they form a ring and
satisfy additional computational properties [1,2,3]. It turns out that, compared to P -finite
sequences, the algorithmic aspects are much more involved and are related to difficult prob-
lems in number theory. We give an introduction to these C2-finite sequences and present an
implementation in the computer algebra system SageMath.

Keywords
Difference equations, holonomic sequences, closure properties
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Factoring differential operators in positive
characteristic

Raphaël Pagès [raphael.pages@math.u-bordeaux.fr]
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We present an algorithm to factor differential operators with coefficients in an algebraic func-
tion field K of characteristic p, provided with the usual derivation, as a product of irreducible
differential operators with coefficients in K. We make use of tools specific to the characteris-
tic p, such as the p-curvature or the arising central simple algebra structure. In particular we
shall see that factoring differential operators ultimately reduces to solving some "p-Ricatti"
equations, for which purpose we use tools of algebraic geometry.

Keywords
Differential operators, Factorisation, Positive characteristic, p-curvature, Central simple al-
gebras

Arithmetic of polynomial dynamical systems

Mohammad Sadek [mohammad.sadek@sabanciuniv.edu]

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

The number theoretic properties of iterations of polynomial maps defined over number fields
are governed by the degree of the maps and the degree of the field. Although due attention
has been given to iterations of quadratic polynomial maps over number fields of small degree,
arithmetic dynamical systems produced by iterations of polynomial maps of higher degrees
have not been addressed much in literature. In this talk, we survey some of the old and new
results on arithmetic polynomial dynamical systems. The focus will be on algebraic aspects
of these systems in the case that the degree of the polynomial map is at least three.

Keywords
Arithmetic dynamics, Dynamical irreducibility, Periodic points

Series defined by quadratic differential equations

Bertrand Teguia Tabuguia [teguia@mis.mpg.de]

Nonlinear Algebra Group, Max Planck Institute for Mathematics in the Sciences, Leipzig,
Germany

Differential polynomials of degree at most one annihilate D-finite functions. We consider
annihilators of degree at most two and present a general strategy to represent power series
solutions of resulting differential equations given enough initial values [1]. Using techniques



from algebraic geometry (see [2]), our method extends to representations of Laurent-Puiseux
series. Consequently, we can prove identities beyond D-finiteness. However, doing so raises
the question of closure properties. Indeed, to show equivalence between two expressions,
we may need to establish evidence of the zero-equivalence of their difference; therefore, in
a sense, it is relevant to know if the class under consideration contains additive group struc-
tures. We present some of our investigations around closure properties with generalization to
differential polynomials of degree at most k ∈ N.

Furthermore, we demonstrate how our method highlights a reverse methodology that finds
application in Guessing: recovering a non-D-finite function from a truncation of its power
series expansion [3].

Parts of this presentation came from joint work with Wolfram Koepf and Anna-Laura Sattel-
berger.
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Differential algebra, Power series representation, Guessing
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q-Difference Equation Systems for Cylindric
Partitions

Ali Kemal Uncu1,2 [akuncu@ricam.oeaw.ac.at]
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The cylindric partitions defined by Gessel and Krattenthaler [4] attracted interest after a re-
cent paper by Corteel and Welsh [3]. In this talk, we will look at these objects and their
symmetric versions as well as skew double shifted plane partitions. We will especially focus
on the coupled q-difference equation systems that these objects are associated with and the
difficulties of solving such systems.

Parts of this work is joint with Sylvie Corteel, Jehanne Dousse [2], and Walter Bridges [1].

Keywords
Cylindric Partitions, q-Difference Equations, Computer Algebra
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